探索勾股定理教学案例
- 格式:doc
- 大小:1.12 MB
- 文档页数:6
《探索勾股定理》教学案例分析与反思在教学中,设法使学生在接受数学知识的过程中,融入主动的探究、发现等活动,让学生有机会通过自己的归纳概括获取知识,让学生感受到数学来自生活,数学就在身边,数学就在自已的手中。
以下教学案例就是我在新课程标准下的一个尝试。
教材分析:勾股定理是几何学中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。
它在数学的发展中起到重要的作用,在现时世界中也有着广泛的作用。
学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
教学目标:1.学习掌握勾股定理及内容,并能进行简单证明。
2.培养动口、动手、动脑的综合能力,并感受从具体到抽象的认识规律。
教学重点:勾股定理的证明和应用。
教学难点:拼图、用计算面积的方法证明勾股定理。
教学方法:1.教师教法:引导发现、尝试指导、实验探究相结合。
2.学生学法:积极参与、动手动脑与主动发现相结合。
师生互动活动设计:教学过程:1.创设情景,引入新课师:(结合动画讲故事)西周开国时期,周公非常爱才,他和喜欢钻研数学的商高是好朋友。
有一天,商高对周公说,最近我又有一个新的发现,把一根长为7的直尺折成直角,使一边长(勾)为3,另一边长(股)为4,连接两端(弦)得一个直角三角形,周公您猜一猜第三边的长等于多少?周公摇头不知道。
同学们,你们猜猜是多少?生:5!生:不知道!师:不知道也没关系,我们来量一量斜边的长就知道了。
(动画演示)师:后来又发现,直角边为6、8的直角三角形的斜边的长是10。
这两组数据是否具有某种共同点呢?带着这个问题人们对直角三角形做了进一步的研究,通过计算三条边长的平方发现,直角三角形中的三条边长之间还真有一种特殊的关系。
同学们也来算一算、猜一猜看,它们之间到底有什么样的关系呢?生:32+42=52;62+82=102师:这是两组特殊数字,但由此引发一个有待我们深入思考的问题,看哪位同学有新问题要提?生:一个任意的直角三角形的三边是否也有这种相等关系呢?师:这个问题提得好!我们用几何画板再做一个直角三角形来多实验几次,请注意观察。
勾股定理的引入教学的案例与反思教学背景:勾股定理选自人教版数学八年级(上)第二章第一节。
本节课主要教学目标是让学生经历勾股定理产生的全过程,从而更好的理解并掌握好勾股定理的意义,进而提高学生观察、猜想、归纳和解决问题的能力,渗透由特殊到一般的数学思想方法。
设计说明:学习数学概念唯一的方法是引领学生实行“再创造”,而不是把现有的知识灌输给学生,如同游泳一样,必须亲自到水中体验,在实践中学会“游泳”,同样要在“做数学”中学会数学,体验数学概念的意义。
勾股定理是初三学生不易掌握的重要数学概念,教学时采取让学生“做数学”的方式,在活动中逐步接近数学概念,通过特殊的直角三角形的引例教学,让学生画图、测量、计算、小组交流、分析、填表、归纳,充分展示概念产生的形成过程,这样做比较自然流畅,符合学生的认知规律。
教学实录:师:1955年希腊发行的一枚纪念邮票,邮票上的图案是根据一个著名的数学定理设计的。
观察这枚邮票是的图案和图案中小方格的个数,你有什么发现?问题:在Rt⊿ABC中,∠C=90°,每组(共分三组)按下列要求画出直角三角形,分别以AB,AC,BC为一边作正方形并观察所画图形三边有什么关系(同桌交流),最后填表进行计算。
师:猜想你画的以BC为边的正方形的面积是多少?生1:面积是***。
师:不错!其他同学呢?从以BC为边的正方形的面积计算中你发现了什么?请组长统一本组意见后,全班交流。
(大家一起议论开来)生2:我们本组与旁边一组的两个小正方形面积和等于大正方形的面积三角形ABC中AC2+ BC2= AB2师:全班每一个同学都是这样的吗?生:(齐声)是!师:很好,那为什么呢或者说你有什么方法证明他们相等?生3:在大正方形边上补上4个三角形ABC的面积证明(有些学生点头!)师:大家都是补的吗?生4:我是用割是方法的师:很好!现在让我们一起来填表并计算AB的边长.教师再次巡视1到2分钟。
师:就这些数值,你发现直角三角形三边之间的数量有什么规律?生5: 三角形ABC中AC2+ BC2 = AB2师:对! AC2+ BC2=,AB2这位同学说的很正确!你看出了变中之变的规律,其他同学是否也有同感呢,学生情绪高涨,议论纷纷。
课题:18.1探索勾股定理教材分析:勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,它揭示了一个三角形三条边之间的数量关系,是解直角三角形的主要根据之一,在实际生活中用途很大。
教材注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。
学情分析:八年级的学生思维比较活跃,在平时自主学习、合作探究能力训练的基础上,具有了一定的归纳、总结能力及合作意识;他们有参与实际问题活动的积极性,但技能和方法有待提高。
八年级学生能独立思考,有强烈的探究愿望,并能在探索的过程中形成自己的观点,能在交流意见的过程中逐渐完善自己的观点。
故本课设计遵循“构建主义”的学习理念,以学生为中心,强调学生对知识的主动探索、主动发现和对所学知识意义的主动建构。
教学目标:1.让学生在经历探索定理的过程中,理解并掌握勾股定理的内容及存在条件;2.介绍勾股定理的几个著名证法及相关史料;3.使学生能对勾股定理进行简单计算和实际应用。
数学思想:在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想.问题解决:1. 通过拼图活动,体验数学思维的严谨性,发展形象思维..2. 在探究活动中,学会与人合作并能与他人交流思维的过程和探究的结果.情感态度和价值观:1、通过勾股定理产生、证明及其历史背景的学习,使学生了解“空间与图形”有着丰富的历史渊源,了解我们祖先的智慧,增强民族自豪感,感受数学对社会发展的推动作用。
2、在探究活动中,体验解决问题方法的多样性,培养学生的合作交流意识的探索精神。
教学重点:勾股定理的探索过程教学难点:勾股定理的证明与准确的应用教具学具:多媒体平台,学生自制全等直角三角形,教师用三角板教学方法与教学手段:自主探究、合作交流 教学过程: (一)创设情境,激发兴趣师:观察下列图片,它们都与什么图形有关?生:(齐答)直角三角形,正方形!师:这三幅图分别是一张希腊为纪念一个重要数学定理而 发行的邮票、华罗庚教授建议向外太空发射与外星人联系的图案、2002年国际数学家大会会标——弦图,它们都可以证明一个重要定理!大家想知道是哪个定理吗?生:想!师:好!下面老师和大家一起来探索这个定理!设计意图:通过欣赏图片,了解历史,介绍与勾股定理有关的背景知识,激发学生学习兴趣,自然引出本节课的课题。
(二)用数学的眼光看问题(毕达哥拉斯的发现)师:相传两千多年前,古希腊著名的哲学家、数学家毕达哥拉斯去朋友家做客。
在宴席上,其他 的宾客都在尽情欢乐,只有毕达哥拉斯却看着朋友家的方砖地发起呆来。
原来,朋友家的地是用一块 块直角三角形形状的砖铺成的,黑白相间,非常美观大方。
师:同学们,请你也来观察下图中的地面,看看能发现些什么? 生1:由等腰直角三角形、正方形师:原来啊,毕达哥拉斯发现了地砖上的三个正方形存在某种关系,你发现了吗?探究活动1(2)你能找出图中三个正方形面积生2:两个红颜色的正方形的面积之和等于蓝颜色的正方形的面积。
师:你能说说理由吗?生2:如果一个小的等腰直角三角形的面积为1,那么两个小正方形的面积和大正方形的面积都等于4.设计意图:通过讲传说故事来进一步激发学生学习兴趣,使学生在不知不觉中进入学习的最佳状态,“问题是思维的起点”,通过层层设问,引导学生发现新知。
(三)深入探究,交流归纳探究活动2问题1:设每个小正方形的面积为1,分别计算下列图形中正方形A 、B 、C 的面积,它们之间都有上述关系吗?生3:在算出面积之后,肯定地说有S A +S B =S c 问题2:你能用等腰直角三角形的边长表示正方形的面积吗?由此猜想等腰直角三角形三边有怎样的关系? 生4:我发现每个正方形的面积都等于直角三角形边长的平方,若一个等腰直角三角形的两条直角边为a ,斜边为c ,则有a 2+a 2=c 2教师板书:A B C B A Ca 2 +a 2 =c2 等腰直角三角形C B AB A C师:在等腰直角三角形中,这个结论是成立的,那么这个结论对于个更一般的三角形是否成立呢? 生:(不加思索)成立!师:比等腰直角三角形更一般的三角形是什么三角形? 生5:等腰三角形、直角三角形 生6:还有普通三角形师:好!我们先来研究等腰三角形!以等腰三角形三边为边长向外作正方形,三个正方形之间满足刚才的关系吗?生7:在网格中作出等腰三角形,并向外作正方形,很明显A 、B 、C 三者之间没有任何关系!因此等腰三角形的三边没有特殊关系!师:很好!生8:其实不在网格,也可以说明!等腰△ADB 和等腰△ACB 有公共的底边AB ,以AC 、CB 为边长的正方形的面积之和与以AD 、BD 为边长的正方形的面积之和不相等。
所以等腰三角形的三边没有特殊关系!(学生报以热烈的掌声)师:很好,实践是检验真理的唯一标准,我们还 可以借助多媒体来验证!(教师演示几何画板) 借助几何画板直观演示,得出结论:一般的等腰三角形中三边不具有特殊的关系! 当然普通三角形三边也不具有特殊的关系!师:下面我们来研究直角三角形探究活动3做一做:问题3:请求图中正方形A 、B 、C 的面积,看看能得出什么结论? 师:在这里正方形A 、B 的面积很容易求出,正方形C 的面积怎么求呢?生9:可以用这样的方法:用大正方形的面积减去四个小直角三角形的面积,面积等于25。
生10:可以将其分割成四个全等的直角三角形和一个小正方形,面积等于25。
生11:还可以将其分割拼成如图所示的图形,面积等于25。
生12:还可以这样拼!AB CABCA C B师:他们的做法都是正确的,一个用了“补”的方法,一个用了“割”的方法。
在这个图形中有S A +S B =S C问题4:下图中的正方形之间也有这个结论吗?生13:有!问题5:如果用a 、b 、c 分别表示三个正方形的边长,三者之间的面积关系如何表示?由三个正方形所搭成的直角三角形三边存在怎样的关系?生14:在直角三角形中,两直角边a 、b 与斜边c 有a 2+b 2=c 2教师板书: (直角边长为“整数”)设计意图:通过设计问题串,让探索过程由浅入深,循序渐进。
经历观察、猜想、归纳这一数学学习过程,符合学生认知规律。
探索面积证法的多样性,体现数学解决问题的灵活性,发展学生的合情推理能力和归纳概括能力。
探究活动4问题6:假如直角三角形的边长为“小数”呢? 这个结论还成立吗?在网格纸上画出直角边长分别为1.6个单位长度和2.4个单位长度的直角三角形, 上面所猜想的数量关系还成立吗?说说你的理由。
生15:这个可能要借助计算机了!(大家笑)生16:其实当直角边是“小数”的时候,可以转换成“整数”,可以细化网格,使网格的一个单位是两条直角边的“公约数”!师:你能跟大家讲讲你是怎么想到的吗?生16:因为两条直角边是整数3、4时,我量了它也不是实际长度,只不够取了它们的比值而已!而网格的单位长度是它们实际长度的“约数”。
生17:对!刚才3、4、5是一个直角三角形的三边,那它们长度的2倍也应该能画出直角三角形! 师:你们说的太好了!这可以我们后面要探索的问题!下面我用几何画板来演示给大家看看!刚才这a 2 +b 2 =c 2直角三角形ACBABCac ┏b个结论对任意的直角三角形都是成立的!(拖动点B ,改变直角三角形ABC 的各边长度, 观察三个正方形的面积的关系)设计意图:通过上述两种探究活动,学生已初步 探究出直角边为整数的直角三角形三边关系。
设 计让学生动手画直角边是小数的情形,将探究活 动进一步深化,从而扩展到更一般的情况。
使学 生体会数学探究由特殊到一般,再到更一般过程。
利用几何画板的高效性、动态性反映这一过程, 让学生体会到更多的特殊情形,从而为归纳提供 基础,这样归纳的结论更具有一般性,学生的印 象也更深刻。
板书:勾股定理(毕达哥拉斯定理)直角三角形两直角边的平方和等于斜边的平方。
a 2+b 2=c 2(四)追溯历史,激发情感师:我国是最早了角勾股定理的国家之一,早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”,它被记载于我国古代著名的数学著作《周髀算经》中。
商 高 《周髀算经》 毕达哥拉斯 设计意图:介绍有关勾股定理的历史,使学生对中国乃至世界的数学史产生浓厚的兴趣,为下一节的验证打好基础。
(五)实践应用,拓展提高 1.求下列图中表示边的未知数x 、y 、z 的值。
2.求出下列直角三角形中未知边的长度。
81144xyz625576144169a 2+b 2=c23.有一个水池,水面是一边长为10尺的正方形,在水池正中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池的深度和这根芦苇的长度各是多少?设计意图:由于学生对知识的理解程度有所差异,因此,习题的设置体现层次性。
通过对勾股定理的基本应用,让学生知道1、已知直角三角形三边中的任意两边,可以求第三边。
2、已知直角三角形三边中的一边及另两边的关系,可以求另两边。
(六)回顾小结,整体感知通过本节课的学习,你有哪些收获与感悟!设计意图:学生通过对学习过程的小结,领会其中的数学思想方法;通过梳理所学内容,形成完整知识结构,培养归纳概括能力。
(七)布置作业,巩固加深(1)课本第47页第2题。
(2)在网页中你可以找到有关勾股定理的丰富的内容,勾股定理的证明方法已经有几百种,请你结合本节课的学习探索或从网上搜索证明勾股定理的其它方法。
设计意图:针对学生认知的差异设计了有层次的作业题,既使学生巩固知识,形成技能,又使学有余力的学生获得最佳发展。
教学反思:1.本节课根据学生的认知结构采用“观察——猜想——实验——归纳——验证——应用”的教学方法,这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。
从学生的原有认知出发,揭示这节课产生的根源,符合学生的认知心理。
渗透从特殊到一般的数学思想。
为学生提供参与数学活动的时间和空间,发挥学生的主体作用;培养学生的类比迁移能力及探索问题的能力,使学生在相互讨论、启发中得到提高。
2.本节课始终体现“以学生为本”的教育理念,试图让学生经历观察、归纳、猜想、验证的数学发现过程,发展学生的合情推理能力,体验数学家们探求新知的乐趣。
在此过程中,探索定理采用面积法,引导学生利用实验由特殊到一般再到更一般的规律,对直角三角形三边关系加以探究,得出结论。
这种方法是认识事物规律的重要方法之一,通过教学让学生初步掌握这种方法,对于学生良好思维品质的形成有重要作用,对学生的终身发展也有一定的作用。