数学八年级分式竞赛题
- 格式:doc
- 大小:126.50 KB
- 文档页数:3
人教版 八年级数学上册 竞赛专题:分式方程(含答案)【例1】 若关于x 的方程22x ax +-=-1的解为正数,则a 的取值范围是______.解题思路:化分式方程为整式方程,注意增根的隐含制约.【例2】 已知()22221111x x A B Cx x x x x +-=++--,其中A ,B ,C 为常数.求A +B +C 的值.解题思路:将右边通分,比较分子,建立A ,B ,C 的等式.【例3】解下列方程: (1)596841922119968x x x x x x x x ----+=+----; (2)222234112283912x x x x x x x x ++-+=+-+; (3)2x +21x x ⎛⎫⎪+⎝⎭=3.解题思路:由于各个方程形式都较复杂,因此不宜于直接去分母.需运用解分式问题、分式方程相关技巧、方法解.【例4】(1)方程18272938x x x x x x x x +++++=+++++的解是___________. (2)方程222111132567124x x x x x x x ++=+++++++的解是________.解题思路:仔细观察分子、分母间的特点,发现联系,寻找解题的突破口.【例5】若关于x 的方程2211k x kx x x x x+-=--只有一个解,试求k 的值与方程的解. 解题思路:化分式方程为整式方程,解题的关键是对原方程“只有一个解”的准确理解,利用增根解题.【例6】求方程11156x y z ++=的正整数解. 解题思路:易知,,x y z 都大于1,不妨设1<x ≤y ≤z ,则111x y z≥≥,将复杂的三元不定方程转化为一元不等式,通过解不等式对某个未知数的取值作出估计.逐步缩小其取值范围,求出结果.能力训练A 级1.若关于x 的方程1101ax x +-=-有增根,则a 的值为________. 2.用换元法解分式方程21221x x x x --=-时,如果设21x x-=y ,并将原方程化为关于y 的整式方程,那么这个整式方程是___________. 3.方程2211340x x x x ⎛⎫+-++= ⎪⎝⎭的解为__________. 4.两个关于x 的方程220x x --=与132x x a=-+有一个解相同,则a =_______.5.已知方程11x a x a+=+的两根分别为a ,1a ,则方程1111x a x a +=+--的根是( ). A .a ,11a - B .11a -,1a - C .1a ,1a - D .a ,1aa -6.关于x 的方程211x mx +=-的解是正数,则m 的取值范围是( ) A .m >-1 B .m >-1且m ≠0C .m <-1D .m <-l 且m ≠-27.关于x 的方程22x c x c +=+的两个解是x 1=c ,x 2=2c ,则关于x 的方程2211x a x a +=+--的两个解是( ) . A .a ,2a B .a -1,21a - C .a ,21a - D .a ,11a a +- 8.解下列方程:(1)()2221160x x x x+++-=; (2)2216104933x x x x ⎛⎫+=-- ⎪⎝⎭.9.已知13x x+=.求x 10+x 5+51011x x +的值.10.若关于x 的方程2211k x kx x x x x+-=--只有一个解(相等的两根算作一个),求k 的值.11.已知关于x 的方程x2+2x +221022m x x m-=+-,其中m 为实数.当m 为何值时,方程恰有三个互不相等的实数根?求出这三个实数根.12.若关于x 的方程()()122112x x ax x x x x ++-=+--+无解,求a 的值.B 级1.方程222211114325671221x x x x x x x x +++=+++++++的解是__________.2.方程222111011828138x x x x x x ++=+-+---的解为__________.3.分式方程()()1112x m x x x -=--+有增根,则m 的值为_________. 4.若关于x 的分式方程22x ax +-=-1的解是正数,则a 的取值范围是______.5.(1)若关于x 的方程2133mx x =---无解,则m =__________. (2)解分式方程225111mx x x +=+--会产生增根,则m =______. 6.方程33116x x x x ⎛⎫+=+ ⎪⎝⎭的解的个数为( ). A .4个 B .6个 C .2个 D .3个7.关于x 的方程11ax =+的解是负数,则a 的取值范围是( ) . A .a <l B .a <1且a ≠0 C .a ≤1 D .a ≤1且a ≠08.某工程,甲队独做所需天数是乙、丙两队合做所需天数的a 倍,乙队独做所需天数是甲、丙两队合做所需天数的b 倍,丙队独做所需天数是甲、乙两队合做所需天数的c 倍,则111111a b c +++++的值是( ).A .1B .2C .3D .49.已知关于x 的方程(a 2-1)()2271011x x a x x ⎛⎫⎛⎫-++= ⎪ ⎪--⎝⎭⎝⎭有实数根.(1)求a 的取值范围;(2)若原方程的两个实数根为x 1,x 2,且121231111x x x x +=--,求a 的值.10.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降. 今年三月份的电脑售价比去年同期每台降价1 000元.如果卖出相同数量的电脑,去年销售额为10万元.今年销售额只有8万元. (1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3 800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元.要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?参考答案例1 a <2且a ≠-4例2 原式右边=22(1)+B(1)(1Ax x x Cx x x --+-)=2222()()211(1)(1)A C x B A x B x x x x x x ++--+-=-- 得2111A C B A B +=⎧⎪-=⎨⎪-=-⎩∴1011,8.A B C =⎧⎪=⎨⎪=-⎩,∴A +B +C =13.例3 (1)x =12314提示:1155(5)(1)(4)(2)191968x x x x -++=++-----.(2)1,2x =,x 3=-1,x 4=-4 提示:令223.4x xy x x +=+-(3)1,2x =提示222222()().111x x x x x x x +=++++例4 (1)原方程化为11111+111+2+9+3+8x x x x --=-+-,即1111+3+2+9+8x x x x -=-,进一步可化为(x +2) (x +3)=(x +8) (x +9),解得x =-112.(2)原方程化为1111111+1+2+2+3+3+4+4x x x x x x x -+-+-=,即12+14x x =+,解得x =2. 例5 原方程化为kx 2-3kx +2x -1=0①,当k =0时,原方程有唯一解x =12;当k ≠0,Δ=5k 2+4(k -1)2>0.由题意知,方程①必有一根是原方程的曾根,即x =0或x =1,显然0不是①的根,故x =1是方程①的根,代入的k =12.∴当k =0或12时,原方程只有一个解. 例6 11113x x y z x <++≤,即1536x x <≤,因此得x =2或3.当x =2时,111x x y <+=511112623y y y -=≤+=,即1123y y<≤,由此可得y =4或5或6;同理,当x =3时,y =3或4,由此可得当1≤x ≤y ≤z 时,(x ,y ,z )共有(2,4,12),(2,6,6),(3,3,6),(3,4,4)4组;由于x ,y ,z 在方程中地位平等,可得原方程组的解共15组:(2,4,12),(2,12,4), (4,2,12),(4,12,2),(12,2,4),(12,4,2),(2,6,6),(6,2,6),(6,6,2),(3,3,6),(3,6,3),(6,3,3),(3,4,4) ,(4,4,3) ,(4,3,4).A 级1.-1 2.y 2-2y -1=0 3.1 4.-8 5.D 6.D 7.D8.(1)12123x x ==-, (2)1226x x ==-,,3,43x =-±9.15250 提示:由x +13x =得2217.x x +=则2211()()21x x x x ++=,得33118x x+=. 于是221()x x+331()126x x +=,得551123x x +=.进一步得1010115127x x +=.故原式=15250.10.k =0或k =12提示:原方程化为kx 2-3kx +2x -1=0,分类讨论. 11.设x +2x =y ,则原方程可化为y 2-2my +m 2-1=0,解得y 1=m +1,y 2=m -1.∵x 2+2x -m -1=0①,x 2+2x -m +1=0②,从而Δ1=4m +8,Δ2=4m 中应有一个等于零,一个大于零.经讨论,当Δ2=0即m =0时,Δ1>0,原方程有三个实数根.将m =0代入原方程,解得12321211.x x x ⎧=-⎪⎪=--⎨⎪=⎪⎩12 原方程“无解”内涵丰富:可能是化得的整式方程无解,亦可能是求得的整式方程的解为増根,故需全面讨论.原方程化为(a+2)x =-3 ① , ∵原方程无解,∴a+2=0或x -1=0,x+2=0,得B 级1. 3或 - 72. x₁=8 , x₁=-1 , x₁=-8 , x₁=1 提示: 令x ²-8=y3. 3 提示:由有増根可得m=0或 m=3,但当 m=0,化为整式方程时无解4. a<2 且 a ≠-45. ⑴ -2 ⑵ -4 或 -106. A7.8. 设甲单独做需要x 天完成,乙单独做需要y 天完成,丙单独做需要z 天完成则.解 . 当a ≠±1时,则Δ≥0,原方程有实数解.由Δ=[-﹙2a+7﹚]²-4﹙a ²-1﹚≥0,解得.21-5,2,21-a 5,-=a 分别别代入①2-= x 1,=x 把 2,-=a 或综上知--==a 0≠1a ∴ 0,≠11 0≠1x 1a 01-a x ∴,111x a: a a x a B 且即且由提示<+-+<⇒<=+=⇒=+1x y +=++a yz yzxz 得⑥⑤④, ⑥11yz x z x y x y ⑤,11yz x z x y x z ④.11yz x z x y yz ∴+++=+++=+++=++c b a 同理可得111111a 1=+++++c b 得,01.01)72(1)t -(a 1,≠,1⑴....9222=-=++-=-a t a t t x x当原方程可化为则设.,?=a , 41-=x 81-=x ∴, 51=1-x 91=1-x 0=1+5-0=1+9-, ?=原方程有实数解时当故或或即或则方程为时即x x t t a 且当综上可知由于解得时但当又,2853-≥,,2853->22±1,22±1=a ,1=t 1,≠t ,2853-≥a a .,22±1≠原方程有实数解时a。
一、选择题(每题4分,共40分)1. 下列分式中最简分式是()A. $$ \frac {2}{3}$$B. $$ \frac {6}{9}$$C. $$ \frac {4}{6}$$D. $$ \frac {5}{10}$$2. 若$$ \frac {a}{b}$$是正数,则a、b的符号分别为()A. 同号B. 异号C. 都为正D. 都为负3. 下列分式的值等于1的是()A. $$ \frac {2}{3} + \frac {1}{3}$$B. $$ \frac {3}{2} - \frac {1}{2}$$C. $$ \frac {2}{5} \times \frac {5}{2}$$D. $$ \frac {1}{4} \div \frac {2}{4}$$4. 分式$$ \frac {x}{x-1}$$的值是()A. xB. x+1C. x-1D. $$ \frac {x-1}{x}$$5. 若$$ \frac {x}{y}$$和$$ \frac {y}{x}$$互为倒数,则x和y的关系是()A. xy=1B. xy=0C. x+y=0D. x-y=06. 分式$$ \frac {1}{x} - \frac {1}{y}$$的值是()A. $$ \frac {y-x}{xy}$$B. $$ \frac {x-y}{xy}$$C. $$ \frac {y+x}{xy}$$D. $$ \frac {x+y}{xy}$$7. 分式$$ \frac {x}{x+1}$$的值小于1的条件是()A. x>0B. x<0C. x>1D. x<18. 若$$ \frac {a}{b}$$和$$ \frac {c}{d}$$是同类分式,则a、b、c、d的关系是()A. ad=bcB. ad=bc,且a、b、c、d都不为0C. ab=cdD. ab=cd,且a、b、c、d都不为09. 分式$$ \frac {1}{x-2} + \frac {1}{x+2}$$的值是()A. $$ \frac {4}{x^2-4}$$B. $$ \frac {4}{x^2+4}$$C. $$ \frac {4}{x^2-2x-4}$$D. $$ \frac {4}{x^2+2x-4}$$10. 若$$ \frac {x}{y}$$和$$ \frac {y}{x}$$互为倒数,则$$ \frac{x^2}{y^2}$$的值是()A. 1B. $$ \frac {1}{x^2}$$C. $$ \frac {y^2}{x^2}$$D. $$ \frac {x^2+y^2}{x^2y^2}$$二、填空题(每题5分,共50分)11. 分式$$ \frac {3}{4}$$的倒数是______。
人教版八年级上册数学第15章《分式》单元测试卷一.选择题(共10小题,满分30分)1.下列式子中,属于分式的是()A.B.C.D.2.分式的值是零,则x的值为()A.3B.﹣3C.3或﹣3D.03.已知某新型感冒病毒的直径约为0.000002022米,将0.000002022用科学记数法表示为()A.2.022×10﹣5B.0.2022×10﹣5C.2.022×10﹣6D.20.22×10﹣74.计算的结果是()A.B.C.D.5.在①x2﹣x+,②﹣3=a+4,③+5x=6,④=1中,其中关于x的分式方程的个数为()A.1B.2C.3D.46.如果把分式中的x、y的值都扩大2倍,那么分式的值()A.扩大2倍B.扩大4倍C.扩大6倍D.不变7.若将分式与通分,则分式的分子应变为()A.6m2﹣6mn B.6m﹣6nC.2(m﹣n)D.2(m﹣n)(m+n)8.分式,的最简公分母是()A.a B.ab C.3a2b2D.3a3b39.计算结果等于2的是()A.|﹣2|B.﹣|2|C.2﹣1D.(﹣2)0 10.已知,则的值是()A.66B.64C.62D.60二.填空题(共10小题,满分30分)11.分式的最简公分母是.12.要使分式有意义,则分式中的字母b满足条件.13.若表示一个整数,则整数x可取的个数有个.14.约分:=.15.方程的解是.16.若解分式方程产生增根,则m=.17.用漫灌方式给绿地浇水,a天用水10吨,改用喷灌方式后,10吨水可以比原来多用5天,那么喷灌比漫灌平均每天节约用水吨.18.已知若x﹣=3,则x2+=.19.将分式化为最简分式,所得结果是.20.扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场.与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%.已知去年这种水果批发销售总额为10000元,则这种水果今年每千克的平均批发价是元.三.解答题(共7小题,满分90分)21.神舟十三号飞船搭载实验项目中,四川省农科院生物技术研究所共有a粒水稻种子,每粒种子质量大约0.0000325千克;甘肃省天水市元帅系苹果的b粒干燥种粒,每粒种子质量大约0.002275千克,参与航天搭载诱变选育.(1)用科学记数法表示上述两个数.(2)若参与航天搭载这两包种子的质量相等,求的值.(3)若这两包种子的质量总和为1.04千克,水稻种子粒数是苹果种子粒数10倍,求a,b的值.22.若式子无意义,求代数式(y+x)(y﹣x)+x2的值.23.下列分式中,哪些是最简分式?,,;,,,.24.(1)计算:;(2)解不等式组:.25.若关于x 的方程有增根,求实数m的值.26.一船在河流上游A港顺流而下直达B港,用一个小时将货物装船后返航,已知船在静水中的速度是50千米/时,A、B两地距离为150千米,则该船从A港出发到返回A港共用了7.25小时,如果设水流速度是x千米/时,那么x应满足怎样的方程?27.阅读理解材料:为了研究分式与分母x的变化关系,小明制作了表格,并得到如下数据:x…﹣4﹣3﹣2﹣101234…10.50.0.25……﹣0.25﹣0.﹣0.5﹣1无意义从表格数据观察,当x>0时,随着x 的增大,的值随之减小,并无限接近0;当x<0时,随着x 的增大,的值也随之减小.材料2:对于一个分子、分母都是多项式的分式,当分母的次数高于分子的次数时,我们把这个分式叫做真分式.当分母的次数不低于分子的次数时,我们把这个分式叫做假分式.有时候,需要把一个假分式化成整式和真分式的代数和,像这种恒等变形,称为将分式化为部分分式.如:.根据上述材料完成下列问题:(1)当x>0时,随着x的增大,1+的值(增大或减小);当x<0时,随着x的增大,的值(增大或减小);(2)当x>1时,随着x的增大,的值无限接近一个数,请求出这个数;(3)当0≤x≤2时,求代数式值的范围.。
八年级数学竞赛试题(时间:60分 满分:100分)一、 填空题(每空3分,共36分) 1、分式392--x x 当x _________时分式的值为零,当x ________时,分式xx2121-+有意义 2、=-0)5( . =-23 . =-1a (a ≠0)3、利用分式的基本性质填空:(1)())0(,10 53≠=a axyxy a(2)() 1422=-+a a 4、已知0132=+-x x ,则1242++x x x 的值为_______________. 5、计算:=+-+3932a a a __________ 6、分解因式:xy y y x x -+--42222=______________________.7、斜边长为17cm ,一条直角边长为15cm ,则斜边上的高是________ 8、若正方形的面积为16cm 2,则正方形对角线长为__________cm 二、选择题(每小题3分,共24分)9、在代数式23451,,,,23x b x x y x y a π+-+-中,分式有( )A 、 2个B 、3个C 、4 个D 、5个10、如图是一个正方体纸盒,在其中的三个面上各画一条线段构成△ABC ,且A 、B 、C 分别是各棱上的中点.现将纸盒剪开展成平面,则不可能的展开图是( )班别 姓名11、若把分式xyyx 2+中的x 和y 都扩大3倍,那么分式的值( ) A .扩大3倍 B .不变 C .缩小3倍 D .缩小6倍 12、 三角形的三边长分别为6,8,10,它的斜边上的高为 ( )A. 6B. 4.8C. 2.4D. 8 13、4.已知2310x x x +++=,则2004321x x x x +++++ 的值为( )(A )0(B )1(C )―1(D )200414、解分式方程4223=-+-xx x 时,去分母后得( ). A. )2(43-=-x x B. )2(43-=+x x C. 4)2()2(3=-+-x x x D. 43=-x15、化简2293m mm --的结果是( )A.3+m m B.3+-m m C.3-m m D.mm-3 16、如图中字母A 所代表的正方形的面积为 ( )A 、4B 、8C 、16D 、64 三、解答题(共40分) 17.(每题5分,共15分)(1) 11124x x x++(2) 2224369a a a a a --÷+++ (3)因式分解:4(x 2+1) 2-16x 218、(5分)解方程10522112x x x+=-- 19、(10分)从甲地到乙地有一段上坡与一段平路,如果保持上坡每小时走3千米,平路每小时走4千米,下坡每小时走5千米,那么从甲地到乙地需要54分钟,从乙地到甲地需要42分钟。
人教版 八年数学上册 竞赛专题:分式的化简与求值(含答案)【例l 】 已知2310a a -+=,则代数式361a a +的值为 .(“希望杯”邀请赛试题)解题思路:目前不能求出a 的值,但可以求出13a a+=,需要对所求代数式变形含“1a a +”.【例2】 已知一列数1234567,,,,,,,a a a a a a a 且18a =,75832a =,356124234567a a a a a a a a a a a a =====,则5a 为( ) A .648 B .832 C .1168 D .1344(五城市联赛试题) 解题思路:引入参数k ,把17a a 用k 的代数式表示,这是解决等比问题的基本思路.【例3】 3(0)x y z a a ++=≠.求222()()()()()()()()()x a y a y a z a z a x a x a y a z a --+--+---+-+-.(宣州竞赛试题) 解题思路:观察发现,所求代数式是关于x a y a z a ---、、的代数式,而条件可以拆成x a y a z a ---、、的等式,因此很自然的想到用换元法来简化解题过程.【例4】 已知1,2,3,xy yz zxx y y z z x===+++求x 的值. (上海市竞赛试题)解题思路:注意到联立等式得到的方程组是一个复杂的三元一次方程组,考虑取倒数,将方程组化为简单的形式.【例5】 不等于0的三个正整数,,a b c 满足1111a b c a b c++=++,求证:,,a b c 中至少有两个互为相反数.解题思路:,,a b c 中至少有两个互为相反数,即要证明()()()0a b b c c a +++=. (北京市竞赛试题)【例6】 已知,,a b c 为正整数,满足如下两个条件:①32;a b c ++=②14b c a c a b a b c bc ac ab +-+-+-++= 解题思路:本题熟记勾股定理的公式即可解答.(全国初中数学联赛试题)能力训练1.若a b c d b c d a ===,则a b c d a b c d-+-+-+的值是 .(“希望杯”邀请赛试题)2.已知2131x x x =-+,则24291x x x =-+ . (广东竞赛试题)4.已知232325x xy y x xy y +-=--,则11x y -= .5.如果111,1a b b c+=+=,那么1c a +=( ).A .1B .2C .12 D .14(“新世纪杯”竞赛试题)6.设有理数,,a b c 都不为0,且0a b c ++=,则222222222111b c a c a b a b c +++-+-+-的值为( ).A .正数B .负数C .零D .不能确定7.已知4360,270(0)x y z x y z xyz --=+-=≠,则22222223657x y z x y z++++的值为( ). A .0 B .1 C .2 D .不能确定8.已知211x x mx =-+,则36331x x m x -+的值为( )A .1B .313m + C .2132m - D .2131m + 9.设0a b c ++=,求222222222a b c a bc b ac c ab+++++的值.10.已知111x y z y z x+=+=+其中,,x y z 互不相等,求证2221x y z =. (天津市竞赛试题)11.设,,a b c 满足1111a b c a b c++=++, 求证2121212121211111n n n n n n a b c a b c------++=++.(n 为自然数) (波兰竞赛试题)12.三角形三边长分别为,,a b c . (1)若a abc b c b c a++=+-,求证:这个三角形是等腰三角形;(2)若1111a b c a b c-+=-+,判断这个三角形的形状并证明.13.已知1ax by cz ===,求444444111111111111a b c x y z +++++++++++的值. (“华杯赛”试题)14.解下列方程(组): (1)18272938x x x x x x x x +++++=+++++; (江苏省竞赛试题) (2)596841922119968x x x x x x x x ----+=+----;(“五羊杯”竞赛试题)(3)111211131114x y z y z x z x y ⎧+=⎪+⎪⎪+=⎨+⎪⎪+=⎪+⎩.(北京市竞赛试题)B 级1.设,,a b c 满足0a b c ++=,0abc >,若a b c x a b c=++, 111111()()()y a b c b c c a a b=+++++,则23x y xy ++= .2.若0abc ≠,且a b b c c a c a b+++==,则()()()a b b c c a abc +++= . 3.设,,a b c 均为非零数,且2(),3(),4()ab a b bc b c ac a c =+=+=+,则a b c ++= .4.已知,,x y z 满足1x y z y z x z y x ++=+++,则222x y z y z x z y x+++++的值为 .5.设,,a b c 是三个互不相同的正数,已知a c c bb a b a-==+,那么有( ). A .32b c = B .32a b = C .2b c = D .2a b =6.如果0a b c ++=,1114a b c ++=-,那么222111a b c++的值为( ).A .3B .8C .16D .208.若615325x y x y y x y x -==-,则222245623x xy y x xy y-+-+的值为( ). A .92 B .94C .5D .6 (全国初中数学联赛试题)9.已知非零实数,,a b c 满足0a b c ++=. (1)求证:3333a b c abc ++=; (2)求()()a b b c c a c a bc a b a b b c c a---++++---的值. (北京市竞赛试题)10.已知2410a a ++=,且42321322a ma a ma a++=++.求m 的值. (北京市竞赛试题)(天津市竞赛试题)13.某商场在一楼和二楼之间安装了一自动扶梯,以均匀的速度向上行驶,一男孩和一女孩同时从自动扶梯上走到二楼(扶梯行驶,两人也走梯).如果两人上梯的速度都是匀速的,每次只跨1级,且男孩每分钟走动的级数是女孩的2倍.已知男孩走了27级到达扶梯顶部,而女孩走了18级到达顶部. (1)扶梯露在外面的部分有多少级?(2)现扶梯近旁有一从二楼下到一楼的楼梯道,台阶的级数与自动扶梯的级数相等,两人各自到扶梯顶部后按原速度再下楼梯,到楼梯底部再乘自动扶梯上楼(不考虑扶梯与楼梯间的距离).求男孩第一次追上女孩时走了多少级台阶? (江苏省竞赛试题)参考答案例1 181提示:3363111aa a a +=+例2 A 提示:7665544332216a a a a a a a a a a a a k ∙∙∙∙∙==71a a =58328,得k=31±,又25443322151k a a a a a a a a a a =∙∙∙=例3油x+y+z=3a ,得(x-a )+(y-a )+(z-a )=0.设x-a=m ,y-a=n ,z-a=p ,则m+n+p=0,即p=-(m+n ).原式=222p n m pm np mn ++++=()222p n m n m p mn ++++=()()2222n m n m n m mn ++++-=-21 例4 x=512 提示:由已知条件知xy ≠0,yz ≠0,取倒数,得:⎪⎪⎪⎩⎪⎪⎪⎨⎧+++,31,21,1zx x z zx z y xy y x 即⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=+,3111,2111,111x z z y y x ①+②+③,得1211111=++z y x 例5 提示:由已知条件,得()()a bc acb abc bc ac b ab +++++++22=()()[]()c a b a c b a b ++++=()()()0=+++a c c b b a例6 由勾股定理,结论可表示为等式:a=b+c ,①或b=a+c ,②或c=b+a ,③,联立①③,只需证a=16或或b =16或c =16,即(a -16)(b -16)(c -16)=0. ④ 展开只需证明0=abc -16(ab +bc +ac )+162(a +b +c )-163=abc -16(ab +bc +ac )+163 ⑤ 将①平方、移项,有a 2+b 2+c 2=322-2(ab +bc +ca ),⑥ 又将②移项、通分,有 0=14-(++b c a bc ++c a b ac -+a b cab++) =14-(2+ab ac a abc -+2+bc ab b abc -+2ac bc c abc +-)=2228()4()4abc ab bc ac a b c abc -+++++=28()4[322()]4abc ab bc ac ab bc ca abc-+++-++把⑥代入等式中,0=316()164abc ab bc ac abc-+++①② ③=23 16()16()164abc ab bc ac a b cabc-+++++-=(16)(16)(16)4a b cabc---当a-16=0时,由①有a=16=b+c,由勾股定理逆定理知,为斜边的直角三角形.同理,当b=16或c=16时,分别有b=a+c或c=b+a角三角形.A级1. 0或-22. 15∵231x xx-+=1,∴x+1x=4.又∵42291x xx-+=5,∴24291xx x-+=153.34. A5. C 提示:b 2+c 2-a2=-2bc6.B7. C 提示:取倒数,得x+1x=1+m,原式的倒数=x3+31x-m38. 1 提示:2a2+bc=2a2+b(-a-b)=a2-ab+a2-b2=(a-b)(a+a+b)=(a-b)(a-c)9. 提示:由x+1y=y+1z,得x-y=1z-1y,得zy=y zx y--10. 提示:参见例5得(a+b)(b+c)(a+c)=011. (1)∵()a b cbc+=()b cb c a++-,∴(b+c)(ab+ac-a2-bc)=0.∴(b+c)(a-b)(c-a)=0.∵b+c≠0,∴a=b或c=a.∴这个三角形为等腰三角形.(2)∵1a+1c=1+a b c-+1b,∴a cac+=()a ca b c b+-+∴(a-b+c)=ac,∴(a-b)(b-c)=0, a=b或b=c,∴这个三角形为等腰三角形.12. 3 x =1a ,y =1b ,c =1z ,∴411a ++411x +=411a ++4111a+=1,∴原式=3. 13. (1)x =-112(2)x =12314(3)(x ,y ,z )=(2310,236,232)提示:原方程组各方程左端通分、方程两边同时取倒数.B 级1. 22. -1或8 提示:设a b c +=b c a +=c a b +=k ,则k =-1或2 3. 1128354. 0 提示:由x y z +=1-y z x +-z x y +,得:14=x -xy z x +-xz x y + 5. A 6. C 7. A 提示:由已知条件得x =3y8. (1)由a +b +c =0,得a +b =-c ∴a 3+b 3+c 3=-3ab (a +b )=3abc(2)∵(a b c -+b c a -+c a b -)·c a b -=1+22c ab , ∴同理:(a b c -+b c a -+c a b -)·a b c -=1+22a bc ,(a b c -+b c a -+c a b -)·b c a-=1+22b ac ,∴左边=3+22c ab +22a bc+22c ab =3+3332()a b c abc ++=99. ∵a 2+4a +1=0,∴a 2+1=-4a ,①a ≠0. 4232122a ma a ma a++++=2222(1)(2)2(1)a m a a a ma ++-++=3.把①代入上式中,222216(2)8a m a a ma +--+=3,消元得1692)8m m+--+=3,解得m =19.10. 设甲、乙、丙三人单独完成此项工作分别用a 天、b 天、c 天,则,,bc a p b c ac b q a c ab c x a b ⎧=⋅⎪+⎪⎪=⋅⎨+⎪⎪=⋅⎪+⎩即111,111,111p a b c q b a c x c a b ⋅=+⋅=+⋅=+解得x =14. 11.(1)设女孩速度x 级/分,电梯速度y 级/分,男孩速度2x 级/分,楼梯S 级,则 27271818.S x y S x y -⎧=⎪⎪⎨-⎪=⎪⎩,得13.5271818S S -=-,327418S S -=-,∴S =54. (2)设男孩第一次追上女孩时走过扶梯m 编,走过楼梯n 编,则女孩走过扶梯(m -1)编,走过楼梯(n -1)编,男孩上扶梯4x 级/分,女孩上扶梯3x 级/分.545454(1)54(n 1)423m m m x x x x --+=+,即114231m n m n --+=+,得6n +m =16,m ,n 中必有一个是正整数,且0≤︱m -n ︱≤1.①16mn -=,m 分别取值,则有显然,只有m =3,n =126满足条件,故男孩所走的数=3×27+126×54=198级.∴男孩第一次追上女孩时走了198级台阶.。
八年级数学分式试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个选项是分式的定义?A. 分子为0的表达式B. 分子和分母都是整式的表达式C. 分子和分母都是多项式的表达式D. 分子和分母都是单项式的表达式2. 分式$\frac{3x}{x+1}$的分母是什么?A. $3x$B. $x+1$C. $x$D. $3$3. 下列哪个分式是最简分式?A. $\frac{4}{6}$B. $\frac{6}{8}$C. $\frac{8}{10}$D. $\frac{10}{12}$4. 分式$\frac{x+2}{x-3}$的分子是什么?A. $x+2$B. $x-3$C. $x^2-9$D. $x^2+6x+9$5. 下列哪个分式等于1?A. $\frac{2}{3}$B. $\frac{3}{2}$C. $\frac{2}{2}$D. $\frac{3}{3}$二、判断题(每题1分,共5分)1. 分式的分子和分母都是整式。
()2. 分式的值随x的增大而增大。
()3. 分式的值随x的减小而减小。
()4. 分式的值可以等于0。
()5. 分式的值可以等于1。
()三、填空题(每题1分,共5分)1. 分式$\frac{x+1}{x-1}$的分子是______,分母是______。
2. 当x=2时,分式$\frac{x+3}{x-1}$的值为______。
3. 当x=3时,分式$\frac{x-1}{x+2}$的值为______。
4. 分式$\frac{2x+4}{x+2}$可以化简为______。
5. 当x=0时,分式$\frac{x^2+1}{x+1}$的值为______。
四、简答题(每题2分,共10分)1. 请简述分式的定义。
2. 请简述分式的最简形式。
3. 请简述分式的值随x的增大而变化的规律。
4. 请简述分式的值随x的减小而变化的规律。
5. 请简述分式的值可以等于0的条件。
五、应用题(每题2分,共10分)1. 已知分式$\frac{x+1}{x-1}$,当x=2时,求分式的值。
八年级上册数学分式测试题一、选择题(每题3分,共30分)1. 下列式子是分式的是()A. 公式B. 公式C. 公式D. 公式解析:分式的定义是形如公式,其中A、B是整式,且B中含有字母。
选项A、B的分母分别是常数2,不是分式;选项D中分母是公式,公式是常数,不是分式;选项C中分母是公式,是含有字母的整式,所以是分式,答案是C。
2. 若分式公式的值为0,则x的值为()A. 1B. -1C. 0D. ±1解析:要使分式的值为0,则分子为0,分母不为0。
由分子公式,解得公式,当公式时,分母公式,而当公式时,分母为0,分式无意义,所以公式,答案是A。
3. 化简公式的结果是()A. 公式B. 公式C. 公式D. 公式解析:根据平方差公式公式,所以公式,答案是B。
4. 计算公式的结果是()A. 公式B. 公式C. 公式D. 公式解析:先通分,通分后分母为公式,公式,答案是A。
5. 分式方程公式的解是()A. 公式B. 公式D. 公式解析:方程两边同乘公式得:公式,展开得公式,移项得公式,解得公式。
经检验,当公式时,公式,所以公式是原方程的解,答案是A。
6. 若分式公式不论x取何实数总有意义,则m的取值范围是()A. 公式B. 公式C. 公式D. 公式解析:要使分式不论x取何实数总有意义,则分母公式恒不为0。
对于二次函数公式,其判别式公式,即公式,解得公式,答案是B。
7. 化简公式的结果是()A. 公式B. 公式C. 公式解析:先化简括号内的式子,公式。
然后将除法转化为乘法,原式公式,答案是C。
8. 已知公式,则公式的值是()A. 公式B. 公式C. 公式D. 公式解析:因为公式,所以公式,答案是A。
9. 某工程队承接了3000米的修路任务,在修好600米后,引进了新设备,工作效率是原来的2倍,一共用30天完成了任务。
求引进新设备前平均每天修路多少米?设引进新设备前平均每天修路x米,则所列方程正确的是()A. 公式B. 公式C. 公式D. 公式解析:已知引进新设备前平均每天修路x米,修好600米所用时间为公式天。
2020-2021学年八年级数学北师大版下册第五章《分式与分式方程》竞赛题 学校:___________姓名:___________班级:___________考号:___________ 一,单项选择题(本大题共8小题)1.当x 分别取2020、2018、2016、…、2、0、12、14、…、12016、12018、12020时,计算分式11x x -+的值,再将所得结果相加,其和等于( ) A .1-B .1C .0D .2020【答案】A【分析】 先把互为倒数的两个数代入并求和,得0,再把没有倒数的0代入即可.【详解】解:把2020代入11x x -+,得20192021, 把12020代入11x x -+,得20192021-,相加得零, 设x=a (a≠0)代入11x x -+,得11a a -+, 把x=1a 代入11x x -+,得11a a --+, 故互为倒数的两个数代入分式后,和为0,把0代入11x x -+,得-1, 故选:A .【点睛】本题考查了分式求值运算和数字规律,解题关键是通过计算发现互为倒数的两个数代入分式后,和为0.2.若关于x 的不等式组()3222x x a x x ⎧-->-⎪⎨+<⎪⎩有解,关于y 的分式方程13244ay y y -+=---有整数解,则符合条件的所有整数a 的和为( ) A .0 B .1 C .2D .5【答案】B【分析】先解不等式组,由不等式组有解,可得a <4,再解分式方程,当2a ≠且1a ≠时,分式方程的解为:4,2y a =--再由,y a 为整数,分类讨论可得答案. 【详解】 解:()3222x x a x x ⎧-->-⎪⎨+<⎪⎩①② 由①得:36x x -+>2,-2x ∴->8,-x \<4,由②得:a x +<2,xx \>,a关于x 的不等式组()3222x x a x x ⎧-->-⎪⎨+<⎪⎩有解, a ∴<4,13244ay y y -+=---Q , ()1324,ay y ∴--=--24,ay y ∴-=-()24,a y ∴-=-当2a =时,方程无解,则2,a ≠44,22y a a -∴==--- 检验:40,y -≠440,2a ∴--≠- 44,2a ∴≠-- 21,a ∴-≠-1,a ∴≠,y a 为整数,21a ∴-=± 或22a -=±或24,a -=±3a ∴=或1a =或4a =或0a =或6a =或2,a =-a ∴<4, 2,a ≠1,a ≠∴ 3a =或0a =或 2.a =-经检验:3a =或0a =或2a =-符合题意,()302 1.∴++-=故选:.B【点睛】本题考查的是一元一次不等式组的解法,分式方程的解法,分类讨论数学思想,掌握以上知识是解题的关键.3.一支部队排成a 米长队行军,在队尾的战士要与最前面的团长联系,他用t 1分钟追上了团长、为了回到队尾,他在追上团长的地方等待了t 2分钟.如果他从最前头跑步回到队尾,那么他需要的时间是( )A .1212t t t t +分钟B .12122t t t t +分钟 C .12122t t t t +分钟 D .12122t t t t +分钟 【答案】C【分析】 根据题意得到队伍的速度为2a t ,队尾战士的速度为12a a t t +,可以得到他从最前头跑步回到队尾,那么他需要的时间是122aa a a t t t ++,化简即可求解 【详解】 解:由题意得:12212122t a a a a t t t t t t =+++分钟. 故选:C【点睛】本题考查了根据题意列分式计算,理解题意正确列出分式是解题关键.4.已知113x y -=,则分式5xy 5xy y x y x+---的值为( ) A .8B .72C .53-D .4【答案】A【分析】 由113x y-=,得3y x xy -=,3x y xy -=-.代入所求的式子化简即可. 【详解】 解:由113x y-=,得3y x xy -=, ∴555()15168()32y xy x y x xy xy xy xy y xy x y x xy xy xy xy+--++====-----. 故选:A .【点睛】本题解题关键是用到了整体代入的思想.5.对于任意的x 值都有227221x M N x x x x +=++-+-,则M ,N 值为( ) A .M =1,N =3B .M =﹣1,N =3C .M =2,N =4D .M =1,N =4 【答案】B【分析】 先计算21M N x x ++-=()()222M N x M N x x ++-++- ,根据已知可得关于M 、N 的二元一次方程组227M N M N +⎧⎨-+⎩== ,解之可得. 【详解】 解:21M N x x ++- =()()()()1221M x N x x x -+++-=()()222M N x M N x x ++-++- ∴2272x x x ++-=()()222M N x M N x x ++-++- ∴227M N M N +⎧⎨-+⎩==, 解得:13M N -⎧⎨=⎩=, 故选B .【点睛】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减法则,并根据已知等式得出关于M 、N 的方程组.6.如果2220x x +-=,那么代数式214422x x x x x x -+⋅--+的值为( ) A .2-B .1-C .1D .2【答案】A【分析】 由2220x x +-=可得222x x +=,再化简214422x x x x x x -+⋅--+,最后将222x x +=代入求值即可.【详解】解:由2220x x +-=可得222x x +=214422x x x x x x -+⋅--+ =()22122x x x x x -⋅--+ =22x x x x --+ =()()22422x x x x x x --++ =242x x-+=42- =-2故答案为A .【点睛】本题考查了分式的化简求值,正确化简分式以及根据2220x x +-=得到222x x +=都是解答本题的关键.7.当4x =-的值为( ) A .1BC .2D .3【答案】A【分析】 根据分式的运算法则以及二次根式的性质即可求出答案.【详解】解:原式= 将4x =代入得,原式===1=.故选:A.【点睛】本题考查分式的运算以及二次根式的性质,解题的关键是熟练运用分式的运算法则以及观察出分母可以开根号,本题属于较难题型.8.已知13x x +=,则2421x x x ++的值是( ) A .9B .8C .19D .18【答案】D【分析】 根据13x x += 可知21()9x x += 即2217x x += ,把2421x x x ++ 分子、分母同时除以2x 得2217x x += ,把2217x x +=代入即可. 【详解】 由13x x +=得21()9x x+=,即2217x x += 2421x x x ++=22111x x++, 把2217x x +=代入得22111x x ++=11178=+ , 故选D【点睛】本题考查利用恒等变形求分式的值,利用分式的性质,找到可以等量代换的代数式是解题关键.二、填空题(本大题共6小题)9.关于x 的分式方程11211a x x-+=--的解为正数,则a 的取值范围是________ . 【答案】4a <且2a ≠.【分析】去分母,化成整式,计算分母为零时,a 的值,计算方程的解,根据解是正数,转化为不等式,确定a 的范围,最后将分母为零时的a 值除去即可.【详解】 ∵11211a x x-+=--, 去分母,得-1+a-1=2(1-x ),当x=1时,解得a=2;当x≠1时,解得x=42a -, ∵方程的解为正数, ∴42a ->0, ∴a <4,∴a <4且a≠2,故答案为a <4且a≠2.【点睛】本题考查了分式方程的解,探解时,熟练把解转化为相应的不等式,同时,把分母为零对应的值扣除是解题的关键.10.若240x y z -+=,4320x y z +-=.则222xy yz zx x y z ++++的值为______ 【答案】16-【分析】先由题意2x−y+4z=0 ,4x+3y−2z=0,得出用含x 的式子分别表示y ,z ,然后带入要求的式中,化简便可求出.【详解】2x-y+4z= 0①,4x+3y- 2z= 0②,将②×2得: 8x+ 6y-4z=0③. ①+③得: 10x+ 5y= 0,∴y= -2x ,将y= - 2x 代入①中得:2x- (-2x)+4z=0∴z=-x将y= -2x ,z=-x ,代入上式 222xy yz zx x y z ++++ =()()()()()()222·22?·2x x x x x x x x x -+--+-+-+-=222222 224x x x x x x -+-++=22 6 x x -=1 6 -故答案为:1 6 -【点睛】本题考查了分式的化简求值,解题的关键是根据题目,得出用含x的式子表示y,z.本题较难,要学会灵活化简.11.已知三个数,x,y,z满足443,,33xy yz zxx y y z z x=-==-+++,则y的值是______【答案】12 7【分析】将443,,33xy yz zxx y y z z x=-==-+++变形为133,,344x y y z z xxy yz zx+++=-==-,得到111113113,,344y x z y x z+=-+=+=-,利用11113()()2z y x z+-+=,求出1132x y=-,代入1113y x+=-即可求出答案.【详解】∵443,,33 xy yz zxx y y z z x=-==-+++,∴133,,344x y y z z xxy yz zx+++=-==-,∴111113113,,344y x z y x z+=-+=+=-,∴11113 ()()2z y x z+-+=,得1132y x -=, ∴1132x y =-, 将1132x y =-代入1113y x +=-,得276y =, ∴y=127, 故答案为:127. 【点睛】 此题考查分式的性质,分式的变形计算,根据分式的性质得到111113113,,344y x z y x z +=-+=+=-是解题的关键. 12.已知方程11x c x c +=+(c 是常数,0c ≠)的解是c 或1c ,那么方程2131462a a x x a+++=-(a 是常数,且0a ≠)的解是________. 【答案】32a +或312a a + 【分析】 观察方程:11x c x c+=+(c 是常数,c≠0)的特点,发现此方程的左边是未知数与其倒数的和,方程右边的形式与左边的形式完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接求解.本题需要将方程x +2131462a a x a++=- 变形,使等号左边未知数的系数变得相同,等号右边的代数式可变为31222a a ++.为此,方程的两边同乘2,整理后,即可写成方程11x c x c+=+的形式,从而求出原方程的解. 【详解】 将2131462a a x x a+++=- 整理得 112323x a x a+=++-, 即112323x a x a -+=+-,所以23x a -=或1a , 故答案为:32a x +=或312a a +. 【点睛】 本题考查了阅读理解能力与知识的迁移能力.关键在于将所求方程变形为已知方程的形式.难点是方程左边含未知数的项的系数不相同.13.对于两个不相等的实数,a b ,我们规定符号max{,}a b 表示,a b 中的较大值,如:{}max 2,44=,故{}max 3,5=__________;按照这个规定,方程{}21max ,x x x x--=的解为__________.【答案】5 1-1【分析】 按照规定符号可求得{}max 3,5=5;根据x 与x -的大小关系化简所求方程,求出解即可.【详解】{}max 35=,5;故答案为:5;当x x >-,即0x >时,方程化简得:21x x x -=, 去分母得:221x x =-,整理得:2210x x -+=,即()210x -=解得:1x =,经检验:1x =是分式方程的解;当x x <-,即0x <时,方程化简得:21x x x--=, 去分母得:221x x -=-,整理得:2210x x +-=,解得:1x =-+不合题意,舍去)或1-经检验:1x =-故答案为:1-1.【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.弄清题中的新定义是解本题的关键. 14.设有三个互不相等的有理数,既可表示为-1,a +b ,a 的形式,又可表示为0,-b a,b 的形式,则20192020-a b 的值为____. 【答案】-1【分析】由题意三个互不相等的有理数,既可表示为-1、+a b 、a 的形式,又可表示为0、b a-、b 的形式,可知这两个三数组分别对应相等.从而判断出a 、b 的值.代入计算出结果. 【详解】 解:三个互不相等的有理数,既可表示为-1、+a b 、a 的形式,又可表示为0、b a -、b 的形式,∴这两个三数组分别对应相等.a b ∴+、a 中有一个是0,由于b a有意义,所以0a ≠, 则0a b +=,所以a 、b 互为相反数. ∴1b a=-, ∴1b a -= ∴1b =-,1a =.∴()2019202011111-=-=--. 故答案是:-1.【点睛】本题考查了有理数的概念,分式有意义的条件,有理数的运算等相关知识,理解题意是关键.三、解答题(本大题共4小题)15.解方程组:113311x x y x x y⎧+=⎪+⎪⎨⎪-=⎪+⎩.【答案】10.5x y =⎧⎨=-⎩.【分析】 设1a x=,1b x y =+,把原方程组转化为二元一次方程组,求解后,再解分式方程即可.【详解】 解:设1a x=,1b x y =+, 则原方程组化为:331a b a b +=⎧⎨-=⎩①②, ①+②得:44a =,解得:1a =,把1a =代入①得:13+=b ,解得:2b =, 即1112x x y⎧=⎪⎪⎨⎪=+⎪⎩, 解得:10.5x y =⎧⎨=-⎩, 经检验10.5x y =⎧⎨=-⎩是原方程组的解, 所以原方程组的解是10.5x y =⎧⎨=-⎩. 【点睛】本题考查了换元法解方程组,解题关键是抓住方程组的特征,巧妙换元,熟练的解二元一次方程组和分式方程,注意:分式方程要检验.16.(1)先化简:23111x x x x x x ⎛⎫-÷⎪-+-⎝⎭,再从1-,0,1,2中取一个你喜欢的数代入求值.(2)已知12x x-=,求221x x +,1x x +. 【答案】(1)8;(2)6;±【分析】(1)原式括号中两项通分并利用异分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x=0代入计算即可求出值.(2)将已知等式两边平方,利用完全平方式展开,即可求出所求式子的值.【详解】解:(1)23111x x x x x x ⎛⎫-÷ ⎪-+-⎝⎭ =(3(1)(1)(1)(1)(1)(1)x x x x x x x x +---+-+)÷2x 1x - =2224-1x x x +21x x- =24x +∵ 21x - ≠0,0x ≠∴x ≠1或x ≠-1,0x ≠当x=2时,原式=4+4=8.(2)12x x -= 21x 4x ⎛⎫= ⎪⎝⎭-41222=+-x x 2216x x +=; 21x x ⎛⎫ ⎪⎝⎭+ =221x 2x ++=8 1xx+=±【点睛】本题考查了分式的化简求值和完全平方式,熟练掌握公式和运算法则是解题的关键. 17.阅读下面材料:在分式中,对于只含有一个字母的分式,当分子的次数大于或等于分母的次数时,我们称之为“假分式”,例如:11x x -+,21x x -这样的分式就是假分式;当分子的次数小于分母的次数时,我们称之为“真分式”,例如:31x +,221x x +这样的分式就是真分式.我们知道,假分数可以化为带分数,例如:86222223333+==+=,类似地,假分式也可以化为“带分式”(即整式与真分式的和的形式)参考上面的方法解决下列问题:()1将分式11x x -+,422311x x x +-+化为带分式. ()2当x 取什么整数值时,分式212x x -+的值也为整数? 【答案】(1)112x +-,22321x x +-+;(2)1x =-,3,3-,7-时,分式的值也为整数.【分析】(1)两式根据材料中的方法变形即可得到结果;(2)原式利用材料中的方法变形,即可确定出分式的值为整数时整数x 的值.【详解】解:(1)12111222x x x x x --+==+---, 42222222231(1)2(1)332111x x x x x x x x x +-+++-==+-+++; (2)212(2)552222x x x x x -+-==-+++, 当21x +=,即1x =-;当25x +=,即3x =;当21x +=-,即3x =-;当25x +=-,即7x =-,综上,1x =-,3,3-,7-时,分式的值也为整数.【点睛】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.18.对于平面直角坐标系xOy 中的点(), P a b ,若点P'的坐标为 ,b a ka b k 骣çè+ç+÷÷ø(其中k 为常数,且0k ≠),则称点P'为点P 的“k 之雅礼点”.例如:()1, 4P 的“2之雅礼点”为4'12142()P +?,,即()'3, 6P . (1)①点()1,3P --的 “3之雅礼点”P'的坐标为___________; ②若点P 的“k 之雅礼点” P'的坐标为()2, 2,请写出一个符合条件的点P 的坐标_________;(2)若点P 在x 轴的正半轴上,点P 的“k 之雅礼点”为P'点,且'OPP D 为等腰直角三角形,则k 的值为____________;(3)在(2)的条件下,若关于x 的分式方程32233x mx k x x-++=--无解,求m 的值. 【答案】(1)①()2,6--; ②()1, 1;(2)±1;(3)3m =-或53m =-或1m =-. 【分析】(1)①只需把133a b k =-=-=,,代入 ,b a ka b k 骣çè+ç+÷÷ø即可求出P′的坐标;②由P′(2,2)可求出k=1,从而有a+b=2.任取一个a 就可求出对应的b ,从而得到符合条件的点P 的一个坐标.(2)设点P 坐标为(a ,0),从而有P′(a ,ka ),显然PP′⊥OP ,由条件可得OP=PP′,从而求出k .(3)分1k =和1k =-两种情况,根据方程无解求出m 的值即可.【详解】(1)①∵把133a b k =-=-=,,代入 ,b a ka b k 骣çè+ç+÷÷ø, 得()2,6--,∴P′的坐标为()2,6--;②令k=1,把k=1代入 ,b a ka b k 骣çè+ç+÷÷ø得到a+b=2,当a=1时,b=1,所以点P 的一个坐标()1, 1;(2)∵点P 在x 轴的正半轴上,∴b=0,a >0∴点P 的坐标为(a ,0),P′(a ,ka ),∴PP′⊥OP ,∵'OPP D 为等腰直角三角形,∴OP=PP′,∴a=ka ,±∵a >0,∴k=1±;(3)当1k =时,去分母整理得:()34m x += ∴原方程无解∴①3m =-②3x =,则53m =- 当1k =-时,去分母整理得: ()12m x +=-原方程无解∴①1m =-②3x =,则53m =- 综上,3m =-或53m =-或1m =-. 【点睛】本题考查了坐标系的新定义问题,读懂题目信息,理解“k 之雅礼点”的定义是解题的关键.。
专题07分式综合特训(压轴30题)一.选择题(共2小题)1.如果关于x 的不等式组有且仅有四个整数解,且关于y 的分式方程﹣=1有非负数解,则符合条件的所有整数m 的和是()A .13B .15C .20D .222.已知方程﹣a =,且关于x 的不等式组只有4个整数解,那么b 的取值范围是()A .﹣1<b ≤3B .2<b ≤3C .8≤b <9D .3≤b <4二.填空题(共10小题)3.已知a ,b ,c 是不为0的实数,且,那么的值是.4.(1)已知,则=;(2)已知,则=.5.有正整数x <y <z ,且k 为整数,,则(y +z )x =.6.已知abc ≠0,且,则的值是或.7.某校在“3.12”植树节来临之际,特从初一、初二、高一、高二四个年级中抽调若干学生去植树.已知初一、初二抽调的人数之比为5:3,高一、高二抽调的人数之比为4:3.上午,初一、高一年级平均每人植树的棵数相同且大于3棵小于10棵,高二年级平均每人植树的棵数为初一、初二平均每人植树的棵数之和的2倍,上午四个年级平均每人植树的棵数总和大于30棵小于40棵,上午四个年级一共植树714棵.下午,初二年级因为要回校参加活动不再参与植树活动,高一、高二年级平均每人植树的棵数都有所降低,高一年级平均每人植树的棵数降低50%,高二年级平均每人植树的棵数降为原来的.若初一年级人数及人均植树的棵数不变,高一高二年级人数不变,且四个年级平均每人植树的棵数为整数,则四个年级全天一共植树棵.8.已知a2﹣3a﹣1=0,求a6+120a﹣2=.9.一个容器装有1升水,按照如下要求把水倒出:第1次倒出升水,第2次倒出的水量是升的,第3次倒出的水量是升的,第4次倒出的水量是升的,…按照这种倒水的方法,倒了10次后容器内剩余的水量是.10.式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和,由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1+2+3+4+5+…+100”表示为,这里的符号“”是求和的符号,如“1+3+5+7+…+99”即从1开始的100以内的连续奇数的和,可表示为.通过对以上材料的阅读,请计算:=(填写最后的计算结果).11.a是不为1的有理数,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是.已知a1=3,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,以此类推,则a2012=.12.对于正数x,规定,例如:,,则=.三.解答题(共18小题)13.先化简,再求值:+÷,其中x=3.14.巴西世界杯正在激战中,周六晚上小明打算和朋友乘出租车去某大型酒吧观看世界杯,有两条路线可供选择:路线一的全程25千米,但交通比较拥堵,路线二的全程是30千米,平均速度比走路线一时的平均速度能提高80%,因此能比走路线一少用10分钟到达.求小明走路线一时的平均速度.15.如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”.(1)下列分式:①;②;③;④.其中是“和谐分式”是(填写序号即可);(2)若a为正整数,且为“和谐分式”,请写出a的值;(3)在化简时,小东和小强分别进行了如下三步变形:小东:==小强:==显然,小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是:,请你接着小强的方法完成化简.15.解关于x的方程﹣=时产生了增根,请求出所有满足条件的k 的值.17.某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了9200元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的2倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店按照进价提高m%标价,要使利润不低于10920,请问m最少是多少?18.定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“和谐分式”.如:==+=1+,==+=2+,则和都是“和谐分式”.(1)下列式子中,属于“和谐分式”的是(填序号);①;②;③;④(2)将“和谐分式”化成一个整式与一个分子为常数的分式的和的形式为:=+;(3)应用:先化简﹣÷,并求x取什么整数时,该式的值为整数.19.为改善南宁市的交通现状,市政府决定修建地铁,甲、乙两工程队承包地铁1号线的某段修建工作,从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的3倍;若由甲队先做20天,剩下的工程再由甲、乙两队合作10天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为15.6万元,乙队每天的施工费用为18.4万元,工程预算的施工费用为500万元,为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,那么工程预算的施工费用是否够用?若不够用,需增加多少万元?20.已知=++,试求A+B+2C的值.21.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B 款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?22.先阅读下列解法,再解答后面的问题.已知=+,求A、B的值.解法一:将等号右边通分,再去分母,得:3x﹣4=A(x﹣2)+B(x﹣1),即:3x﹣4=(A+B)x﹣(2A+B),∴.解得.解法二:在已知等式中取x=0,有﹣A+=﹣2,整理得2A+B=4;取x=3,有+B=,整理得A+2B=5.解,得:.(1)已知,用上面的解法一或解法二求A、B的值.(2)计算:[](x+11),并求x取何整数时,这个式子的值为正整数.23.已知a+a﹣1=3,求a4+的值.24.对于正数x,规定:f(x)=.例如:f(1)==,f(2)==,f()==.(1)求值:f(3)+f()=;f(4)+f()=;(2)猜想:f(x)+f()=,并证明你的结论;(3)求:f()+f()+…+f()+f(1)+f(2)+…+f(2016)+f(2017)的值.25.某工厂承接了一批纸箱加工任务,用如图1所示的长方形和正方形纸板(长方形的宽与正方形的边长相等)加工成如图所示的竖式与横式两种无盖的长方形纸箱.(加工时接缝材料不计)(1)该工厂原计划用若干天加工纸箱200个,后来由于对方急需要货,实际加工时每天加工速度时原计划的1.5倍,这样提前2天超额完成了任务,且总共比原计划多加工40个,问原计划每天加工纸箱多少个;(2)若该厂购进正方形纸板1000张,长方形纸板2000张.问竖式纸盒,横式纸盒各加工多少个,恰好能将购进的纸板全部用完.26.观察下面的变形规律:=﹣;=﹣;=;…解答下面的问题:(1)若n为正整数,若写成上面式子形式,请你猜想=;(2)说明你猜想的正确性;(3)计算:+++…+=;(4)解关于n的分式方程:+++…+=.27.阅读下面材料,并解答问题.材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解:由分母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=2,b=1∴==+=x2+2+这样,分式被拆分成了一个整式x2+2与一个分式的和.解答:(1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式.(2)试说明当﹣1<x<1时,的最小值为10.28.学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?29.已知=3,求分式的值.30.列方程解应用题:某一工程进行招标时,接到了甲、乙两个工程队的投标书,施工1天需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:方案(1):甲工程队单独完成这项工程,刚好如期完成;方案(2):乙工程队单独完成这项工程,要比规定日期多5天;方案(3):若甲、乙两队合作4天,余下的工程由乙工程队单独做,也正好如期完成;如果工程不能按预定时间完工,公司每天将损失3000元,在不耽误工期的情况下,你觉得哪种方案最省钱?请说明理由.。
八年级数学竞赛专题训练试卷(二)因式分解与分式一、选择题(每小题4分,共40分)1.已知a 2+b 2+4a -2b+5=0,则a b a b+-的值为 ( ) (A)3 (B)13 (C)-3 (D)13- 2.a 4+4分解因式的结果是 ( )(A)(a 2+2a -2)(a 2-2a+2) (B)(a 2+2a -2)(a 2-2a -2)(C)(a 2+2a+2)(a 2-2a -2) (D)(a 2+2a+2)(a 2-2a+2)3.下列五个多项式:①ab -a -b -1;②(x -2) 2+4x ;③3m(m -n)+6n(n -m );④x 2-2x -1;⑤6a 2-13ab+6b 2,其中在有理数范围内可以进行因式分解的有 ( )(A)1个 (B)2个 (C)3个 (D)4个4.a ,b ,c 为△ABC 的三边且3a 3+6a 2b -3a 2c -6abc=0,则△ABC 的形状为 ( )(A)直角三角形 (B)等腰三解形(C)等腰直角三角形 (D)等腰三角形或直角三角形5.a ,b ,c 是正整数,a >b >c ,且a 2-ab -ac+bc=7,则b -c 等于 ( )(A)1 (B)6 (C)土6 (D)1或76.若x 取整数,则使分式6321x x +-的值为整数的x 的值有 ( ) (A)3个 (B)4个 (C)6个 (D)8个7.已知x 2+ax -18能分解成两个整系数的一次因式的乘积,则符合条件的整数a 的个数是( )(A)3个 (B)4个 (C)6个 (D)8个8.若a=20092+20092×20102+20102,则n ( )(A)是完全平方数,还是奇数 (B)是完全平方数。
还是偶数(C)不是完全平方数,但是奇数 (D)不是完全平方数,但是偶数9.设有理数a ,b ,c 都不为零,且a+b+c=0,则222222222111b c a c a b a b c +++-+-+- 的值是 ( )(A)正数 (B)负数 (C)零 (D)不能确定10.当x 分别取值12007,12006,12005,…,12,1,2,…,2005,2006,2007时,计算代数式2211x x -+的值,将所得的结果相加,其和等于 ( ) (A)-1 (B)1 (C)0 (D)2007二、填空题(每小题4分,共40分)11.因式分解:4a 2-4b 2+4bc -c 2=_________.12.已知a 、b 为实数,且ab=1,a ≠1,设11a b M a b =+++,1111N a b =+++,则M -N 的值等于_________.13.若多项式x 3+ax 2+bx 能被(x -)和(x+4)整除,那么a=________,b=_________.14.整数a ,b 满足6ab -9a+10b=303,则a+b=_________.15.k 取________时,方程2211x k x x x x x+-=++会产生增根. 16.已知15a b +=-,a+3b=1,则22331295a ab b +++的值为__________. 17.分解因式:x 4-x 3+4x 2+3x+5=________.18.分解因式:x 2-2xy -8y 2-x -14y -6=_________.19.分解因式:24x 2-1507x -337842=_________.20.已知abc=1,a+b+c=2,a 2+b 2+c 2=3,则111111ab c bc a ca b +++-+-+-的值为_________.三、解答题(21题满分10分,22题、23题每题满分15分,共40分)21.解方程:(1)(x+1)(x+3)(x+5)(x+7)+15=0.(2)()()()()()111511291012x x x x x x ++=+++++…+.22.已知:3(a2+b2+c2)=(a+b+c) 2,求证:a=b=c.23.小明在计算中发现:1×2×3×4+1=52,2×3×4×5+1=112,3×4×5×6+1=192,…由此他做出猜想:四个连续正整数的乘积加1必为平方数.你认为他的猜想正确吗?试说明理由.参考答案一、选择题1.B 2.D 3.B 4.B 5.B 6.B 7.C 8.A 9.C 10.C二、填空题11.原式=(2a+2b -c)(2a -2b+c).12.M -N=0.13.a=1,b=12.14.a+b=15.15.k=-1或k=2时方程有增根.16.0.17.x 4-x 3+4x 2+3x+5=(x 2+x+1)(x 2-2x+5).18.原式=x 2-(2y+1)x -(8y 2+14y -6)=x 2-(2y+1)x -2(4y+3)(y+1)=(x -4y -3)(x+2y+2).19.原式=(3x+274)(8x -1233).20.23- 三、解答题21.(1)原方程可整理成:(x 2+8x+7)(x 2+8x+15)+15=0.将(x 2+8x)看成整体,则有(x 2+8x) 2+22(x 2+8x)+120=0.∴(x 2+8x+12)(x 2+8x+10)=0,即x 2+8x+12=0或x 2+8x+10=0,解得x 1=-2,x 2=-6,34x =-44x =-(2)原方程可写成:1111115112x+91012x x x x x -+-+-=++++…+, 即1151012x x -=+,去分母,整理得x 2+10x 24=0, 解得x 1=12,x 2=2,且经检验是原方程的解.22.∵3(a 2+b 2+c 2)=(a+b+c) 2,∴3a 2+3b 2+3c 2=a 2+b 2+c 2+2ab+26c+2ca .∴(a 2-2ab+b 2)+(b 2-2bc+c 2)+(c 2-2ca+a 2)=0.即(a -b ) 2+(b -c) 2+(c -a) 2=0.∴a -b =0且b -c=0且c -a=0,∴a =b =c .23.猜想正确.设四个连续正整数为n ,(n+1),(n+2),(n+3)(其中n 为正整数), n(n+1)(n+2)(n+3)+l=(n 2+3n)(n 2+3n+2)+1=(n 2+3n) 2+2(n 2+3n)+1=[(n 2+3n)+1] 2∴四个连续正整数的乘积加1必为平方数.。
1.在x 1、21、212+x 、πxy 3、y
x +3、m a 1+中分式的个数有( )
A 、2个
B 、3个
C 、4个
D 、5个
2.当分式
2
3x -无意义时,x=______ 3.若12
13
x x x x +-÷--有意义,则x 的取值范围是______ 4.用科学记数法表示—0.000 000 0314= . 5.已知13x x
+=,则分式22
1
x x +
= 6.下列函数中,是反比例函数的是( ) A.y=x-1 B.2
8x y = C.x y 21= D.2=x y
7.若函数x
k y 1
-=
(k ≠1)在每一象限内,y 随x 的增大而减小,则k 的取值范围是( )
A. k 〉1
B. k 〈1
C. k>0
D. k<0 8.请写出满足:在每一象限内,y 随x 的增大而增大的反比例函数解析式
9.点(1,6)在双曲线k y x
=上,则k= 10.若函数()2
10
3k
y k x -=+是反比例函数,则常数k=
11.如果点(2,3)和(-3,a )都在反比例函数x
k y =的图象上,则a= . 12.将点p(5,3)向下平移1个单位后,落在函数k
y x
=的图象上,则k 的值为
13.已知点A ()12,y -,B ()21.5,y -和C ()31,y 都在反比例函数2y x
=-的图象上,则1y ,2y ,3y 的大小关系是
14.下列几组数中,不能作为直角三角形三边长度的是( );
A 、1.5,2,2.5
B 、3,4,5
C 、5,12,13
D 、20,30,40
15.直角三角形一直角边为cm 12,斜边长为cm 13,则它的面积为 .
16.在Rt △ABC 中,∠C=90°,若a:b=3:4,c=20,则a= ,b= 。
17.已知一个直角三角形的两边长分别是3和4,则第三边为 。
18.在直角坐标系中,点P (-2,3)到原点的距离是 ( ) (A )5 (B )13 (C )11 (D )2
19.若将直角三角形的两直角边同时扩大2倍,则斜边扩大为原来的( ); A 、2倍 B 、3倍 C 、4倍 D 、5倍 20.如果正方形ABCD 的面积为9
2
,则对角线AC 的长度为( ); A 、3
2
B 、9
4 C 、
3
2
D 、92
21.如图,在Rt △ABC 中,∠C=90°,D 为AC 上一点,
且DA=DB=5,又△DAB 的面积为10,那么DC 的长是( ) A 、4
B 、3
C 、5
D 、4.5
22.如图,一圆柱高8cm ,底面半径2cm ,一只蚂蚁从点A 爬 到点B 处吃食,要爬行的最短路程( 取3)是( ). A. 20cm B. 10cm C. 14cm D. 无法确定
23.直角三角形的两直角边分别为5、12,则斜边上的高为______. 24.木工做一个长方形桌面,量的它的长为60cm,宽为40cm,对角线为70cm,这个桌面 (合格或不合格或无法判断)
25.利用图(1)或图(2)两个图形中的有关面积的等量关系都能证明数学中一个十分著名的定理,这个定理称为 ,该定理的结论其数学表达式是 .
A
C
B
D。