人教版八年级常见辅助线:截长补短专题
- 格式:doc
- 大小:15.52 KB
- 文档页数:2
CCBA全等三角形问题中常见的辅助线——截长补短法例1、如图,中,AB =2AC ,AD 平分,且AD =BD ,ABC ∆BAC ∠求证:CD ⊥AC例2、如图,AD ∥BC , AE , BE 分别平分∠DAB ,∠CBA ,CD 过点E ,求证;AB =AD +BC例3、如图,已知在内,,,P ,Q 分别在BC ,CA 上,ABC 060BAC ∠=040C ∠=并且AP ,BQ 分别是,的角平分线。
求证:BQ +AQ =AB +BPBAC ∠ABC ∠B A DO E CB A 例4、如图,在四边形ABCD 中,BC >BA ,AD =CD ,BD 平分,ABC ∠求证: 0180=∠+∠C A 例5、如图在△ABC 中,AB >AC ,∠1=∠2,P 为AD 上任意一点,求证;AB -AC >PB -PC例6、已知中,,、分别平分和,、ABC ∆60A ∠= BD CE ABC ∠.ACB ∠BD CE交于点,试判断、、的数量关系,并加以证明.O BE CD BC例7、如图,点为正三角形的边所在直线上的任意一点(点除外),作M ABD AB B ,射线与外角的平分线交于点,与有怎样的数60DMN ∠=︒MN DBA ∠N DM MN 量关系?变式练习:如图,点为正方形的边上任意一点,且与外角的平分M ABCD AB MN DM ⊥ABC ∠线交于点,与有怎样的数量关系?N MD MN 例8、如图所示.已知正方形ABCD 中,M 为CD 的中点,E 为MC 上一点,且∠BAE =2∠DAM .求证:AE =BC +CE .NEB M A DMEDCB A NCD EB M ANMD CB A FEDC B A DN M CB A例9、已知:如图,ABCD 是正方形,∠FAD =∠FAE .求证:BE +DF =AE .例10、如图所示,是边长为2的正三角形,是顶角为的等腰三ABC ∆BDC ∆120 角形,以为顶点作一个的,点、分别在、上,求D 60 MDN ∠M N AB AC的周长.AMN ∆变式练习如图所示,是边长为4的正三角形,是顶角为的等腰三角形,以ABC ∆BDC ∆120为顶点作一个的,点、分别在、上,求的周长.D 60MDN ∠M N AB AC AMN ∆CE DB A例11、五边形ABCDE中,AB=AE,BC+DE=CD,∠ABC+∠AED=180°,求证:DA平分∠CDE例12、如图,在四边形ABCD中,AD∥BC,点E是AB上一个动点,若∠B=600,AB=BC,且∠DEC=60O,判断AD+AE与BC的关系并证明你的结论。
几何常用辅助线秘籍一、知识要点关于全等的辅助线有以下常见的作法(1) 有角平分线时,常在角两边截取相等的线段,构造全等三角形(2) 在三角形中有中线时,常采取延长中线变为原来的两倍,构造全等三角形来解决(3) 截长补短法:当已知或求证中涉及到线段a、b、c、d有下列情况:①a>b;②a±b=c;③a±b=c±d中的其中一种情况时采用二、例题解析【例1】如图,点P为△AEF外一点,P A平分∠EAF,PE=PF,PB⊥AE于B,求证:AF-AB =BE【例2】如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,求证:AC=AE +CD【例3】如图,△ABC中,∠ACB=90°,AC=BC.若直线l过顶点A,BM⊥l于M,若l平分∠BAC,求证:(1) AD=2BM;(2) ∠CMA=45°【例4】如图,已知AD是△ABC的中线,BE交AC于点E,交AD于点F,且AE=EF,求证:AC=BF【例5】如图,在△ABC中,AB=AC,延长AB到D,使BD=AB,E为AB的中点,连结CE、CD,求证:CD=2EC【例6】如图,△ABC中,∠C=90°,BE⊥AB且BE=AB,BD⊥BC且BD=BC,CB的延长线交DE于F(1) 求证:点F是ED的中点(2) 求证:S△AB C=2S△BEF【例7】如图,已知等腰Rt△ABC中,∠ACB=90°,AC=BC=4,D为△ABC的一个外角∠ABF 的平分线上一点,且∠ADC=45°,CD交AB于E(1) 求证:AD=CD(2) 求AE的长三、课堂练习如图,△ABC中,CA=CB,∠CAB=∠CBA=45°,点E为BC的中点,CN⊥AE交AB于N,求证:CN+EN=AE四、反馈练习1.如图,四边形ABCD中,AB>AD,AC平分∠BAD,CE⊥AD于E点,若∠B+∠ADC=180°,求证;CD=CB2.(1) 如图,△ABC中,若AD平分∠BAC,AB+BD=AC,求:∠C∶∠B (2) 如图,△ABC中,若AD平分∠BAC,∠B=2∠C,求证:AB+BD=AC。
八年级上册数学中,“截长补短”是一种常见的解题方法,用于解决几何证明题。
这
种方法通过添加辅助线,将较长的线段截取成几部分,或者将较短的线段延长至与其他线段相等或较长,从而使得证明过程变得简单明了。
以下是一个“截长补短”的题型示例:
题目:已知三角形ABC中,AB=AC,D是BC上的一点,E是AD上的一点,且∠BED=∠BAC=α,BD=ED。
求证:AD⊥BC。
证明:
第一步,由题目已知,AB=AC,所以∠B = ∠C。
第二步,根据等边三角形的性质,在等腰三角形中,底角相等。
所以,∠B = ∠C = (180° - α) / 2 = 90° - α / 2。
第三步,根据题目条件,BD = ED,所以∠BED = ∠B = 90° - α / 2。
第四步,根据角度的补角性质,∠BED + ∠B = 90°,即:2(90° - α / 2) = 90°。
所以,AD⊥BC。
通过这个证明过程,我们可以看到“截长补短”的方法在本题中的应用:我们延长了线段BD至D'使得BD'=ED,从而使得∠BED=∠BED'。
这样,我们就可以利用等腰三角形的性质和角度的补角性质来证明AD⊥BC。
截长补短专题知识导航“截长补短”是几何证明题中十分重要的方法,通常用来证明几条线段的数量关系,即若题目条件或结论中含有“c b a =+”的条件,需要添加辅助线时可以考虑“截长补短”的方法。
截长法:在较长的线段上截取一条线段等于较短线段,再设法证明较长线段的剩余线段等于另外的较短线段。
补短法:①延长较短线段中的一条,使延长出来的线段等于另外的较短线段,然后证明两线段之和等于较长线段。
即延长a ,得到b ,证:c b a =+。
②延长较短线段中的一条,使延长后的线段等于较长线段,然后证明延长出来的部分等于另一条较短线段。
即延长a ,得到c ,证:a c b -=。
【核心考点1】角平分线相关截长补短1. 如图,BP 平分ABC ∠,D 为BP 上一点,E ,F 分别在BA ,BC 上,且满足DE DF =,若140BED ∠=︒,则BFD ∠的度数是( )A .40︒B .50︒C .60︒D .70︒【分析】作DG AB ⊥于G ,DH BC ⊥于H ,根据角平分线的性质得到DH DG =,证明Rt DEG Rt DFH ∆≅∆,得到DEG DFH ∠=∠,根据互为邻补角的性质得到答案.【解答】解:作DG AB ⊥于G ,DH BC ⊥于H ,D 是ABC ∠平分线上一点,DG AB ⊥,DH BC ⊥, DH DG ∴=,在Rt DEG ∆和Rt DFH ∆中, DG DHDE DF=⎧⎨=⎩, ()Rt DEG Rt DFH HL ∴∆≅∆,DEG DFH ∴∠=∠,又180DEG BED ∠+∠=︒, 180BFD BED ∴∠+∠=︒,BFD ∴∠的度数18014040=︒-︒=︒,故选:A .2. 已知,如图,ABC ∆中,2C B ∠=∠,12∠=∠,求证:AB AC CD =+.【分析】在AB 上截取AE AC =,由“SAS ”可证ADE ADC ∆≅∆,可证DE DC =,C AED ∠=∠,可证B BDE ∠=∠,可得BE DE DC ==,即结论可得. 【解答】证明:如图,在AB 上截取AE AC =,AE AC =,12∠=∠,AD AD =()ADE ADC SAS ∴∆≅∆DE DC ∴=,C AED ∠=∠, 2C B ∠=∠,AED B BDE ∠=∠+∠,B BDE ∴∠=∠ BE DE DC ∴==,AB AE BE =+, AB AC DC ∴=+。
几何证明-常用辅助线 (一)中线倍长法:例1 、求证:三角形一边上的中线小于其他两边和的一半。
已知:如图,△ABC 中,AD 是BC 边上的中线,求证:AD ﹤21(AB+AC) 分析:要证明AD ﹤21(AB+AC),就是证明AB+AC>2AD ,也就是证明两条线段之和大于第三条线段,而我们只能用“三角形两边之和大于第三边”,但题中的三条线段共点,没有构成一个三角形,不能用三角形三边关系定理,因此应该进行转化。
待证结论AB+AC>2AD 中,出现了2AD ,即中线AD 应该加倍。
证明:延长AD 至E ,使DE=AD ,连CE ,则AE=2AD 。
在△ADB 和△EDC 中,AD =DE ∠ADB =∠EDCBD =DC∴△ADB ≌△EDC(SAS) ∴AB=CE又 在△ACE 中, AC+CE >AE∴AC+AB >2AD ,即AD ﹤21(AB+AC)小结:(1)涉及三角形中线问题时,常采用延长中线一倍的办法,即中线倍长法。
它可以将分居中线两旁的两条边AB 、AC 和两个角∠BAD 和∠CAD 集中于同一个三角形中,以利于问题的获解。
课题练习:ABC ∆中,AD 是BAC ∠的平分线,且BD=CD ,求证AB=ACC例2: 中线一倍辅助线作法△ABC 中方式1: 延长AD 到E ,AD 是BC 边中线使DE=AD ,连接BE 方式2:间接倍长作CF ⊥AD 于F ,延长MD 到N ,作BE ⊥AD 的延长线于使DN=MD , 连接BE 连接CD例3:△ABC 中,AB=5,AC=3,求中线AD 的取值范围例4:已知在△ABC 中,AB=AC ,D 在AB 上,E 在AC 的延长线上,DE 交BC 于F ,且DF=EF ,求证:BD=CE课堂练习:已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF例5:已知:如图,在ABC ∆中,AC AB ≠,D 、E 在BC 上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC.求证:AE 平分BAC ∠课堂练习:已知CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线,求证:∠C=∠BAE作业:1、在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE=∠EAF ,AF 与DC 的延长线相交于点F 。
几何辅助线——截长补短例1、如图AD ∥BC ,点E 在线段AB 上,∠ADE=∠CDE ,∠DCE=∠ECB. 求证:(1)CD=AD+BC ;(2)AE = BEEDCAB例2、如图,EA 平分∠CAB ,且AB=AC+BD ,E 为CD 中点. 求证:BE 平分∠ABD 。
CAD BE例3、如图,在△ABC 中,∠BAC=60°,AD 是∠BAC 的平分线,且AC=AB+BD, 求∠ABC 的度数。
ABCD例4、如图,在△ABC中,∠B=2∠C,∠BAC的角平分线交BC于D.求证:AB+BD=AC.例5、已知,如图,∠1=∠2,P 为BN 上一点,且PD ⊥BC 于点D ,AB + BC =2BD. 求证:∠BAP+∠BCP=180°.例6、如图,AB =2AC ,AD =BD ,AD 平分∠BAC ,求证:AC ⊥CD.ND CBA P21例7、如图,在△ABC中,∠B=2∠C,且AD⊥BC于D.求证:CD=AB+BD.例8、已知△ABC中,∠A=60°,BD,CE分别平分∠ABC和∠ACB,BD、CE 交于点O,试判断BE,CD,BC的数量关系,并说明理由.几何辅助线——截长补短(习题)1、已知:如图,ABCD是正方形,∠FAD=∠FAE.求证:BE+DF=AE.2、如图,在直角梯形ABCD中,AB∥CD,E是BC的中点,AB+CD=AD,求证:(1)AE、DE分别平分角∠A和∠D;(2)∠DEA=90°.3、如图,已知AB=AE,∠1+∠2=∠3,∠ABC=∠AED=90°,求证:BC+DE=CD.4、如图,AB∥CD,E点在BC上,AE平分∠BAD,DE平分∠ADC.求证:(1)EB=EC;(2)AB+CD=AD.5、已知菱形ABCD,连接对角线AC、BD,在菱形ABCD的外部以AD为边作等边三角形ADE,点F为线段AC上一动点,连接BF.(1)如图1,当∠DBF=45°,BD=2时,求BF的长;(2)如图2,当∠DBF=60°时,连接EF,证明EF=AB;(3)如图3,当E、F、B三点共线时,连接EF,证明:EF=BF+AF.图1 图2 图36、在ABC ∆中,,90AB AC BAC =∠=o ,点D 是AC 上一点,连接BD ,过点A 作AE BD ⊥于E ,交BC F 于。
一、填空题1.如图,已知 ABC 中,∠A =60︒,D 为AB 上一点,且AC =2AD +BD ,∠B =4∠ACD ,则∠DCB 的度数是_________八年级数学上册三角形全等作辅助线模型截长补短(人教版).2.如图,△ABC 中,E 在BC 上,D 在BA 上,过E 作EF ⊥AB 于F ,∠B =∠1+∠2,AB =CD ,BF =43,则AD 的长为________.二、解答题3.思维探索:在正方形ABCD 中,AB =4,∠EAF 的两边分别交射线CB ,DC 于点E ,F ,∠EAF =45°.(1)如图1,当点E ,F 分别在线段BC ,CD 上时,△CEF 的周长是;(2)如图2,当点E ,F 分别在CB ,DC 的延长线上,CF =2时,求△CEF 的周长;拓展提升:如图3,在Rt △ABC 中,∠ACB =90°,CA =CB ,过点B 作BD ⊥BC ,连接AD ,在BC 的延长线上取一点E ,使∠EDA =30°,连接AE ,当BD =2,∠EAD =45°时,请直接写出线段CE 的长度.4.如图,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角平分线CF于点F.(1)求证:AE=EF;(2)如图2,若把条件“点E是边BC的中点”改为“点E是边BC上的任意一点”,其余条件不变,(1)中的结论是否仍然成立?;(填“成立”或“不成立”);(3)如图3,若把条件“点E是边BC的中点”改为“点E是边BC延长线上的一点”,其余条件仍不变,那么结论AE=EF是否成立呢?若成立请证明,若不成立说明理由.5.阅读下面材料:小明遇到这样一个问题:如图一,△ABC中,∠A=90°,AB=AC,BD平分∠ABC,猜想线段AD与DC数量关系.小明发现可以用下面方法解决问题:作DE⊥BC交BC于点E:(1)根据阅读材料可得AD与DC的数量关系为__________.(2)如图二,△ABC中,∠A=120°,AB=AC,BD平分∠ABC,猜想线段AD与DC的数量关系,并证明你的猜想.(3)如图三,△ABC中,∠A=100°,AB=AC,BD平分∠ABC,猜想线段AD与BD、BC的数量关系,并证明你的猜想.6.已知等边ABC ∆中,点O 是边AC ,BC 的垂直平分线的交点,M ,N 分别在直线AC ,BC 上且60MON ∠=°,(1)如图所示,点M ,N 分别在边AC ,BC 上,求证:AM CN MN =+;(2)如图所示,点M 在边AC 上,点N 在BC 的延长线上,求AM CN MN+的值.7.把两个全等的直角三角板的斜边重合,组成一个四边形ACBD ,以D 为顶点作MDN ∠,交边AC ,BC 于点M ,N .(1)如图(1),若30ACD ∠=︒,60MDN ∠=︒,当MDN ∠绕点D 旋转时,AM ,MN ,BN 三条线段之间有何种数量关系?证明你的结论;(2)如图(2),当90ACD MDN ∠+∠=︒时,AM ,MN ,BN 三条线段之间有何数量关系?证明你的结论;(3)如图(3),在(2)的条件下,若将M ,N 分别改在CA ,BC 的延长线上,完成图(3),其余条件不变,则AM ,MN ,BN 之间有何数量关系(直接写出结论,不必证明).8.阅读材料并完成习题:在数学中,我们会用“截长补短”的方法来构造全等三角形解决问题.请看这个例题:如图1,在四边形ABCD 中,∠BAD=∠BCD=90°,AB=AD ,若AC=2cm ,求四边形ABCD 的面积.解:延长线段CB 到E ,使得BE=CD ,连接AE ,我们可以证明△BAE ≌△DAC ,根据全等三角形的性质得AE=AC=2,∠EAB=∠CAD ,则∠EAC=∠EAB+∠BAC=∠DAC+∠BAC=∠BAD=90°,得S 四边形ABCD =S △ABC +S △ADC =S △ABC +S △ABE =S △AEC ,这样,四边形ABCD 的面积就转化为等腰直角三角形EAC 面积.(1)根据上面的思路,我们可以求得四边形ABCD 的面积为cm 2.(2)请你用上面学到的方法完成下面的习题.如图2,已知FG=FN=HM=GH+MN=2cm ,∠G=∠N=90°,求五边形FGHMN 的面积.9.如图1,在ABC ∆中,ACB ∠是直角,60B ∠=︒,AD 、CE 分别是BAC ∠、BCA ∠的平分线,AD 、CE 相交于点F .(1)求出AFC ∠的度数;(2)判断FE 与FD 之间的数量关系并说明理由.(提示:在AC 上截取CG CD =,连接FG .)(3)如图2,在△ABC ∆中,如果ACB ∠不是直角,而(1)中的其它条件不变,试判断线段AE 、CD 与AC 之间的数量关系并说明理由.10.数学课上,小白遇到这样一个问题:如图1,在等腰Rt ABC ∆中,90BAC ∠=︒,AB AC =,AD AE =,求证ABE ACD ∠=∠;在此问题的基础上,老师补充:过点A 作AF BE ⊥于点G 交BC 于点F ,过F 作FP CD ⊥交BE 于点P ,交CD 于点H ,试探究线段BP ,FP ,AF 之间的数量关系,并说明理由.小白通过研究发现,AFB ∠与HFC ∠有某种数量关系;小明通过研究发现,将三条线段中的两条放到同一条直线上,即“截长补短”,再通过进一步推理,可以得出结论.阅读上面材料,请回答下面问题:(1)求证ABE ACD ∠=∠;(2)猜想AFB ∠与HFC ∠的数量关系,并证明;(3)探究线段BP ,FP ,AF 之间的数量关系,并证明.11.在数学活动课上,数学老师出示了如下题目:如图①,在四边形ABCD 中,E 是边CD 的中点,AE 是BAD ∠的平分线,AD BC ∥.求证:AB AD BC =+.小聪同学发现以下两种方法:方法1:如图②,延长AE 、BC 交于点F .方法2:如图③,在AB 上取一点G ,使AG AD =,连接EG 、CG .(1)请你任选一种方法写出这道题的完整的证明过程;(2)如图④,在四边形ABCD 中,AE 是BAD ∠的平分线,E 是边CD 的中点,60BAD ∠=︒,11802D BCD ∠+∠=︒,求证:CB CE =.12.阅读下面材料,完成(1)-(3)题.数学课上,老师出示了这样一道题:如图1,已知等腰△ABC中,AB=AC,AD为BC边上的中线,以AB为边向AB左侧作等边△ABE,直线CE与直线AD交于点F.请探究线段EF、AF、DF之间的数量关系,并证明.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现∠DFC的度数可以求出来.”小强:“通过观察和度量,发现线段DF和CF之间存在某种数量关系.”小伟:“通过做辅助线构造全等三角形,就可以将问题解决.”......老师:“若以AB为边向AB右侧作等边△ABE,其它条件均不改变,请在图2中补全图形,探究线段EF、AF、DF三者的数量关系,并证明你的结论.”(1)求∠DFC的度数;(2)在图1中探究线段EF、AF、DF之间的数量关系,并证明;(3)在图2中补全图形,探究线段EF 、AF 、DF 之间的数量关系,并证明.13.如图1,在ABC 中,AB AC =,AC 平分BCD ∠,连接BD ,2ABD CBD ∠=∠,BDC ABD ACD ∠=∠+∠.(1)求A ∠的度数:(2)如图2,连接AD ,AE AD ⊥交BC 于E ,连接DE ,求证:DEC BAE ∠=∠;(3)如图3,在(2)的条件下,点G 为CE 的中点,连接AG 交BD 于点F ,若32ABC S =△,求线段AF 的长.14.如图所示,已知AC 平分∠BAD ,180B D ∠+∠=︒,CE AB ⊥于点E ,判断AB 、AD 与BE 之间有怎样的等量关系,并证明.15.如图,△ABC 中,AB=AC ,∠EAF=12∠BAC ,BF ⊥AE 于E 交AF 于点F ,连结CF .(1)如图1所示,当∠EAF 在∠BAC 内部时,求证:EF =BE +CF .(2)如图2所示,当∠EAF 的边AE 、AF 分别在∠BAC 外部、内部时,求证:CF =BF +2BE .16.如图,在ABC 中,AC BC =,AD 平分CAB ∠.(1)如图1,若90ACB =︒,求证:AB AC CD =+;(2)如图2,若AB AC BD =+,求ACB ∠的度数;(3)如图3,若100ACB ∠=︒,求证:AB AD CD =+.17.如图所示,//AB DC AB AD BE ⊥,,平分ABC CE ∠,平分BCD ∠;(1)求AB CD 、与BC 的数里关系,并说明你的理由.、与BC的数里关系还成立吗?并说明你(2)若把AB AD⊥条件去掉,则(1)中AB CD的理由.18.已知在四边形ABCD中,∠ABC+∠ADC=180°,∠BAD+∠BCD=180°,AB=BC (1)如图1,连接BD,若∠BAD=90°,AD=7,求DC的长度.(2)如图2,点P、Q分别在线段AD、DC上,满足PQ=AP+CQ,求证:∠PBQ=∠ABP +∠QBC(3)若点Q在DC的延长线上,点P在DA的延长线上,如图3所示,仍然满足PQ=AP +CQ,请写出∠PBQ与∠ADC的数量关系,并给出证明过程.⊥,且EF交正19.如图,在正方形ABCD中,点E迕射线BC上,连接AE,作EF AE方形外角的平分线CF于点F.(1)若点E 在边BC 的中点处时,AE ________EF (填“>”“<”或“=”)(2)若点E 为边BC 上的任意一点(不含点B ,C ),探究此时AE 与EF 的数量关系,并说明理由.(3)若点E 是边BC 延长线上的一点,探究此时AE 与EF 的数量关系,并说明理由.20.如图,ABC 是边长为1的等边三角形,BD CD =,120BDC ∠=︒,点E ,F 分别在AB ,AC 上,且60EDF ∠=︒,求AEF 的周长.21.已知等腰△ABC 中,AB=AC ,点D 在直线AB 上,DE ∥BC ,交直线AC 与点E ,且BD=BC ,CH ⊥AB ,垂足为H .(1)当点D 在线段AB 上时,如图1,求证DH=BH+DE ;(2)当点D在线段BA延长线上时,如图2,当点D在线段AB延长线上时,如图3,直接写出DH,BH,DE之间的数量关系,不需要证明.参考答案1.20°【分析】通过作辅助线构造直角三角形,利用等边三角形的性质,得到角相等,边相等,根据三角形全等,得到角相等,利用外角的性质列方程求解;【详解】解:如图,延长AB 至点E 使BE AD =,连接CE .∴2=++=+AE AD DB BE AD BD .∵2=+AC AD BD ,∴AE AC =.∵60A ∠=︒,∴AEC 是等边三角形,∴60∠=∠=︒E ACE .∵4∠=∠ABC ACD ,∴设ACD x ∠=,则4∠=ABC x .在ADC 与EBC 中,∵,,,AD BE A E AC EC =⎧⎪∠=∠⎨⎪=⎩∴()SAS ≌ADC EBC ,∴∠=∠=ACD ECB x .∵∠=∠+∠ABC E BCE ,∴460=︒+x x ,∴20x =︒,∴60202020∠=︒-︒-︒=︒BCD.【点拨】本题主要考查了等边三角形的判定与性质和全等三角形的判定与性质,准确分析是解题的关键.2.8 3【分析】在FA上取一点T,使得FT=BF,连接ET,在CB上取一点K,使得CK=ET,连接DK.想办法证明AT=DK,DK=BD,推出BD=AT,推出BT=AD即可解决问题.【详解】在FA上取一点T,使得FT=BF,连接ET,在CB上取一点K,使得CK=ET,连接DK.∵EB=ET,∴∠B=∠ETB,∵∠ETB=∠1+∠AET,∠B=∠1+∠2,∴∠AET=∠2,∵AE=CD,ET=CK,∴△AET≌△DCK(SAS),∴DK=AT,∠ATE=∠DKC,∴∠ETB=∠DKB,∴∠B=∠DKB,∴DB=DK,∴BD=AT,∴AD=BT,∵BT=2BF=8 3,∴AD=8 3,故答案为:8 3.【点拨】本题考查全等三角形的判定和性质,等腰三角形的判定和性质等知识点,解题关键在于学会添加常用辅助线,构造出全等三角形.3.思维探索:(1)8;(2)12;拓展提升:CE=﹣1.【分析】思维探索:(1)利用旋转的性质,证明△AGE≌△AFE即可;(2)把△ABE绕点A逆时针旋转90°到AD,交CD于点G,证明△AEF≌△AGF即可求得EF=DF﹣BE;拓展提升:如图3,过A作AG⊥BD交BD的延长线于G,推出四边形ACBG是矩形,得到矩形ACBG是正方形,根据正方形的性质得到AC=AG,∠CAG=90°,在BG上截取GF=CE,根据全等三角形的性质得到AE=AF,∠EAC=∠FAG,∠ADF=∠ADE=30°,解直角三角形得到DE=DF=4,BE=CE=x,则GF=CE=x,BC=BG=﹣x,根据线段的和差即可得到结论.【详解】思维探索:(1)如图1,将△ADF绕点A顺时针旋转90°得到△ABG,∴GB=DF,AF=AG,∠BAG=∠DAF,∵四边形ABCD为正方形,∴∠BAD=90°,∵∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠BAG+∠BAE=45°=∠EAF,在△AGE和△AFE中AG AF GAE EAF AE AE=⎧⎪∠=∠⎨⎪=⎩∴△AGE≌△AFE(SAS),∴GE=EF,∵GE=GB+BE=BE+DF,∴EF=BE+DF,∴△CEF的周长=CE+CF+EF=CE+BE+DF+CF=BC+CD=8,故答案为:8;(2)如,2,把△ABE绕点A逆时针旋转90°到AD,交CD于点G,同(1)可证得△AEF≌△AGF,∴EF=GF,且DG=BE,∴EF=DF﹣DG=DF﹣BE,∴△CEF的周长=CE+CF+EF=CE+CF+DF﹣BE=BC+DF+CF=4+4+2+2=12;拓展提升:如图3,过A作AG⊥BD交BD的延长线于G,∵BD⊥BC,∠ACB=90°,∴∠ACB=∠CBG=∠G=90°,∴四边形ACBG是矩形,∵AC=BC,∴矩形ACBG是正方形,∴AC=AG,∠CAG=90°,在BG上截取GF=CE,∴△AEC≌△AGF(SAS),∴AE=AF,∠EAC=∠FAG,∵∠EAD=∠BAC=∠GAB=45°,∴∠DAF=∠DAE=45°,∵AD=AD,∴△ADE≌△ADF(SAS),∴∠ADF=∠ADE=30°,∴∠BDE=60°,∵∠DBE=90°,BD=2,∴DE=DF=4,BE=设CE=x,则GF=CE=x,BC=BG=x,∴DG=x,∴DG﹣FG=DF,即﹣x﹣x=4,∴x﹣1,∴CE1.【点拨】本题以正方形为背景,结合旋转,三角形全等,解直角三角形进行综合性考查,熟知常见的全等模型,旋转性质,三角形的判定及性质,正方形,矩形的性质是解题的关键.4.(1)证明见解析;(2)成立;(3)成立,证明见解析.【解析】试题分析:(1)取AB中点M,连接EM,求出BM=BE,得出∠BME=45°,求出∠AME=∠ECF=135°,求出∠MAE=∠FEC,根据ASA推出△AME和△ECF全等即可;(2)截取BE=BM,连接EM,求出AM=EC,得出∠BME=45°,求出∠AME=∠ECF=135°,求出∠MAE=∠FEC,根据ASA推出△AME和△ECF全等即可;(3)在BA的延长线上取一点N,使AN=CE,连接NE,根据已知利用ASA判定△ANE≌△ECF,因为全等三角形的对应边相等,所以AE=EF.试题解析:(1)证明:取AB中点M,连接EM,∵AB=BC,E为BC中点,M为AB中点,∴AM=CE=BE,∴∠BME=∠BME=45°,∴∠AME=135°=∠ECF,∵∠B=90°,∴∠BAE+∠AEB=90°,∵∠AEF=90°,∴∠AEB+∠FEC=90°,在△AME和△ECF中,MAE CEF AM EC AME ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AME≌△ECF(ASA),∴AE=EF;(2)成立,理由是:如图,在AB上截取BM=BE,连接ME,∵∠B=90°,∴∠BME=∠BEM=45°,∴∠AME=135°=∠ECF,∵AB=BC,BM=BE,∴AM=EC,在△AME和△ECF中,MAE CEF AM EC AME ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AME≌△ECF(ASA),∴AE=EF;(3)成立.证明:如图,在BA的延长线上取一点N.使AN=CE,连接NE,∴BN=BE,∴∠N=∠NEC=45°,∵CF平分∠DCG,∴∠FCE=45°,∵四边形ABCD是正方形,∴AD∥BE,∴∠DAE=∠BEA,即∠DAE+90°=∠BEA+90°,∴∠NAE=∠CEF,∴△ANE≌△ECF(ASA),∴AE=EF.点睛:本题考查了正方形的性质、全等三角形的判定与性质,阅读材料,理清解题的关键是去AM=EC,然后构造出△AME和△ECF全等是解题的关键.5.(1)CD=2AD;(2)CD=3AD;(3)BC=AD+BD.【解析】【分析】(1)由角平分线的性质可得AD=DE,根据∠A=90°,AB=AC,可得∠C=45°,由DE⊥BC可得△DEC是等腰直角三角形,可得CD=2DE,进而可得答案;(2)在BC上截取BE=AB,连接DE,利用SAS可证明△ABD≌△EBD,可得AD=DE,∠BED=∠A=120°,由等腰三角形的性质可得∠C=30°,利用三角形外角性质可得∠CDE=90°,利用含30°角的直角三角形的性质即可得答案;(3)在BC上取一点E,使BE=BD,作DF⊥BA于F,DG⊥BC 于G,由角平分线的性质就可以得出DF=DG,利用AAS可证明△DAF≌△DEG,可得DA=DE,利用外角性质可求出∠EDC=40°,进而可得DE=CE,即可得出结论.【详解】(1)∵∠A=90°,BD平分∠ABC,DE⊥BC,∴DE=AD,∵∠A=90°,AB=AC,∴∠C=45°,∴△CDE是等腰直角三角形,∴CD=2DE=2AD,故答案为:CD=2AD(2)如图,在BC上截取BE=AB,连接DE,∵BD平分∠ABC,∴∠ABD=∠DBE,在△ABD 和△EBD 中,AB =BE ∠ABD =∠DBE BD =BD,∴△ABD ≌△EBD ,∴DE=AD ,∠BED=∠A=120°,∵AB=AC ,∴∠C=∠ABC=30°,∴∠CDE=∠BED-∠C=90°,∴CD=3DE=3AD.(3)如图,在BC 上取一点E ,是BE=BD ,作DF ⊥BA 于F ,DG ⊥BC 于G ,∴∠DFA=∠DGE=90°.∵BD 平分∠ABC ,DF ⊥BA ,DG ⊥BC ,∴DF=DG .∵∠BAC=100°,AB=AC ,∴∠FAD=80°,∠ABC=∠C=40°,∴∠DBC=20°,∵BE=BD ,∴∠BED=∠BDE=80°,∴∠FAD=∠BED .在△DAF 和△DEG 中,∠DFA =∠DGE ∠FAD =∠BED DF=DG,∴△DAF ≌△DEG (AAS ),∴AD=ED .∵∠BED=∠C+∠EDC ,∴80°=40+∠EDC ,∴∠EDC=40°,∴∠EDC=∠C ,∴DE=CE ,∴AD=CE .∵BC=BE+CE ,∴BC=BD+AD .【点拨】本题考查了等腰三角形的性质的运用,角平分线的性质的运用,全等三角形的判定及性质的运用,解答时合理添加辅助线是解答本题的关键.6.(1)见解析,(2)1AM CN MN+=【解析】【分析】(1)在AM 上截取AN′=CN ,连接ON′,OC ,OA ,根据等边三角形的性质和线段垂直平分线得出∠OCN=∠OAN′,OC=OA ,证△OCN ≌△OAN′推出ON=ON′,∠CON=∠AON′,求出∠NOM=∠MON′,根据SAS 证△MON ≌△MON′,推出MN=MN′,即可求出答案;(2)延长CA 到N′,使AN′=CN ,连接OC ,OA ,ON′,证△OCN ≌△OAN′推出ON=ON′,∠CON=∠AON′,求出∠NOM=∠MON′,根据SAS 证△MON ≌△MON′,推出MN=MN′,即可求出答案.【详解】(1)在AM 上截取AN′=CN ,连接ON′,OC ,OA ,∵O 是边AC 和BC 垂直平分线的交点,△ABC 是等边三角形,∴OC=OA ,由三线合一定理得:∠OCB=∠OCA=∠OAC=30°,∠AOC=180°-30°-30°=120°,∴∠OCN=∠OAN′=30°,∵在△OCN 和△OAN′中OC OA NCO OAN AN CN ⎧⎪∠∠'⎨⎪'⎩===,∴△OCN ≌△OAN′(SAS ),∴ON=ON′,∠CON=∠AON′∴∠N′ON=∠COA=120°,又∵∠MON=60°,∴∠MON=∠MON′=60°∵在△NOM 和△N′OM 中ON ON NOM N OM OM OM '⎧⎪∠∠'⎨⎪⎩===,∴△NOM ≌△N′OM ,∴MN=MN′,∵MN′=AM-AN′=AM-CN ,∴MN=AM-CN .即AM CN MN =+;(2)延长CA 到N′,使AN′=CN ,连接OC ,OA ,ON′,∵O 是边AC 和BC 垂直平分线的交点,△ABC 是等边三角形,∴OC=OA ,由三线合一定理得:∠OCA=∠OAB=30°,∠AOC=180°-30°-30°=120°,∴∠OCN=∠OAN′,∵在△OCN 和△OAN′中OA OC OCN OAN CN AN ⎧⎪∠∠'⎨⎪'⎩===,∴△OCN ≌△OAN′(SAS ),∴ON′=ON ,∠CON=∠AON′,∵∠COA=120°,∠NOM=60°,∴∠CON+∠AOM=60°,∴∠AON′+∠AOM=60°,即∠NOM=∠N′OM ,∵在△NOM 和△N′OM 中ON ON NOM N OM OM OM '⎧⎪∠∠'⎨⎪⎩===,∴△NOM ≌△N′OM ,∴MN=MN′,∵MN′=AM+AN′=AM+CN ,∴MN=AM+CN .【点拨】本题考查了等边三角形的性质和全等三角形的性质和判定,主要考查学生的推理能力和猜想能力,题目具有一定的代表性,证明过程类似.7.(1)AM BN MN +=;证明见解析;(2)AM BN MN +=;证明见解析;(3)补图见解析;BN AM MN -=;证明见解析.【分析】(1)延长CB 到E ,使BE=AM ,证△DAM ≌△DBE ,推出∠BDE=∠MDA ,DM=DE ,证△MDN ≌△EDN ,推出MN=NE 即可;(2)延长CB 到E ,使BE=AM ,证△DAM ≌△DBE ,推出∠BDE=∠MDA ,DM=DE ,证△MDN ≌△EDN ,推出MN=NE 即可;(3)在CB 截取BE=AM ,连接DE ,证△DAM ≌△DBE ,推出∠BDE=∠MDA ,DM=DE ,证△MDN ≌△EDN ,推出MN=NE 即可.【详解】(1)AM BN MN +=.证明如下:如图,延长CB 到E ,使BE AM =,连接DE .90A CBD ∠=∠=︒ ,90A EBD ∴∠=∠=︒.ADC BDC ≌,AD BD ∴=.在DAM △和DBE 中,AM BE A DBE AD BD =⎧⎪∠=∠⎨⎪=⎩,()DAM DBE SAS ∴ ≌,BDE MDA ∴∠=∠,DM DE =.MDN ADC BDC ∠=∠=∠ ,ADM NDC BDE ∴∠=∠=∠,MDC NDB ∠=∠,MDN NDE ∴∠=∠.在MDN △和EDN △中,DM DE MDN EDN DN DN =⎧⎪∠=∠⎨⎪=⎩,()MDN EDN SAS ∴△≌△,MN NE ∴=.NE BE BN AM BN =+=+ ,AM BN MN ∴+=;(2)AM BN MN +=.证明如下:如图,延长CB 到E ,使BE AM =,连接DE .90A CBD ∠=∠=︒ ,90A DBE ∴∠=∠=︒.ADC BDC ≌,AD BD ∴=,ADC CDB ∠=∠.在DAM △和DBE 中,AM BEA DBE AD BD=⎧⎪∠=∠⎨⎪=⎩,()DAM DBE SAS ∴ ≌,BDE MDA ∴∠=∠,DM DE =.90MDN ACD ∠+∠=︒ ,90ACD ADC ∠+∠=︒,ADC CDB ∠=∠,NDM ADC CDB ∴∠=∠=∠,ADM CDN BDE ∴∠=∠=∠,CDM NDB ∠=∠,MDN NDE ∴∠=∠.在MDN △和EDN △中,DM DEMDN EDN DN DN=⎧⎪∠=∠⎨⎪=⎩,()MDN EDN SAS ∴△≌△,MN NE ∴=.NE BE BN AM BN =+=+ ,AM BN MN ∴+=;(3)补充完成题图,如图所示.BN AM MN -=.证明如下:如上图,在CB 上截取BE=AM ,连接DE .90CDA ACD ∠+∠=︒ ,90MDN ACD ∠+∠=︒,MDN CDA ∴∠=∠,MDA CDN ∴∠=∠.90B CAD ∠=∠=︒ ,90B DAM ∴∠=∠=︒.在DAM △和DBE 中,AM BE DAM DBE AD BD =⎧⎪∠=∠⎨⎪=⎩,()DAM DBE SAS ∴ ≌,BDE ADM CDN ∴∠=∠=∠,DM DE =.ADC BDC MDN ∠=∠=∠ ,ADN CDE ∴∠=∠,MDN EDN ∴∠=∠.在MDN △和EDN △中,DM DE MDN EDN DN DN =⎧⎪∠=∠⎨⎪=⎩,()MDN EDN SAS ∴△≌△,MN NE ∴=.NE BN BE BN AM =-=- ,BN AM MN ∴-=.【点拨】本题考查了全等三角形的性质和判定的应用,作出辅助线构造全等三角形是解题的关键.8.(1)2;(2)4【分析】(1)根据题意可直接求等腰直角三角形EAC 的面积即可;(2)延长MN 到K ,使NK=GH ,连接FK 、FH 、FM ,由(1)易证FGH FNK ≌,则有FK=FH ,因为HM=GH+MN 易证FMK FMH ≌,故可求解.【详解】(1)由题意知21=22ABC ADC ABC ABE AEC ABCD AC S S S S S S =+=+== 四边形,故答案为2;(2)延长MN 到K ,使NK=GH ,连接FK 、FH 、FM ,如图所示:FG=FN=HM=GH+MN=2cm ,∠G=∠N=90°,∴∠FNK=∠FGH=90°,∴FGH FNK ≌,∴FH=FK ,又 FM=FM ,HM=KM=MN+GH=MN+NK ,∴FMK FMH ≌,∴MK=FN=2cm ,∴12=242FGH HFM MFN FMK FGHMN S S S S S MK FN =++=⨯⋅= 五边形.【点拨】本题主要考查全等三角形的性质与判定,关键是根据截长补短法及割补法求面积的运用.9.(1)∠AFC =120°;(2)FE 与FD 之间的数量关系为:DF =EF .理由见解析;(3)AC =AE+CD .理由见解析.【分析】(1)根据三角形的内角和性质只要求出∠FAC ,∠ACF 即可解决问题;(2)根据在图2的AC 上截取CG=CD ,证得△CFG ≌△CFD (SAS),得出DF=GF ;再根据ASA 证明△AFG ≌△AFE ,得EF=FG ,故得出EF=FD ;(3)根据(2)的证明方法,在图3的AC 上截取AG=AE ,证得△EAF ≌△GAF (SAS)得出∠EFA=∠GFA ;再根据ASA 证明△FDC ≌△FGC ,得CD=CG 即可解决问题.【详解】(1)解:∵∠ACB =90°,∠B =60°,∴∠BAC =90°﹣60°=30°,∵AD 、CE 分别是∠BAC 、∠BCA 的平分线,∴∠FAC =15°,∠FCA =45°,∴∠AFC =180°﹣(∠FAC+∠ACF )=120°(2)解:FE 与FD 之间的数量关系为:DF =EF .理由:如图2,在AC 上截取CG =CD,∵CE 是∠BCA 的平分线,∴∠DCF =∠GCF ,在△CFG 和△CFD 中,CG CD DCF GCF CF CF =⎧⎪∠=∠⎨⎪=⎩,∴△CFG ≌△CFD (SAS ),∴DF =GF .∠CFD =∠CFG由(1)∠AFC =120°得,∴∠CFD =∠CFG =∠AFE =60°,∴∠AFG =60°,又∵∠AFE =∠CFD =60°,∴∠AFE =∠AFG ,在△AFG 和△AFE 中,AFE AFG AF AF EAF GAF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AFG ≌△AFE (ASA ),∴EF =GF ,∴DF =EF ;(3)结论:AC =AE+CD .理由:如图3,在AC 上截取AG =AE ,同(2)可得,△EAF ≌△GAF (SAS ),∴∠EFA =∠GFA ,AG =AE∵∠BAC+∠BCA=180°-∠B=180°-60°=120°∴∠AFC =180°﹣(∠FAC+∠FCA)=180°-12(∠BAC+∠BCA)=180°-12×120°=120°,∴∠EFA =∠GFA =180°﹣120°=60°=∠DFC ,∴∠CFG =∠CFD =60°,同(2)可得,△FDC ≌△FGC (ASA ),∴CD =CG ,∴AC =AG+CG =AE+CD .【点拨】本题考查了全等三角形的判定和性质的运用,全等三角形的判定和性质是证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造全等三角形.10.(1)见解析;(2)HFC BFA ∠=∠,证明见解析;(3)BP AF PF =+,证明见解析【分析】(1)利用SAS 证明ABE ACD ≅ 可得结论;(2)设ABE ACD x ∠=∠=,推出=45BFA x ∠︒+,=45HFC x ∠︒+,即可证明HFC BFA ∠=∠;(3)过点C 作CM AC ⊥交AF 延长线于点M ,延长FP 交AC 于点N ,证明△ABE ≌△CAM ,得出BE AM =和M BEA ∠=∠,从而证明△NFC ≌△MFC ,得到FM FN =和M FNC ∠=∠,可得PN=PE ,从而得出BP=AF+PF.【详解】解:(1)∵在△ABE 和△ACD 中,==AB AC A A AE AD ⎧⎪∠=∠⎨⎪⎩,ABE ACD ∴∆≅∆(SAS ),ABE ACD ∴∠=∠;(2)设ABE ACD x ∠=∠=,AF BE ⊥ ,90BAF x ∴∠=︒-,()=9045=45BFA x x ∴∠︒-︒-︒+,ACD x ∠= ,45HCF x ∴∠=︒-,FP CD ⊥ ,()9045=45HFC x x ∴∠=︒-︒-︒+,HFC BFA ∴∠=∠;(3)过点C 作CM AC ⊥交AF 延长线于点M ,延长FP 交AC 于点N ,90BAF FAC ∠+∠=︒ ,90BAF ABG ∠+∠=︒,FAC ABG ∴∠=∠,在△ABE 和△CAM 中,===BAE ACM AB AC ABE CAM ∠∠⎧⎪⎨⎪∠∠⎩,ABE CAM ∴∆≅∆(ASA ),BE AM ∴=,M BEA ∠=∠,BFA MFC NFC ∠=∠=∠ ,FC FC =,45ACB BCM ∠=∠=︒,NFC MFC ∴∆≅∆(ASA ),FM FN ∴=,M FNC ∠=∠,FNC BEA ∴∠=∠,PN PE ∴=,∴BP BE PE AM PE AF FM PE =-=-=+-AF FN PN AF PF =+-=+.【点拨】本题考查了全等三角形的判定和性质、等腰直角三角形的性质以及等角对等边等知识点,解题的关键是根据截长补短法添加适当的辅助线,构造全等三角形证明结论,有一定难度.11.(1)方法1:证明见解析;方法2:证明见解析;(2)证明见解析.【分析】(1)方法1:先根据角平分线的定义、平行线的性质得出BAF DAE F ∠=∠=∠,再根据等腰三角形的性质可得AB BF =,根据三角形全等的判定定理与性质得出AD FC =,然后根据线段的和差即可得证;方法2:先根据角平分线的定义得出DAE GAE ∠=∠,再根据三角形全等的判定定理与性质可得,DE GE D AGE =∠=∠,然后根据线段中点的定义、等腰三角形的性质可得ECG EGC ∠=∠,最后根据平行线的性质、平角的定义可得BCG BGC ∠=∠,由等腰三角形的定义可得BG BC =,由此根据线段的和差即可得证;(2)如图(见解析),参照方法1构造辅助线,先根据等腰三角形的性质得出EF 平分AFG ∠,从而有12EFC AFG ∠=∠,再根据平行线的性质、角的和差得出60EFC BFC ∠=∠=︒,ECF BCF ∠=∠,然后根据三角形全等的判定定理与性质即可得证.【详解】(1)方法1:如图②,延长AE 、BC 交于点FAE ∵是BAD ∠的平分线BAF DAE∴∠=∠//AD BCDAE F∴∠=∠BAF F∴∠=∠AB BF FC BC ∴==+E 是边CD 的中点DE CE∴=在ADE 和FCE △中,DAE F AED FEC DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩()ADE FCE AAS ∴≅ AD FC∴=AB FC BC AD BC ∴=+=+;方法2:如图③,在AB 上取一点G ,使AG AD =,连接EG 、CGAE ∵是BAD ∠的平分线DAE GAE∴∠=∠在ADE 和AGE 中,AD AG DAE GAE AE AE =⎧⎪∠=∠⎨⎪=⎩()ADE AGE SAS ∴≅ ,DE GE D AGE∴=∠=∠ E 是边CD 的中点DE CE∴=CE GE∴=ECG EGC∴∠=∠//AD BC180D BCD ︒∴∠+∠=,即180D ECG BCG ∠+∠+∠=︒180AGE EGC BCG ∴∠+∠+∠=︒,即180AGC BCG ∠+∠=︒又180AGC BGC ∠+∠=︒BCG BGC∴∠=∠BG BC∴=AB AG BG AD BC ∴=+=+;(2)如图,过点C 作//CG AD ,交AE 延长线于点G ,延长GC 交AB 于点F ,连接EF 由方法1可知:,AF GF AE GE==AFG ∴ 是等腰三角形EF ∴平分AFG ∠12EFC AFG ∴∠=∠//CG AD ,60BAD ∠=︒60,180120BFC BAD AFG BAD ∴∠=∠=︒∠=︒-∠=︒60EFC ∴∠=︒//CG AD180D ECF ∴∠+∠=︒11802D BCD ︒∠+∠= ,即1()1802D ECF BCF ∠+∠+∠=︒1()2ECF ECF BCF ∴∠=∠+∠ECF BCF∴∠=∠在ECF △和BCF △中,60EFC BFC CF CF ECF BCF ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩()ECF BCF ASA ∴≅ CB CE ∴=.【点拨】本题考查了角平分线的定义、平行线的性质、三角形全等的判定定理与性质等知识点,较难的是题(2),参照方法1,通过作辅助线,构造全等三角形是解题关键.12.(1)60°;(2)EF=AF+FC ,证明见解析;(3)AF=EF+2DF ,证明见解析.【分析】(1)可设∠BAD =∠CAD =α,∠AEC =∠ACE =β,在△ACE 中,根据三角形内角和可得2α+60+2β=180°,从而有α+β=60°,即可得出∠DFC 的度数;(2)在EC 上截取EG =CF ,连接AG ,证明△AEG ≌△ACF ,然后再证明△AFG 为等边三角形,从而可得出EF =EG +GF =AF +FC ;(3)在AF 上截取AG =EF ,连接BG ,BF ,证明方法类似(2),先证明△ABG ≌△EBF ,再证明△BFG为等边三角形,最后可得出结论.【详解】解:(1)∵AB=AC,AD为BC边上的中线,∴可设∠BAD=∠CAD=α,又△ABE为等边三角形,∴AE=AB=AC,∠EAB=60°,∴可设∠AEC=∠ACE=β,在△ACE中,2α+60°+2β=180°,∴α+β=60°,∴∠DFC=α+β=60°;(2)EF=AF+FC,证明如下:∵AB=AC,AD为BC边上的中线,∴AD⊥BC,∴∠FDC=90°,∵∠CFD=60°,则∠DCF=30°,∴CF=2DF,在EC上截取EG=CF,连接AG,又AE=AC,∴∠AEG=∠ACF,∴△AEG≌△ACF(SAS),∴∠EAG=∠CAF,AG=AF,又∠CAF=∠BAD,∴∠EAG=∠BAD,∴∠GAF=∠BAD+∠BAG=∠EAG+∠BAG=∠60°,∴△AFG为等边三角形,∴EF=EG+GF=AF+FC,即EF=AF+FC;(3)补全图形如图所示,结论:AF=EF+2DF .证明如下:同(1)可设∠BAD =∠CAD =α,∠ACE =∠AEC =β,∴∠CAE =180°-2β,∴∠BAE =2α+180°-2β=60°,∴β-α=60°,∴∠AFC=β-α=60°,又△ABE 为等边三角形,∴∠ABE=∠AFC=60°,∴由8字图可得:∠BAD =∠BEF ,在AF 上截取AG =EF ,连接BG ,BF ,又AB=BE ,∴△ABG ≌△EBF (SAS ),∴BG =BF ,又AF 垂直平分BC ,∴BF=CF ,∴∠BFA=∠AFC=60°,∴△BFG 为等边三角形,∴BG=BF ,又BC ⊥FG ,∴FG=BF=2DF ,∴AF =AG +GF =BF +EF =2DF +EF .【点拨】本题考查了全等三角形的判定和性质、等边三角形的性质、等腰三角形的性质等知识,解决问题的关键是常用辅助线构造全等三角形,属于中考常考题型.13.(1)90A ∠=︒;(2)见解析;(3)4【分析】(1)设.DBC x ∠=推出2ABC x ∠=,3ABC ACB ACD x ∠=∠=∠=,5D x ∠=,利用三角形内角和定理构建方程求出x 即可;(2)先依据ASA 证明BEA CDA △≌△,再依据全等三角形的性质得到AE AD =,结合AE AD ⊥,依据三角形内角和求出45AED ∠=︒,再依据三角形外角的性质及等式的基本性质即可求证;(3)根据直角三角形的面积公式求出AB ,延长AG 至K ,使GK AG =,连接CK ,先依据SAS 证明AEG KCG △≌△,结合等量代换得到AE KC AD ==,ACK BAD ∠=∠,再依据SAS 证明AKC BDA △≌△,依据全等的性质求得CAG ABD ∠=∠215=⨯︒30=︒,从而得到60BAF ∠=︒,继而得到90AFB ∠=︒,最后依据直角三角形30度角的性质解决问题.【详解】()1解:如图1中,设DBC x ∠=.2ABD DBC ∠=∠ ,AB AC =,2ABD x ∴∠=,3ABD ACB x ∠=∠=,AC 平分BCD ∠,3ACD ACB x ∴∠=∠=,26DCB ACB x ∠=∠=,5D ABD ACD x ∠=+∠= ,又∵在BCD ∆中,180D DBC DCB ∠+∠+∠=︒,56180x x x ∴++=︒,15x ∴=︒,45ABC ACB ∴∠=∠=︒,30ABD ∠=︒,180454590A ∴∠=︒-︒-︒=︒;(2)AE AD ⊥ ,90EAD ∴∠=︒,90BAC EAD ∠=∠=︒ ,BAC EAC EAD EAC ∴∠-∠=∠-∠,BAE CAD ∴∠=∠,=345ABE x ACD ∠=︒=∠ ,AB AC=()BEA CDA ASA ∴△≌△AE AD ∴=,又∵90EAD ∠=︒,∴45AED ADE ∠=∠=︒又AEC ABE BAE AED DEC ∠=∠+∠=∠+∠ ,DEC BAE ∴∠=∠;(3)延长AG 至K ,使GK AG =,连接CK点G 为CE 的中点,EG CG ∴=,AGE KGC ∠=∠ ,()AEG KCG SAS ∴△≌△,AE KC ∴=,AEG KCG ∠=∠,AE KC AD ∴==,45ACK ACB KCG AEC∠=∠+∠=︒+∠4590ABE BAE BAE BAD=︒+∠+∠=︒+∠=∠AB AC= ()AKC BDA SAS ∴△≌△21530CAG ABD ∠=∠=⨯︒=︒60BAF ∴∠=︒90AFB ∴∠=︒32ABC S = 211=3222AB AC AB ∴⨯=8AB ∴=142AF AB ∴==.【点拨】本题属于三角形综合题,考查了三角形内角和定理,三角形外角的性质,三角形全等的判定和性质,含30度的直角三角形的性质,第(1)问的关键在于设未知数,列方程;第(2)问的关键得到了等腰直角三角形和利用三角形的外角性质建立起了两个待证量之间的等式;第(3)问的关键在于作辅助线证明了30CAG ∠=︒.14.2AB AD BE =+,证明见解析【分析】在AB 上截取EF ,使EF=BE ,联结CF .证明()BCE ECF SAS ≌,得到 B BFC ∠=∠,又证明 AFC ADC ≌,得到 AF AD =,最后结论可证了.【详解】证明:在AB 上截取EF ,使EF=BE ,联结CF.CE AB⊥ 90BEC FEC ∴∠=∠=︒在BCE 和ECF△BE EFBEC FEC CE CE=⎧⎪∠=∠⎨⎪=⎩()BCE ECF SAS ∴ ≌ B BFC∴∠=∠180B D ∠+∠=︒180BFC AFC ∠+∠=︒又D AFC∴∠=∠ AC 平分∠BADFAC DAC∴∠=∠在AFC △和ADC 中AFC D FAC DAC AC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩()AFC ADC AAS ∴ ≌ AF AD∴= AB AF BE EF=++ 2AB AD BE∴=+【点拨】本题考查三角形全等知识的综合应用,关键在于寻找全等的条件,作适当的辅助线加以证明.15.(1)见解析;(2)见解析【分析】(1)在EF 上截取EH BE =,由“SAS ”可证ACF AHF ∆≅∆,可得CF HF =,可得结论;(2)在BE 的延长线上截取EN BE =,连接AN ,由“SAS ”可证ACF ANF ∆≅∆,可得CF NF =,可得结论.【详解】解:证明:(1)如图,在EF 上截取EH BE =,连接AH,EB EH = ,AE BF ⊥,AB AH ∴=,AB AH = ,AE BH ⊥,BAE EAH ∴∠=∠,AB AC = ,AC AH ∴=,12EAF BAC ∠==∠ BAE CAF EAF ∴∠+∠=∠,BAE CAF EAH FAH ∴∠+∠=∠+∠,CAF HAF ∴∠=∠,在ACF ∆和AHF ∆中,AC AH CAF HAF AF AF =⎧⎪∠=∠⎨⎪=⎩,()ACF AHF SAS ∴∆≅∆,CF HF ∴=,EF EH HF BE CF ∴=+=+;(2)如图,在BE 的延长线上截取EN BE =,连接AN,AE BF ⊥ ,BE EN =,AB AC =,AN AB AC ∴==,AN AB = ,AE BN ⊥,BAE NAE ∴∠=∠,12EAF BAC ∠==∠ 1(2)2EAF NAE BAC NAE ∴∠+∠=∠+∠12FAN CAN ∴∠=∠,FAN CAF ∴∠=∠,在ACF ∆和ANF ∆中,AC AN CAF NAF AF AF =⎧⎪∠=∠⎨⎪=⎩,()ACF ANF SAS ∴∆≅∆,CF NF ∴=,2CF BF BE ∴=+.【点拨】本题考查了全等三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键.16.(1)见详解;(2)108°;(3)见详解【分析】(1)如图1,过D 作DM ⊥AB 于M ,由CA =CB ,90ACB =︒,得ABC 是等腰直角三角形,根据角平分线的性质得到CD =MD ,∠ABC =45°,根据全等三角形的性质得到AC =AM ,于是得到结论;(2)如图2,设∠ACB =α,则∠CAB =∠CBA =90°−12α,在AB 上截取AK =AC ,连结DK ,根据角平分线的定义得到∠CAD =∠KAD ,根据全等三角形的性质得到∠ACD =∠AKD =α,根据三角形的内角和即可得到结论;(3)如图3,在AB 上截取AH =AD ,连接DH ,根据等腰三角形的性质得到∠CAB =∠CBA =40°,根据角平分线的定义得到∠HAD =∠CAD =20°,求得∠ADH =∠AHD =80°,在AB 上截取AK =AC ,连接DK ,根据全等三角形的性质得到∠ACB =∠AKD =100°,CD =DK ,根据等腰三角形的性质得到DH =BH ,于是得到结论.【详解】(1)如图1,过D 作DM ⊥AB 于M,∴在ABC 中,AC BC =,∴∠ABC =45°,∵∠ACB =90°,AD 是角平分线,∴CD =MD ,∴∠BDM =∠ABC =45°,∴BM =DM ,∴BM =CD ,在RT △ADC 和RT △ADM 中,CD MD AD AD ⎧⎨⎩==,∴RT △ADC ≌RT △ADM (HL ),∴AC =AM ,∴AB =AM +BM =AC +CD ,即AB =AC +CD ;(2)设∠ACB =α,则∠CAB =∠CBA =90°−12α,在AB 上截取AK =AC ,连结DK ,如图2,∵AB =AC +BD ,AB=AK+BK∴BK =BD ,∵AD 是角平分线,∴∠CAD =∠KAD ,在△CAD 和△KAD 中,AC AK CAD KAD AD AD ⎧⎪∠∠⎨⎪⎩===∴△CAD ≌△KAD (SAS ),∴∠ACD =∠AKD =α,∴∠BKD =180°−α,∵BK =BD ,∴∠BDK =180°−α,∴在△BDK 中,180°−α+180°−α+90°−12α=180°,∴α=108°,∴∠ACB =108°;(3)如图3,在AB 上截取AH =AD ,连接DH ,∵∠ACB =100°,AC =BC ,∴∠CAB =∠CBA =40°,∵AD 是角平分线,∴∠HAD =∠CAD =20°,∴∠ADH =∠AHD =80°,在AB 上截取AK =AC ,连接DK ,由(1)得,△CAD ≌△KAD ,∴∠ACB =∠AKD =100°,CD =DK ,∴∠DKH =80°=∠DHK ,∴DK =DH =CD ,∵∠CBA =40°,∴∠BDH =∠DHK -∠CBA =40°,∴DH =BH ,∴BH =CD ,∵AB =AH +BH ,∴AB =AD +CD .【点拨】本题考查了全等三角形的判定和性质,等腰三角形的性质,角平分线的定义,三角形的内角和,正确的作出辅助线是解题的关键.17.(1)AB CD BC +=,见解析;(2)成立,见解析【分析】(1)先写出数量关系,过E 作EF BC ⊥于F ,然后证明CDE CFE ∆≅∆和ABE FBE ≅∆∆,便可得结论了.(2)成立,在BC 上截取CF CD =证明CDE CFE ∆≅∆和ABE FBE ≅∆∆,便可得到结论.【详解】()1AB CD BC+=理由是:过E 作EF BC ⊥于FCE 为角平分线DCE FCE∴∠=∠//AB DC AB AD⊥ ,90D ∴∠=EF BC⊥ D CFE∴∠=∠CE CE= ()CDE CFE AAS ∆≅∆CD CF∴=同理可证()ABE FBE AAS ∆≅∆AB BF∴=CF BF AB+=AB CD BC∴+=()2成立理由:在BC 上截取CF CD=CE 为角平分线DCE FCE∴∠=∠CE CE= ()CDE CFE SAS ∆≅∆CD CF∴=D CFE∠=∠ //AB DC 180D A ∴∠+∠=又180CFE EFB ∠+=A EFB∴∠=∠又BE 是角平分线ABE FBE∴∠=∠BE BE= ()BAE BFE AAS ∆≅∆AB FB∴=∴CF BF AB+=AB CD BC∴+=18.(1)7DC =;(2)见解析;(3)1902PBQ ADC ∠=︒+∠,证明见解析【分析】(1)根据已知条件得出BDC 为直角三角形,再根据HL 证出△≌△Rt BAD Rt BCD ,从而证出AD CD =即可得出结论;(2)如图2,延长DC 到K ,使得CK=AP ,连接BK ,通过证△BPA ≌△BCK (SAS )得到:∠1=∠2,BP=BK .然后根据SSS 证明得≌PBQ BKQ ,从而得出21PBQ CBQ CBQ ∠=∠+∠=∠+∠,然后得出结论;。
3cm A 5cm B C D E F 8cm A b B C D E F a c D C BA专题课——截长补短教学目标:1.掌握运用截长补短的方法解决线段的有关问题。
2.体会截长补短法与其他辅助线作法的联系。
教学过程:一.问题创设:(3分钟)如图,△ABC 中,AD 是∠CAB 的平分线,且∠C =2∠B ,求证:AB =AC +CD(学生思考:如何解决关于线段和差问题)问题一:如何证明此题?(学生提出截长补短)问题二:你这样做辅助线的理由是什么?(可以得到全等,证明截下的线段等于CD )总结:二.课题引入:同学们,为了解决像这样线段与线段关系的题目,今天我们来学习截长补短法。
如图:问题一:已知三条线段AB 、CD 、EF 的长度分别为8cm,5cm,3cm ,你能用CD 和EF 表示AB 吗?(AB=CD+EF )问题二:如果图中线段长度分别变为a 、b 、c ,并且a=b+c ,你能采用适当的工 具证明AB=CD+EF 吗?方法一:用圆规在AB 上截取b ,再用圆规测量余下的部分(a-b),与c 相比较, 得到a-b=c ,即证明。
方法二:在CD (EF )补一部分EF (CD )得到b+c ,再用圆规和a 进行比较得到a=b+c 。
像刚才这样,通过在较长截取另一条线段,在较短线段上补一条线段研究线段间的关系,这种方法称为“截长补短”。
三、例题讲解回头来看刚在的例题:例1:如图,△ABC 中,AD 是∠CAB 的平分线,且∠C =2∠B ,求证:AB =AC +CDD C B A D C B A2 1 E E D C B A34 E法一:截长法证明:在AB 上截取AE ,使得AE=AC ,连接DE ∵AD 平分∠BAC∴∠1=∠2∵ AE =AB∠1=∠2 AD =AD ∴△AED ≌△ACD (SAS ) ∴∠3=∠C CD=DE (全等三角形的性质) 又∵ ∠C=2∠B ∴∠3=2∠B 又∵∠3=∠4+∠B (外角定理) ∴∠4=∠B ∴EB=DE=CD (等角对等边) ∵AB=AE+EB AE=AC ,EB=CD∴AB=AC+CD (等量代换)学生小组交流讨论补短法法二:补短法证明:延长AC 至点E ,使AE =AB ,连接DE∵AD 平分∠BAC∴∠EAD =∠CAD∵ AE =AB∠EAD =∠CADAD =AD ∴△AED ≌△ACD (SAS )∴∠E =∠C又∵∠ACB =2∠C∴∠ACB =2∠E ∵∠ACB =∠E+∠CDE ∴∠E=∠CDE ∴CE=CD (等角对等边)∵AE =AC+CEAE=AB ,EC=CD∴AB =AC+CD四.学以致用D C B A 另一种的补短法 通过证明两次等腰 注:补短时注意是否合理简单,一般补短应在有角平分线的角一边,充分利用角平分线构造全等。
常见的辅助线作法(截长补短)
令狐采学
截长法与补短法,具体作法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明。
这种作法,适合于证明线段的和、差、倍、分等类的题目。
思考:遇到求证一条线段等于另两条线段之和时,一般方法是截长法或补短法:
截长:在长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;
补短:将一条短线段延长,延长部分等于另一条短线段,然后证明新线段等于长线段。
例1、已知:如图,在△ABC中,∠C=2∠B,∠1=∠2.
求证:AB=AC+CD.
(分别用截长补短两种方法证明)
例2、已知:如图,在Rt△ABC中,AB=AC,∠
BAC=90°,∠ABE=∠CBE,CE⊥BD的延长线于E。
求证:BD=2CE.
例3、如图,△ABC中,AM是BC边上的中线,求证:
例4、如图①所示,OP是∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:
(1)如图②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.请你判断并写出FE与FD之间的数量关系;
(2)如图③,在△ABC中,如果∠ACB不是直角,而(1)中的其他条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.。