八年级(上)数学竞赛试题及答案(新人教版)
- 格式:doc
- 大小:464.50 KB
- 文档页数:5
八年级(上)数学竞赛试卷考试时间:100分钟 总分:100分一、精心填一填(本题共10题,每题3分,共30分)1.函数a 的取值范围是_____________、2.如图1,∠1=∠2,由AAS 判定△ABD ≌△ACD ,则需添加的条件是____________. 3.计算:20072-2006×2008=_________图1 图24、写出一个图象经过点(-1,-1),且不经过...第一象限的函数表达式 5.已知点P 1(a-1,5)和P 2(2,b-1)关于x 轴对称,则(a+b )2005的值为 .6.如图2,△ABC 中边AB 的垂直平分线分别交BC 、AB于点D 、E ,AE=3cm ,△ADC•的周长为9cm ,则△ABC 的周长是_______7.如图3,AE =AF ,AB =AC ,∠A =60°,∠B =24°,则∠BOC =__________.8、如图4,在△ABC 中,AB=AC ,∠A=36°,BD 、CE 分别为∠ABC 与∠ACB 的角平分线,且相交于点F ,则图中的等腰三角形有 个。
9.如果用四则运算的加、减、除法定义一种新的运算,对于任意实数x 、y 有y x y x y x -+=* 则()()31*191211**=10.如图5所示,圆的周长为4个单位长度,在圆的4等分点处标上0,1,2,3.先让圆周上数字0所对应的数与数轴上的数-1所对应的点重合,再让数轴按逆时针方向绕在该圆上,那么数轴上的数-2007将与圆周上的数字_________重合.FEDACB图 5图4 二、相信你一定能选对!(本题共6题,每题3分,共18分) 11.下列各式成立的是( )A .a-b+c=a-(b+c )B .a+b-c=a-(b-c )C .a-b-c=a-(b+c )D .a-b+c-d=(a+c )-(b-d ) 12.已知一次函数y=kx+b 的图象(如图6),当y <0时,x 的取值范围是( )(A )x >0 (B )x <0 (C )x <1 (D )x >1A B C D12 AEBO F C图3图6 图713.在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是 ( )A.∠AB.∠BC.∠CD.∠B 或∠C 14.某校八(2)班的全体同学喜欢的球类运动用图7所示的扇形统计图来表示,下面说法正确的是( ) A 、从图中可以直接看出喜欢各种球类的具体人数; B 、从图中可以直接看出全班的总人数;C 、从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况;D 、从图中可以直接看出全班同学现在喜欢各种球类的人数的大小关系 15.已知一次函数y=mx+│m+1│的图像与y 轴交于点(0,3),且y 随x 的增大而减小,则m 的值为( ). A .2 B .-4 C .-2或-4 D .2或-416.设y=ax 15+bx 13+cx 11-5(a 、b 、c 为常数),已知当x=7时,y=7,则x= -7时,y 的值等于( )A 、-7B 、-17C 、17D 、不确定 三、认真解答,一定要细心哟!(各6分,共18分) 17. 先化简再求值:[]y y x y x y x 4)4()2)(2(2÷+--+,其中x =5,y=2。
人教版 八年级数学上册 竞赛专题:分式方程(含答案)【例1】 若关于x 的方程22x ax +-=-1的解为正数,则a 的取值范围是______.解题思路:化分式方程为整式方程,注意增根的隐含制约.【例2】 已知()22221111x x A B Cx x x x x +-=++--,其中A ,B ,C 为常数.求A +B +C 的值.解题思路:将右边通分,比较分子,建立A ,B ,C 的等式.【例3】解下列方程: (1)596841922119968x x x x x x x x ----+=+----; (2)222234112283912x x x x x x x x ++-+=+-+; (3)2x +21x x ⎛⎫⎪+⎝⎭=3.解题思路:由于各个方程形式都较复杂,因此不宜于直接去分母.需运用解分式问题、分式方程相关技巧、方法解.【例4】(1)方程18272938x x x x x x x x +++++=+++++的解是___________. (2)方程222111132567124x x x x x x x ++=+++++++的解是________.解题思路:仔细观察分子、分母间的特点,发现联系,寻找解题的突破口.【例5】若关于x 的方程2211k x kx x x x x+-=--只有一个解,试求k 的值与方程的解. 解题思路:化分式方程为整式方程,解题的关键是对原方程“只有一个解”的准确理解,利用增根解题.【例6】求方程11156x y z ++=的正整数解. 解题思路:易知,,x y z 都大于1,不妨设1<x ≤y ≤z ,则111x y z≥≥,将复杂的三元不定方程转化为一元不等式,通过解不等式对某个未知数的取值作出估计.逐步缩小其取值范围,求出结果.能力训练A 级1.若关于x 的方程1101ax x +-=-有增根,则a 的值为________. 2.用换元法解分式方程21221x x x x --=-时,如果设21x x-=y ,并将原方程化为关于y 的整式方程,那么这个整式方程是___________. 3.方程2211340x x x x ⎛⎫+-++= ⎪⎝⎭的解为__________. 4.两个关于x 的方程220x x --=与132x x a=-+有一个解相同,则a =_______.5.已知方程11x a x a+=+的两根分别为a ,1a ,则方程1111x a x a +=+--的根是( ). A .a ,11a - B .11a -,1a - C .1a ,1a - D .a ,1aa -6.关于x 的方程211x mx +=-的解是正数,则m 的取值范围是( ) A .m >-1 B .m >-1且m ≠0C .m <-1D .m <-l 且m ≠-27.关于x 的方程22x c x c +=+的两个解是x 1=c ,x 2=2c ,则关于x 的方程2211x a x a +=+--的两个解是( ) . A .a ,2a B .a -1,21a - C .a ,21a - D .a ,11a a +- 8.解下列方程:(1)()2221160x x x x+++-=; (2)2216104933x x x x ⎛⎫+=-- ⎪⎝⎭.9.已知13x x+=.求x 10+x 5+51011x x +的值.10.若关于x 的方程2211k x kx x x x x+-=--只有一个解(相等的两根算作一个),求k 的值.11.已知关于x 的方程x2+2x +221022m x x m-=+-,其中m 为实数.当m 为何值时,方程恰有三个互不相等的实数根?求出这三个实数根.12.若关于x 的方程()()122112x x ax x x x x ++-=+--+无解,求a 的值.B 级1.方程222211114325671221x x x x x x x x +++=+++++++的解是__________.2.方程222111011828138x x x x x x ++=+-+---的解为__________.3.分式方程()()1112x m x x x -=--+有增根,则m 的值为_________. 4.若关于x 的分式方程22x ax +-=-1的解是正数,则a 的取值范围是______.5.(1)若关于x 的方程2133mx x =---无解,则m =__________. (2)解分式方程225111mx x x +=+--会产生增根,则m =______. 6.方程33116x x x x ⎛⎫+=+ ⎪⎝⎭的解的个数为( ). A .4个 B .6个 C .2个 D .3个7.关于x 的方程11ax =+的解是负数,则a 的取值范围是( ) . A .a <l B .a <1且a ≠0 C .a ≤1 D .a ≤1且a ≠08.某工程,甲队独做所需天数是乙、丙两队合做所需天数的a 倍,乙队独做所需天数是甲、丙两队合做所需天数的b 倍,丙队独做所需天数是甲、乙两队合做所需天数的c 倍,则111111a b c +++++的值是( ).A .1B .2C .3D .49.已知关于x 的方程(a 2-1)()2271011x x a x x ⎛⎫⎛⎫-++= ⎪ ⎪--⎝⎭⎝⎭有实数根.(1)求a 的取值范围;(2)若原方程的两个实数根为x 1,x 2,且121231111x x x x +=--,求a 的值.10.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降. 今年三月份的电脑售价比去年同期每台降价1 000元.如果卖出相同数量的电脑,去年销售额为10万元.今年销售额只有8万元. (1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3 800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元.要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?参考答案例1 a <2且a ≠-4例2 原式右边=22(1)+B(1)(1Ax x x Cx x x --+-)=2222()()211(1)(1)A C x B A x B x x x x x x ++--+-=-- 得2111A C B A B +=⎧⎪-=⎨⎪-=-⎩∴1011,8.A B C =⎧⎪=⎨⎪=-⎩,∴A +B +C =13.例3 (1)x =12314提示:1155(5)(1)(4)(2)191968x x x x -++=++-----.(2)1,2x =,x 3=-1,x 4=-4 提示:令223.4x xy x x +=+-(3)1,2x =提示222222()().111x x x x x x x +=++++例4 (1)原方程化为11111+111+2+9+3+8x x x x --=-+-,即1111+3+2+9+8x x x x -=-,进一步可化为(x +2) (x +3)=(x +8) (x +9),解得x =-112.(2)原方程化为1111111+1+2+2+3+3+4+4x x x x x x x -+-+-=,即12+14x x =+,解得x =2. 例5 原方程化为kx 2-3kx +2x -1=0①,当k =0时,原方程有唯一解x =12;当k ≠0,Δ=5k 2+4(k -1)2>0.由题意知,方程①必有一根是原方程的曾根,即x =0或x =1,显然0不是①的根,故x =1是方程①的根,代入的k =12.∴当k =0或12时,原方程只有一个解. 例6 11113x x y z x <++≤,即1536x x <≤,因此得x =2或3.当x =2时,111x x y <+=511112623y y y -=≤+=,即1123y y<≤,由此可得y =4或5或6;同理,当x =3时,y =3或4,由此可得当1≤x ≤y ≤z 时,(x ,y ,z )共有(2,4,12),(2,6,6),(3,3,6),(3,4,4)4组;由于x ,y ,z 在方程中地位平等,可得原方程组的解共15组:(2,4,12),(2,12,4), (4,2,12),(4,12,2),(12,2,4),(12,4,2),(2,6,6),(6,2,6),(6,6,2),(3,3,6),(3,6,3),(6,3,3),(3,4,4) ,(4,4,3) ,(4,3,4).A 级1.-1 2.y 2-2y -1=0 3.1 4.-8 5.D 6.D 7.D8.(1)12123x x ==-, (2)1226x x ==-,,3,43x =-±9.15250 提示:由x +13x =得2217.x x +=则2211()()21x x x x ++=,得33118x x+=. 于是221()x x+331()126x x +=,得551123x x +=.进一步得1010115127x x +=.故原式=15250.10.k =0或k =12提示:原方程化为kx 2-3kx +2x -1=0,分类讨论. 11.设x +2x =y ,则原方程可化为y 2-2my +m 2-1=0,解得y 1=m +1,y 2=m -1.∵x 2+2x -m -1=0①,x 2+2x -m +1=0②,从而Δ1=4m +8,Δ2=4m 中应有一个等于零,一个大于零.经讨论,当Δ2=0即m =0时,Δ1>0,原方程有三个实数根.将m =0代入原方程,解得12321211.x x x ⎧=-⎪⎪=--⎨⎪=⎪⎩12 原方程“无解”内涵丰富:可能是化得的整式方程无解,亦可能是求得的整式方程的解为増根,故需全面讨论.原方程化为(a+2)x =-3 ① , ∵原方程无解,∴a+2=0或x -1=0,x+2=0,得B 级1. 3或 - 72. x₁=8 , x₁=-1 , x₁=-8 , x₁=1 提示: 令x ²-8=y3. 3 提示:由有増根可得m=0或 m=3,但当 m=0,化为整式方程时无解4. a<2 且 a ≠-45. ⑴ -2 ⑵ -4 或 -106. A7.8. 设甲单独做需要x 天完成,乙单独做需要y 天完成,丙单独做需要z 天完成则.解 . 当a ≠±1时,则Δ≥0,原方程有实数解.由Δ=[-﹙2a+7﹚]²-4﹙a ²-1﹚≥0,解得.21-5,2,21-a 5,-=a 分别别代入①2-= x 1,=x 把 2,-=a 或综上知--==a 0≠1a ∴ 0,≠11 0≠1x 1a 01-a x ∴,111x a: a a x a B 且即且由提示<+-+<⇒<=+=⇒=+1x y +=++a yz yzxz 得⑥⑤④, ⑥11yz x z x y x y ⑤,11yz x z x y x z ④.11yz x z x y yz ∴+++=+++=+++=++c b a 同理可得111111a 1=+++++c b 得,01.01)72(1)t -(a 1,≠,1⑴....9222=-=++-=-a t a t t x x当原方程可化为则设.,?=a , 41-=x 81-=x ∴, 51=1-x 91=1-x 0=1+5-0=1+9-, ?=原方程有实数解时当故或或即或则方程为时即x x t t a 且当综上可知由于解得时但当又,2853-≥,,2853->22±1,22±1=a ,1=t 1,≠t ,2853-≥a a .,22±1≠原方程有实数解时a。
八年级数学比赛试卷(8)1.已知x 13 ,那么多项式 x 3 x 2 7x 5 的值是()xA.11 B.9 C. 7 D.52.设 P 是质数,如有整数对( a,b)知足a b (a)2P,则这样的整数对b,()(a b)共有A.3 对B.4 对C.5 对D.6 对3.骰子相对两面上的数字和为 7,现同时掷出7 颗骰子后,向上7 个面上数字的≠10)的概率相等,那么 a 等于和是 10 的概率与向下 7 个面的数的和是 a(a()A.7B.9C.19D.394.如图在四边形ABCD中,∠ DAB=∠BCD=90°,AB=AD,若这个四边形的面积是 10,则 BC+CD等于A.4 5B.2 10CD()C.4 6 D.8 2A B1 5.线段y a (≤ x ≤,),当a的值由- 1增添到2时,该线段运动所经2 x1 3过的平面地区的面积为()A.6 B.8 C.9 D.106.5 个足球队进行循环赛,规定胜一场得 3 分,输一场得 0 分,平手各得 1 分.比赛结果, 4 个球队分别获取 1 分、 4 分、 7 分、 8 分,那么第 5 个球队起码获取分.7.如图△ ABC中,∠A=96°,延伸BC到 D,∠ ABC的均分线与∠ACD的均分线交于点 A1,∠ 1 的均分线与∠ 1 的均分线交于点2,以此类推,∠ 4 的A BC A CD A A BC均分线与∠A4 的均分线交于点5,则∠ 5 的大小是.CD A A8.如图,一个正三角形被切割成9 个小正三角形,把91 到 99 这九个数分别填入此中,并使与原三角形每边相邻的 5 个小三角形内的数之和均相等,这个和的最大值是.C B1A AA2 E B C D D AF 第 7 题第 8 题第 9 题9.如图,正方形ABCD的边长为 a, E 是 AB 的中点, CF均分∠DCE,交 AD 于 F,则 AF的长为.10.某种运动鞋进价是不超出200 元的整元数,按150%订价,节日优惠销售打9折,交易金额满 1000 元返还 60 元.那么,每笔交易起码双,店家每双能赢利45 元.11.一只猴子在一架共有n 级的梯子爬上爬下,每次或许上涨 18 级,或许降落 10 级.假如它能从地面爬到最上边的一级,而后再回到地面. n 的最小值是多少?12.如图,△ABC中,AB=AC,∠ABC=36°,边的地点,作∠ACE=12°,交 BD 于点 E,连接请说明原因.B AC 绕点 A 逆时针旋转 60°,至 AD AE.试判断△ AEC是什么三角形?DAEC13.如图 1,在一个 7×7的正方形 ABCD网格中,实线将它切割成 5 块,再把这 5 块拼成如图 2,中间会出现一个小孔,假如正方形 ABCD的边长为 a,试计算图2 中小孔的面积.A DB C图1图214.某市对电话费作了调整,原市话费为每3 分钟0.2 元(不足3 分钟按3 分钟计算).调整后,前 3 分钟为 0.2 元,此后每分钟加收 0.1 元(不足 1 分钟按 1 分钟计算).设通话时间 x 分钟时,调整前的话费为 y1元,调整后的话费为 y2元.(1)当 x=4,4.3,5.8 时,计算对应的话费值y1、 y2各为多少,并指出x 在什么范围取值时, y1≤ y2;(2)当 x=m( m>5,m 为常数)时,设计一种通话方案,使所需话费最小.八年级数学比赛试卷(8)答案一.选择题(每题 6 分,共 30 分)1. C 2. D 3. D 4.B 5. A二.填空题(每题 6 分,共 30 分)6.5 7.3 度8.478 9.35 a 10.8三.解答题(每題15 分,共 60 分)211.解: n=26 6 分猴子每次爬行后所处的地点(在梯子中的第几级)18,8,26,16,6,24,14,4,22,12,2,20,10,0 15 分12.△ AEC 是等腰三角形1 分连 CD , ∵ AC 绕点 A 逆时针旋转 60°至 AD 的地点,∴ AD=AC ,∠ CAD=60°则△ ACD 是等边三角形, 5 分 ∴∠ ECD=72°, 7 分∵ AB=AC ,∠ BAC=36°,∴∠ BAC=108°, 9 分∴∠ DAB=168°,∴∠ ABD=∠ADB=6° 11 分∴∠ EDC=54°而∠ CED=180°-∠ EDC-∠ DCE=54° 13 分 ∴ CE=CD=AC 15 分即△ AEC 是等腰三角形13.解:1 a2 1 分49如图,连接 AE ,则S AEF1 2a 4a2 7 7S AED S ADF S AEF ∴GE=6a49∴EM=GM-GE=36a49∴小孔面积S=a(27 a491a 24a 2493a 2498 分36 a) a 2 15 分4914.解:( 1)当 x=4 时, y 1=0.4, y 2=0.31 分 当 x=4.3 时, y 1=0.4, y 2=0.42 分 当 x=5.8 时, y 1=0.4, y 2=0.53 分 当 0< x ≤3 或 x >4 时, y 1≤ y 26 分( 2)参照方案:设 n ≥ 2 且 n 是正整数,通话 m 分钟所需话费为 y 元,①当 3n-1 < m ≤ 3n 时,使所需话费最小的通话方案是:分 n 次拨打,此中( n-1 )次每次通话 3 分钟,一次通话( m-3n+3)分钟, 9 分最小话费是 y=0.2n②当 3n < m ≤ 3n+1 时,使所需话费最小的通话方案是:分 n 次拨打,此中( n-1 )次每次通话 3 分钟,一次通话( m-3n+3)分钟, 12 分最小话费是 y=0.2(n-1)+0.3=0.2n+0.1 ③当 3n+1< m ≤ 3n+2 时,使所需话费最小的通话方案是:分 n 次拨打,此中( n-2 )次每次通话 3 分钟,一次通话 4 分钟,一次通话( m-3n+2)分钟,15 分最小话费是y=0.2(n-2)+0.6=0.2n+0.2 (注:其余切合要求的方案相应给分)。
八年级上数学竞赛练习题含答案文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]八年级(上)数学竞赛题一、选择题1、设x 、y 、z 均为正实数,且满足z x+y <x y+z <yz+x ,则x 、y 、z 三个数的大小关系是( ) A 、z<x<yB 、y<z<xC 、x<y<zD 、z<y<x2、已知a 、b 都是正整数,那么以a 、b 和8为边组成的三角形有( ) A 、3个B 、4个C 、5个D 、无数个3、将一长方形切去一角后得一边长分别为13、19、20、25和31的五边形(顺序不一定按此),则此五边形的面积为( ) A 、680B 、720C 、745D 、7604、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有( ) 个 个 个 个5、设标有A 、B 、C 、D 、E 、F 、G 记号的7盏灯顺次排成一行,每盏灯安装一个开关,现在A 、C 、E 、G 4盏灯开着,其余3盏灯是关的,小岗从灯A 开始,顺次拉动开关,即从A到G,再顺次拉动开关,即又从A到G,…,他这样拉动了1999次开关后,则开着的灯是()A、、 C、 D、、已知13xx-=,那么多项式3275x x x--+的值是()A.11 B.9 C.7 D.57、线段12y x a=-+(1≤x≤3,),当a的值由-1增加到2时,该线段运动所经过的平面区域的面积为()A.6 B.8 C.9 D.108、已知四边形ABCD为任意凸四边形,E、F、G、H分别是边AB、BC、CD、DA的中点,用S、P分别表示四边形ABCD的面积和周长;S1、P1分别表示四边形EFGH的面积和周长.设K = SS1,K1 =PP1,则下面关于K、K1的说法正确的是().、K1均为常值为常值,K1不为常值不为常值,K1为常值、K1均不为常值二、填空题1、如图,△ABC是一个等边三角形,它绕着点P旋转,可以与等边△ABD重合,则这样的点P有_______个。
八年级(上)数学竞赛试卷班级:_________ 姓名:__________一、选择题(3*6=18)1、设x 、y 、z 均为正实数,且满足z x+y <x y+z <y z+x ,则x 、y 、z 三个数的大小关系是( )A 、z<x<yB 、y<z<xC 、x<y<zD 、z<y<x2、已知a 、b 都是正整数,那么以a 、b 和8为边组成的三角形有( )A 、3个B 、4个C 、5个D 、无数个3、将一长方形切去一角后得一边长分别为13、19、20、25和31的五边形(顺序不一定按此),则此五边形的面积为( )A 、680B 、720C 、745D 、7604、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有( )个 个 个 个5、设标有A 、B 、C 、D 、E 、F 、G 记号的7盏灯顺次排成一行,每盏灯安装一个开关,现在A 、C 、E 、G 4盏灯开着,其余3盏灯是关的,小岗从灯A 开始,顺次拉动开关,即从A 到G ,再顺次拉动开关,即又从A 到G ,…,他这样拉动了1999次开关后,则开着的灯是( )A 、B 、C 、D 、 满足下列条件的三角形中,不是直角三角形的是( )A. 三内角之比为1︰2︰3B. 三边长的平方之比为1︰2︰3C. 三边长之比为3︰4︰5D. 三内角之比为3︰4︰5二、填空题(4*17=68)1、如图,△ABC 是一个等边三角形,它绕着点P 旋转,可以与等边△ABD 重合,则这样的点P 有_______个。
2、如图,现有棱长为a 的8个正方体堆成一个棱长为2a 的正方体,它的主视图、俯视图、左视图均为一个边长为2a 的正方形,现如果要求从图中上面4个正方体中拿去2个,而三个视图的形状仍不改变,那么拿去的2个正方体的编号应为__________。
一、精心填一填(本题共 10题,每题3分,共30分) 1. 函数y= JT 万中,字母a 的取值范围是 ______________ 2. 如图1, 3. 计算:4、写出一个图象经过点(-1,-1),且不经过第一象限的函数表达式5. 已知点P 1 (a-1 , 5)和P 2 (2, b-1 )关于x 轴对称,则(a+b ) 2005的值为6. 如图2,A ABC 中边AB 的垂直平分线分别交 BC AB 于点D 、E , AE=3cm △ ADC?勺周长为9cm 则厶ABC 的周长是 ________________7. 如图 3, AE = AF , AB = AC, / A = 60°,/ B = 24°,则/ BOC= ___________ . 8.如图4,在厶ABC 中,AB=AC / A=36°, BD CE 分别为/ ABC 与/ ACB 的角平分线,且相交于点 F ,贝U 图中的等腰三角形有 个。
9 •如果用四则运算的加、减、除法定义一种新的运算,对于任意实数11 12 19*31 =10•如图5所示,圆的周长为 4个单位长度,在圆的4等分点处标上0, 1, 2, 应的数与数轴上的数一1所对应的点重合, 将与圆周上的数字 __________ 重合./戴尊7 *J)八年级(上)数学竞赛试卷考试时间:100分钟总分:100分/仁/ 2,由AAS 判定△ ABD^A ACD 则需添加的条件 20072-2006 X 2008=3 •先让圆周上数字0所对 那么数轴上的数一2007 再让数轴按逆时针方向绕在该圆上, 、相信你一定能选对! 下列各式成立的是( a-b+c=a- a-b-c=a- 已知一次函数 (A ) x > 0 11.A C 12. (b+c ) (b+c ) (本题共 ) B 6题,每题 图 53分,共18分).a+b-c=a- (b-c ) .a-b+c-d= (a+c ) - (b-d ) y=kx+b 的图象(如图6),当y v 0时,x 的取值范围是()(B ) x v 0(C ) x v 1( D ) x > 1图3图6图713.在厶ABC 中,/ B =Z 。
八年级上数学竞赛练习题含答案Newly compiled on November 23, 2020八年级(上)数学竞赛题一、选择题1、设x 、y 、z 均为正实数,且满足z x+y <x y+z <yz+x ,则x 、y 、z 三个数的大小关系是( ) A 、z<x<yB 、y<z<xC 、x<y<zD 、z<y<x2、已知a 、b 都是正整数,那么以a 、b 和8为边组成的三角形有( ) A 、3个B 、4个C 、5个D 、无数个3、将一长方形切去一角后得一边长分别为13、19、20、25和31的五边形(顺序不一定按此),则此五边形的面积为( ) A 、680B 、720C 、745D 、7604、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有( ) 个 个 个 个5、设标有A 、B 、C 、D 、E 、F 、G 记号的7盏灯顺次排成一行,每盏灯安装一个开关,现在A 、C 、E 、G 4盏灯开着,其余3盏灯是关的,小岗从灯A 开始,顺次拉动开关,即从A到G,再顺次拉动开关,即又从A到G,…,他这样拉动了1999次开关后,则开着的灯是()A、、 C、 D、、已知13xx-=,那么多项式3275x x x--+的值是()A.11 B.9 C.7 D.57、线段12y x a=-+(1≤x≤3,),当a的值由-1增加到2时,该线段运动所经过的平面区域的面积为()A.6 B.8 C.9 D.108、已知四边形ABCD为任意凸四边形,E、F、G、H分别是边AB、BC、CD、DA的中点,用S、P分别表示四边形ABCD的面积和周长;S1、P1分别表示四边形EFGH的面积和周长.设K = SS1,K1 =PP1,则下面关于K、K1的说法正确的是().、K1均为常值为常值,K1不为常值不为常值,K1为常值、K1均不为常值二、填空题1、如图,△ABC是一个等边三角形,它绕着点P旋转,可以与等边△ABD重合,则这样的点P有_______个。
江苏省宿迁市泗阳实验中学2015-2016学年度八年级数学上学期全能竞赛试题一、选择题(共8小题,每小题3分,满分24分)1.在实数:4.,π,,﹣中,无理数的个数有()A.1个B.2个C.3个D.4个2.下列说法正确的是()A.9的立方根是3B.算术平方根等于它本身的数一定是1C.﹣2是4的平方根D.的算术平方根是43.在直角坐标系中,点A(2,1)向左平移4个单位长度,再向下平移2个单位长度后的坐标为()A.(4,3)B.(﹣2,﹣1)C.(4,﹣1)D.(﹣2,3)4.在△ABC和△A′B′C′中,AB=A′B′,∠A=∠A′,若证△ABC≌△A′B′C′还要从下列条件中补选一个,错误的选法是()A.∠B=∠B′B.∠C=∠C′C.BC=B′C′D.AC=A′C′5.A(﹣3,2)关于原点的对称点是B,B关于x轴的对称点是C,则点C的坐标是()A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣2,3)6.一次函数y=﹣x+3的图象上有两点A(x1,y1)、B(x2,y2),若y1<y2,则x1与x2的大小关系是()A.x1<x2B.x1>x2C.x1=x2 D.无法确定7.在同一坐标系中,函数y=kx与y=﹣k的图象大致是()A.B.C.D.8.在平面直角坐标系xOy中,已知点A(0,1),B(1,2),点P在x轴上运动,当点P到A、B两点距离之差的绝对值最大时,点P的坐标是()A.(﹣1,0)B.(﹣2,0)C.(0,0)D.(1,0)二、填空题(每题3分,共计24分)9.函数中,自变量x的取值范围是.10.由四舍五入法得到的近似数2.10万,它是精确到位.11.直线y=3x﹣3沿y轴向上平移5个单位后的直线函数表达式为.12.若一个正数的两个不同的平方根为2m﹣6与m+3,则这个正数为.13.若点M(m﹣3,m+1)在平面直角坐标系的x轴上,则点M的坐标为.14.根据指令[s,A](s≥0,0°<A<180°),机器人在平面上能完成下列动作:先原地逆时针旋转角度A,再朝其面对的方向沿直线行走距离s,现机器人在直角坐标系的坐标原点,且面对x轴正方向,若下指令[4,60°],则机器人应移动到点.15.如图,有A,B,C三点,如果A点用(1,1)来表示,B点用(2,3)表示,则C点的坐标的位置可以表示为.16.如图1,在R t△ABC中,∠ACB=90°,点P以每秒2cm的速度从点A出发,沿折线AC﹣CB运动,到点B停止.过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示.当点P运动5秒时,PD的长的值为.三、解答题(共10题,共计72分)17.求下列各式中的x的值:﹣8(2﹣x)3=27.18.计算:|﹣2|+(3﹣π)0﹣2﹣1+.19.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2、图3中,分别画一个直角三角形,使它们的三边长都是无理数,并且要求所画的两个直角三角形不全等.20.一个一次函数的图象经过点A(3,2),B(1,﹣2).(1)求这个一次函数的解析式;(2)在直线AB上求一点M,使它到y轴的距离是5.21.已知y=y1+y2,其中y1是x的正比例函数,y2与x+1成正比例,当x=1时,y=3;当x=﹣3时,y=﹣1,求y与x的函数关系式.22.中日钓鱼岛争端持续,我海监船加大钓鱼岛海域的巡航维权力度.如图,OA⊥OB,OA=45海里,OB=15海里,钓鱼岛位于O点,我国海监船在点B处发现有一不明国籍的渔船,自A点出发沿着AO 方向匀速驶向钓鱼岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国海监船行驶的航程BC的长.23.如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线与x轴交于点P,若△ABP的面积为,试求点P的坐标.24.如图,直线l1过点A(0,4),点D(4,0),直线l2:与x轴交于点C,两直线l1,l2相交于点B.(1)求直线l1的函数关系式;(2)求点B的坐标(3)求△ABC的面积.25.如图,在平面直角坐标系中,直线y=x+2与x轴、y轴分别交于A、B两点,以AB为边在第二象限内作正方形ABCD.(1)求点A、B的坐标,并求边AB的长;(2)求点D和点C的坐标;(3)你能否在x轴上找一点M,使△MDB的周长最小?如果能,请求出M点的坐标;如果不能,说明理由.26.如图,在平面直角坐标系中,点A的坐标为(4,0),点P是第一象限内直线y=6﹣x上一点,O 是坐标原点.(1)设P(x,y),求△OPA的面积S与x的函数解析式;(2)当S=10时,求P点的坐标;(3)在直线上y=6﹣x求一点P,使△POA是以OA为底边的等腰三角形.江苏省宿迁市泗阳实验中学2015~2016学年度八年级上学期全能竞赛数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.在实数:4.,π,,﹣中,无理数的个数有()A.1个B.2个C.3个D.4个【考点】无理数.【分析】根据无理数与有理数的概念对各数进行逐一分析即可.【解答】解:4.是循环小数,故是有理数;﹣是分数,故是有理数;π,是无限不循环小数,故是无理数.故选B.【点评】本题考查的是无理数的概念,熟知无限不循环小数叫做无理数是解答此题的关键.2.下列说法正确的是()A.9的立方根是3B.算术平方根等于它本身的数一定是1C.﹣2是4的平方根D.的算术平方根是4【考点】立方根;平方根;算术平方根.【专题】计算题.【分析】利用立方根及平方根定义判断即可得到结果.【解答】解:A、9的立方根为,错误;B、算术平方根等于本身的数是0和1,错误;C、﹣2是4的平方根,正确;D、=4,4的算术平方根为2,错误,故选C【点评】此题考查了立方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.3.在直角坐标系中,点A(2,1)向左平移4个单位长度,再向下平移2个单位长度后的坐标为()A.(4,3)B.(﹣2,﹣1)C.(4,﹣1)D.(﹣2,3)【考点】坐标与图形变化-平移.【分析】让点A的横坐标减4,纵坐标减2即可得到平移后的坐标.【解答】解:点A(2,1)向左平移4个单位长度,再向下平移2个单位长度,平移后点的横坐标为2﹣4=﹣2;纵坐标为1﹣2=﹣1;即新点的坐标为(﹣2,﹣1),故选B.【点评】本题考查图形的平移变换,关键是要懂得左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.4.在△ABC和△A′B′C′中,A B=A′B′,∠A=∠A′,若证△ABC≌△A′B′C′还要从下列条件中补选一个,错误的选法是()A.∠B=∠B′B.∠C=∠C′C.BC=B′C′D.AC=A′C′【考点】全等三角形的判定.【分析】注意普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等.【解答】解:AB=A′B′,∠A=∠A′,∠B=∠B′符合ASA,A正确;∠C=∠C′符合AAS,B正确;AC=A′C′符合SAS,D正确;若BC=B′C′则有“SSA”,不能证明全等,明显是错误的.故选C.【点评】考查三角形全等的判定的应用.做题时要按判定全等的方法逐个验证.5.A(﹣3,2)关于原点的对称点是B,B关于x轴的对称点是C,则点C的坐标是()A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣2,3)【考点】关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y),可得到B点坐标,再根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,即可得到C点坐标.【解答】解:∵A(﹣3,2)关于原点的对称点是B,∴B(3,﹣2),∵B关于x轴的对称点是C,∴C(3,2),故答案为:A.【点评】此题主要考查了关于原点对称的点的坐标规律,以及关于x轴对称点的坐标特点,关键是熟记坐标变化的规律.6.一次函数y=﹣x+3的图象上有两点A(x1,y1)、B(x2,y2),若y1<y2,则x1与x2的大小关系是()A.x1<x2B.x1>x2C.x1=x2 D.无法确定【考点】一次函数图象上点的坐标特征.【分析】当k>0,y随x增大而增大;当k<0时,y将随x的增大而减小.【解答】解:k=﹣1<0,y将随x的增大而减小.∵y1<y2∴x1>x2.故选B.【点评】本题考查一次函数的图象性质.7.在同一坐标系中,函数y=kx与y=﹣k的图象大致是()A.B.C.D.【考点】一次函数的图象;正比例函数的图象.【分析】根据图象分别确定k的取值范围,若有公共部分,则有可能;否则不可能.【解答】解:根据图象知:第二个函数一次项系数为正数,故图象必过一、三象限,而y=kx必过一三或二四象限,A、k<0,﹣k<0.解集没有公共部分,所以不可能,故此选项错误;B、k<0,﹣k>0.解集有公共部分,所以有可能,故此选项正确;C、正比例函数的图象不对,所以不可能,故此选项错误;D、正比例函数的图象不对,所以不可能,故此选项错误.故选B.【点评】此题主要考查了一次函数图象,一次函数y=kx+b的图象有四种情况:①当k>0,b>0时,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0时,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.8.在平面直角坐标系xOy中,已知点A(0,1),B(1,2),点P在x轴上运动,当点P到A、B两点距离之差的绝对值最大时,点P的坐标是()A.(﹣1,0)B.(﹣2,0)C.(0,0)D.(1,0)【考点】轴对称-最短路线问题;坐标与图形性质.【分析】由三角形两边之差小于第三边可知,当A、B、P三点不共线时,|PA﹣PB|<AB,又因为A (0,1),B(1,2)两点都在x轴同侧,则当A、B、P三点共线时,|PA﹣PB|=AB,即|PA﹣PB|≤AB,所以本题中当点P到A、B两点距离之差的绝对值最大时,点P在直线AB上.先运用待定系数法求出直线AB的解析式,再令y=0,求出x的值即可.【解答】解:由题意可知,当点P到A、B两点距离之差的绝对值最大时,点P在直线AB上.设直线AB的解析式为y=kx+b,∵A(0,1),B(1,2),∴,解得.∴y=x+1,令y=0,得0=x+1,解得x=﹣1.∴点P的坐标是(﹣1,0).故选A.【点评】本题考查了三角形的三边关系定理,运用待定系数法求一次函数的解析式及x轴上点的坐标特征,难度适中.根据三角形两边之差小于第三边得出当点P在直线AB上时,P点到A、B两点距离之差的绝对值最大,是解题的关键.二、填空题(每题3分,共计24分)9.函数中,自变量x的取值范围是x≥3.【考点】函数自变量的取值范围.【分析】根据二次根式有意义的条件是a≥0,即可求解.【解答】解:根据题意得:x﹣3≥0,解得:x≥3.故答案是:x≥3.【点评】本题考查了函数自变量的取值范围的求法,求函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.10.由四舍五入法得到的近似数2.10万,它是精确到百位.【考点】近似数和有效数字.【分析】2.10万精确到0.01万位即百位.【解答】解:2.10万精确到百位.故答案为百.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数称为近似数;从一个近似数左边第一个不为0的数数起到这个数完,所以这些数字都叫这个近似数的有效数字.11.直线y=3x﹣3沿y轴向上平移5个单位后的直线函数表达式为y=3x+2 .【考点】一次函数图象与几何变换.【分析】对于直线y=kx+b来说,与之平行的直线k值相同,b值不同,据此即可得出直线解析式.【解答】解:把直线y=3x﹣3沿y轴向上平移5个单位后得到y=3x﹣3+5=3x+2.故答案为:y=3x+2.【点评】本题考查图形的平移变换和函数解析式之间的关系.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.平移后解析式有这样一个规律“左加右减,上加下减”.关键是要搞清楚平移前后的解析式有什么关系.12.若一个正数的两个不同的平方根为2m﹣6与m+3,则这个正数为16 .【考点】平方根.【分析】根据题意得出方程,求出方程的解即可.【解答】解:∵一个正数的两个不同的平方根为2m﹣6与m+3,∴2m﹣6+m+3=0,m=1,∴2m﹣6=﹣4,∴这个正数为:(﹣4)2=16,故答案为:16【点评】本题考查了平方根的应用,注意:一个正数有两个平方根,它们互为相反数.13.若点M(m﹣3,m+1)在平面直角坐标系的x轴上,则点M的坐标为(﹣4,0).【考点】点的坐标.【分析】根据x轴上的点的纵坐标等于0列式求出m的值,即可得解.【解答】解:∵点M(m﹣3,m+1)在平面直角坐标系的x轴上,∴m+1=0,解得m=﹣1,∴m﹣3=﹣1﹣3=﹣4,点M的坐标为(﹣4,0).故答案为:(﹣4,0).【点评】本题考查了点的坐标,熟记x轴上的点的纵坐标等于0是解题的关键.14.根据指令[s,A](s≥0,0°<A<180°),机器人在平面上能完成下列动作:先原地逆时针旋转角度A,再朝其面对的方向沿直线行走距离s,现机器人在直角坐标系的坐标原点,且面对x轴正方向,若下指令[4,60°],则机器人应移动到点(2,2).【考点】坐标与图形变化-旋转.【专题】计算题.【分析】根据指令[4,60°]画出图形,如图,∠POx=60°,OP=4,作PQ⊥x轴于Q,利用∠POQ的正弦可计算出PQ=4sin60°=2,利用含30度的直角三角形三边的关系可得到OQ=OP=2,所以P 点坐标为(2,2).【解答】解:如图,∠POx=60°,OP=4,作PQ⊥x轴于Q,在R t△POQ中,∵sin∠POQ=,∴PQ=4sin60°=2,而OQ=OP=2,∴P点坐标为(2,2),即机器人应移动到点(2,2).故答案为(2,2).【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.解决本题的关键是根据新定义画出几何图形.15.如图,有A,B,C三点,如果A点用(1,1)来表示,B点用(2,3)表示,则C点的坐标的位置可以表示为(5,2).【考点】坐标确定位置.【分析】先确定出点A向左一个单位,先下一个单位为坐标原点,然后建立平面直角坐标系.再写出点C的坐标即可.【解答】解:建立平面直角坐标系如图,点C(5,2).故答案为:(5,2).【点评】本题考查了坐标位置的确定,确定出坐标原点是解题的关键.16.如图1,在R t△ABC中,∠ACB=90°,点P以每秒2cm的速度从点A出发,沿折线AC﹣CB运动,到点B停止.过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示.当点P运动5秒时,PD的长的值为 2.4cm .【考点】动点问题的函数图象.【分析】由P的速度和图2得出AC和BC的长,运用勾股定理求出AB,即可求出sin∠B,求出P运动5秒距离B的长度利用三角函数得出PD的值.【解答】解:∵P以每秒2cm的速度从点A出发,∴从图2中得出AC=2×3=6cm,BC=(7﹣3)×2=8cm,∵Rt△ABC中,∠ACB=90°,∴AB===10cm,∴sin∠B===,∵当点P运动5秒时,BP=2×7﹣2×5=4cm,∴PD=4×sin∠B=4×=2.4cm,故答案为2.4cm.【点评】本题主要考查了动点问题的函数图象,理清图象的含义即会识图是解题的关键.三、解答题(共10题,共计72分)17.求下列各式中的x的值:﹣8(2﹣x)3=27.【考点】立方根.【专题】计算题;实数.【分析】方程整理后,利用立方根定义开立方即可求出x的值.【解答】解:方程整理得:(2﹣x)3=﹣,开立方得:2﹣x=﹣,解得:x=.【点评】此题考查了立方根,熟练掌握运算法则是解本题的关键.18.计算:|﹣2|+(3﹣π)0﹣2﹣1+.【考点】实数的运算;零指数幂;负整数指数幂.【专题】计算题.【分析】分别根据绝对值的性质、0指数幂及负整数指数幂的运算法则计算出各数,再根据实数混合运算的法则进行计算即可.【解答】解:原式=2+1﹣﹣3=﹣.【点评】本题考查的是实数的运算,熟知实数混合运算的法则是解答此题的关键.19.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三角形,使它的三边长都是有理数;(2)在图2、图3中,分别画一个直角三角形,使它们的三边长都是无理数,并且要求所画的两个直角三角形不全等.【考点】勾股定理;无理数.【专题】作图题.【分析】(1)画一个边长为3,4,5的三角形即可;(2)画一个边长为,2,和边长为,,的直角三角形即可.【解答】解(1)∵=5,∴画一个边长为3,4,5的三角形,如图1所示;(2)∵()2+(2)2=()2,()2+()2=()2,∴直角三角形如图2、图3所示.【点评】此题主要考查了利用勾股定理画图,关键是计算出所画图形的边长是直角边长为多少的直角三角形的斜边长.20.一个一次函数的图象经过点A(3,2),B(1,﹣2).(1)求这个一次函数的解析式;(2)在直线AB上求一点M,使它到y轴的距离是5.【考点】待定系数法求一次函数解析式;一次函数图象上点的坐标特征.【分析】(1)根据题意,设一次函数解析式为y=kx+b(k≠0),然后把点A、B的坐标代入函数解析式,借用方程组求得k、b的值;(2)把x=±5代入(1)中的函数解析式求得相应的y值即可.【解答】解:(1)设一次函数解析式为y=kx+b(k≠0),则,解得,所以该一次函数解析式为y=2x﹣4;(2)当x=5时,y=2×5﹣4=6,所以M(5,6);当x=﹣5时,2×(﹣5)﹣4=﹣14,所以M(﹣5,﹣14).【点评】本题考查了待定系数法求一次函数解析式和一次函数图象上点的坐标特征.解答(2)题时,注意不要漏解.21.已知y=y1+y2,其中y1是x的正比例函数,y2与x+1成正比例,当x=1时,y=3;当x=﹣3时,y=﹣1,求y与x的函数关系式.【考点】待定系数法求一次函数解析式.【分析】根据正比例的定义设出y与x之间的函数关系式,然后利用待定系数法求函数解析式计算即可得解.【解答】解:设y1=k1x,y2=k2(x+1),则y=k1x+k2(x+1),(k1≠0,k2≠0),将x=1、y=3和x=﹣3、y=﹣1分别代入,得,解得.故函数y与x的函数关系式为y=﹣x+2(x+1)=x+1,即y=x+1.【点评】本题考查的是用待定系数法求正比例函数的解析式,是中学阶段的重点,一定要熟练掌握并灵活运用.22.中日钓鱼岛争端持续,我海监船加大钓鱼岛海域的巡航维权力度.如图,OA⊥OB,OA=45海里,OB=15海里,钓鱼岛位于O点,我国海监船在点B处发现有一不明国籍的渔船,自A点出发沿着AO 方向匀速驶向钓鱼岛所在地点O,我国海监船立即从B处出发以相同的速度沿某直线去拦截这艘渔船,结果在点C处截住了渔船.(1)请用直尺和圆规作出C处的位置;(2)求我国海监船行驶的航程BC的长.【考点】勾股定理的应用.【分析】(1)由题意得,我渔政船与不明船只行驶距离相等,即在OA上找到一点,使其到A点与B 点的距离相等,所以连接AB,作AB的垂直平分线即可.(2)利用第(1)题中的BC=AC设BC=x海里,则AC=x海里.在直角三角形BOC中,BC=x海里、OC=(45﹣x)海里,利用勾股定理列出方程152+(45﹣x)2=x2,解得即可.【解答】解:(1)作AB的垂直平分线与OA交于点C;(2)设BC为x海里,则CA也为x海里,∵∠O=90°,∴在Rt△OBC中,BO2+OC2=BC2,即:152+(45﹣x)2=x2,解得:x=25,答:我国渔政船行驶的航程BC的长为25海里.【点评】本题考查了线段的垂直平分线的性质以及勾股定理的应用,利用勾股定理不仅仅能求直角三角形的边长,而且它也是直角三角形中一个重要的等量关系.23.如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.(1)求A,B两点的坐标;(2)过B点作直线与x轴交于点P,若△ABP的面积为,试求点P的坐标.【考点】一次函数图象上点的坐标特征.【分析】(1)把x=0,y=0分别代入函数解析式,即可求得相应的y、x的值,则易得点A、B的坐标;(2)由B、A的坐标易求:OB=3,OA=.然后由三角形面积公式得到S△ABP=AP•OB=,则AP=.设点P的坐标为(m,0),则m﹣(﹣)=或﹣﹣m=,由此可以求得m的值.【解答】解:(1)由x=0得:y=3,即:B(0,3).由y=0得:2x+3=0,解得:x=﹣,即:A(﹣,0);(2)由B(0,3)、A(﹣,0)得:OB=3,OA=∵S△ABP=AP•OB=∴AP=,解得:AP=.设点P的坐标为(m,0),则m﹣(﹣)=或﹣﹣m=,解得:m=1或﹣4,∴P点坐标为(1,0)或(﹣4,0).【点评】本题考查了一次函数图象上点的坐标特征.一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.24.如图,直线l1过点A(0,4),点D(4,0),直线l2:与x轴交于点C,两直线l1,l2相交于点B.(1)求直线l1的函数关系式;(2)求点B的坐标(3)求△ABC的面积.【考点】两条直线相交或平行问题.【分析】(1)设l1的函数关系式为y=kx+b,利用待定系数法把A、D两点坐标代入y=kx+b中,可得关于k、b的方程,再解方程即可;(2)联立l1和l2的解析式,组成二元一次方程组,再解方程组即可得到B点坐标;(3)首先计算出C点坐标,S△ABC的面积=S△ABD的面积﹣S△BCD的面积进行计算即可.【解答】解:(1)设l1的函数关系式为y=kx+b,根据题意得,解得k=﹣1,所以l1:y=﹣x+4;(2),解之得;所以B(2,2);(3)当y=0,x+1=0,解得:x=﹣2,则C(﹣2,0),S△ABC的面积=S△ABD的面积﹣S△B CD的面积=×6×4﹣×6×2=6.【点评】此题主要考查了两直线相交和平行问题,关键是掌握求两函数交点,就是联立两个函数解析式,解出x、y的值,即可得到交点坐标.25.如图,在平面直角坐标系中,直线y=x+2与x轴、y轴分别交于A、B两点,以AB为边在第二象限内作正方形ABCD.(1)求点A、B的坐标,并求边AB的长;(2)求点D和点C的坐标;(3)你能否在x轴上找一点M,使△MDB的周长最小?如果能,请求出M点的坐标;如果不能,说明理由.【考点】一次函数综合题.【专题】综合题.【分析】(1)对于直线解析式,分别令x=0与y=0求出对应y与x的值,确定出A与B的坐标,得到OA与OB的长,利用勾股定理求出AB的长即可;(2)过D作DE垂直于x轴,过C作CF垂直于y轴,根据四边形ABCD的正方形,得到四条边相等,四个角为直角,利用同角的余角相等得到三个角相等,利用AAS得到三角形EDA,三角形AOB以及三角形BFC全等,利用全等三角形的对应边相等得到DE=OA=BF=4,AE=OB=CF=2,进而求出OE与OF 的长,即可确定出D与C的坐标;(3)找出B关于y轴的对称点B′,连接DB′,交x轴于点M,此时BM+MD=DM+MB′=DB′最小,即△BDM周长最小,设直线DB′解析式为y=kx+b,把D与B′坐标代入求出k与b的值,确定出直线DB′解析式,令y=0求出x的值,确定出此时M的坐标即可.【解答】解:(1)对于直线y=x+2,令x=0,得到y=2;令y=0,得到x=﹣4,∴A(﹣4,0),B(0,2),即OA=4,OB=2,则AB==2;(2)过D作DE⊥x轴,过C作CF⊥y轴,∵四边形ABCD为正方形,∴AB=BC=AD,∠ABC=∠BAD=∠BFC=∠DEA=∠AOB=90°,∵∠FBC+∠ABO=90°,∠ABO+∠BAO=90°,∠DAE+∠BAO=90°,∴∠FBC=∠OAB=∠EDA,∴△DEA≌△AOB≌△BFC(AAS),∴AE=OB=CF=2,DE=OA=FB=4,即OE=OA+AE=4+2=6,OF=OB+BF=2+4=6,则D(﹣6,4),C(﹣2,6);(3)如图所示,连接BD,找出B关于y轴的对称点B′,连接DB′,交x轴于点M,此时BM+MD=DM+MB′=DB′最小,即△BDM周长最小,∵B(0,2),∴B′(0,﹣2),设直线DB′解析式为y=kx+b,把D(﹣6,4),B′(0,﹣2)代入得:,解得:k=﹣1,b=﹣2,∴直线DB′解析式为y=﹣x﹣2,令y=0,得到x=﹣2,则M坐标为(﹣2,0).【点评】此题属于一次函数综合题,涉及的知识有:待定系数法求一次函数解析式,坐标与图形性质,勾股定理,全等三角形的判定与性质,正方形的性质,对称性质,以及一次函数与坐标轴的交点,熟练掌握性质及定理是解本题的关键.26.如图,在平面直角坐标系中,点A的坐标为(4,0),点P是第一象限内直线y=6﹣x上一点,O 是坐标原点.(1)设P(x,y),求△OPA的面积S与x的函数解析式;(2)当S=10时,求P点的坐标;(3)在直线上y=6﹣x求一点P,使△POA是以OA为底边的等腰三角形.【考点】一次函数综合题.【专题】综合题;一次函数及其应用.【分析】(1)过P作PB垂直于x轴,把P坐标代入直线y=6﹣x,表示出y,进而表示出PB,由A 的坐标确定出OA的长,确定出△OPA的面积S与x的函数解析式即可;(2)把S=10代入S与x的函数解析式,求出x的值,即可确定出此时P的坐标;(3)作线段OA的垂直平分线,交直线y=6﹣x于点P,连接OP,AP,△POA是以OA为底边的等腰三角形,把x=2代入直线y=6﹣x求出y的值,即可求出此时P的坐标.【解答】解:(1)过P作PB⊥x轴,交x轴于点B,如图1所示,∵P(x,y),且P在直线y=6﹣x上,∴y=6﹣x,即P(x,6﹣x),∴PB=6﹣x,∵A(4,0),∴OA=4,∴△OPA的面积S与x的函数解析式为S=OA•PB=2(6﹣x)=12﹣2x;(2)当S=10时,12﹣2x=10,解得:x=1,此时P坐标为(1,5);(3)作线段OA的垂直平分线,交直线y=6﹣x于点P,连接OP,AP,如图2所示,△POA是以OA 为底边的等腰三角形,把x=2代入直线y=6﹣x得:y=6﹣2=4,此时P坐标为(2,4).【点评】此题属于一次函数综合题,涉及的知识有:坐标与图形性质,三角形的面积求法,等腰三角形的性质,熟练掌握一次函数的性质是解本题的关键.。
初中数学八年级上数学竞赛试题含答案Newly compiled on November 23, 20200 1 2-1A 八年级(上)数学竞赛试题一、填空题:(40分)1、在ABC Rt ∆中,b a 、为直角边,c 为斜边,若14=+b a ,10=c ,则ABC ∆的面积是 ;2、计算:=⋅27 311 ;3 313÷⨯= ;2 3 2 +-= ; 3、某位老师在讲实数时,画了一个图(如图1),即以数轴的单位长线段为边作一个正方形,然后以0点为圆心,正方形的对角线长为半径画图,交x 轴于一点A ,作这样的图是用来说明 ;42,又出现了一个方格体正向下运动,为了使所有图案消失,你必须按 后 才能拼一个完整图案,从而使图案自动消失(游戏机有此功能)。
5、如图3,=∠+∠+∠+∠+∠+∠F E D C B A ;6、图4是一住宅小区的长方形花坛图样,阴影部分是草地,空地是四块同样的菱形,则草地与空地的面积之比为 ;(6)7、如图5,一块白色的正方形木板,边长是cm 18,上面横竖各有两根木条(阴影部分),宽都是cm 2,则白色部分面积是 2cm ;8、如图6,一块正方形地板由全等的正方形瓷砖铺成,这地板上的两条对角线上的瓷砖全是黑色,其余的瓷砖是白色的,如果有101块黑色瓷砖,那么瓷砖的总数是 ; 二、选择题:(30分)9、CD 是ABC Rt ∆斜边AB 上的高,若2=AB ,1:3:=BC AC ,则CD 为( )A 、51B 、52 C 、53D 、5410、如图,长方形ABCD 中,3=AB ,4=BC ,若将该矩形折叠,使C 点与A 点重合,则折痕EF 的长为( )A 、B 、3.75C 、D 、 11、如果a a -=-1 1 ,则a 的取值范围是( )A 、1=aB 、10<<aC 、0≥aD 、10≤≤a 12、若2 2 -+-x x 有意义,则x 的取值为( )A 、2>xB 、2<xC 、2≤xD 、2=x13、如上中图所示,一块边长为cm 10的正方形木板ABCD ,在水平桌面上绕点D 按顺时针方向转到D C B A ''''的位置时,顶点B 从开始到结束所经过的路径为( ) A 、cm 20 B 、cm 220 C 、cm 10π D 、cm 25π14、如上右图所示,设ABCD 边上任意一点,设CMB ∆的面积为2S ,CDM ∆的面积为S ,AMD ∆的面积为1S ,则有( )A 、21S S S +=B 、21S S S +> C 、21S S S +< D 、不能确定 三、画图题:(12分)15、如图,历史上最有名的军师诸葛亮,率精骑兵与司马懿对阵,诸葛亮一挥羽扇,军阵瞬时由左图变为右图,其实只移动了其中的3骑而己,请问如何移动(在图形上画出来即可)16、有一等腰梯形纸片,其上底和腰长都是a ,下底的长是a 2,你能将它剪成形状、大小完全一样的四块吗若能,请画出图形。
八年级(上)数学竞赛试卷
考试时间:100分钟 总分:100分
一、精心填一填(本题共10题,每题3分,共30分)
1.函数
a 的取值范围是_____________、
2.如图1,∠1=∠2,由AAS 判定△ABD ≌△ACD ,则需添加的条件是____________. 3.计算:20072-2006×2008=_________
图1 图2
4、写出一个图象经过点(-1,-1),且不经过...第一象限的函数表达式 5.已知点P 1(
a-1,5)和P 2(2,b-1)关于x 轴对称,则(a+b )
2005
的值为 .
6.如图2,△ABC 中边AB 的垂直平分线分别交BC 、AB
于点D 、E ,AE=3cm ,△ADC•的周长为9cm ,则△ABC 的周长是_______
7.如图3,AE =AF ,AB =AC ,∠A =60°,∠B =24°,则∠BOC =__________.
8、如图4,在△ABC 中,AB=AC ,∠A=36°,BD 、CE 分别为∠ABC 与∠ACB 的角平分线,且相交于点F ,则图中的等腰三角形有 个。
9.如果用四则运算的加、减、除法定义一种新的运算,对于任意实数x 、y 有
y x y x y x -+=
* 则
()()31*191211**=
10.如图5所示,圆的周长为4个单位长度,在圆的4等分点处标上0,1,2,3.先让圆周上数字0所对
应的数与数轴上的数-1所对应的点重合,再让数轴按逆时针方向绕在该圆上,那么数轴上的数-2007将与圆周上的数字_________重合.
F
E
D
A
C
B
图 5
图4 二、相信你一定能选对!(本题共6题,每题3分,共18分) 11.下列各式成立的是( )
A .a-b+c=a-(b+c )
B .a+b-c=a-(b-c )
C .a-b-c=a-(b+c )
D .a-b+c-d=(a+c )-(b-d ) 12.已知一次函数y=kx+b 的图象(如图6),当y <0时,x 的取值范围是( )
(A )x >0 (B )x <0 (C )x <1 (D )x >1
A B C D
12 A
E
B
O F C
图3
图6 图7
13.在△ABC 中,∠B =∠C ,与△ABC 全等的三角形有一个角是100°,那么在△ABC 中与这100°角对应相等的角是 ( )
A.∠A
B.∠B
C.∠C
D.∠B 或∠C 14.某校八(2)班的全体同学喜欢的球类运动用图7所示的扇形统计图来表示,下面说法正确的是( ) A 、从图中可以直接看出喜欢各种球类的具体人数; B 、从图中可以直接看出全班的总人数;
C 、从图中可以直接看出全班同学初中三年来喜欢各种球类的变化情况;
D 、从图中可以直接看出全班同学现在喜欢各种球类的人数的大小关系 15.已知一次函数y=mx+│m+1│的图像与y 轴交于点(0,3),且y 随x 的增大而减小,则m 的值为( ). A .2 B .-4 C .-2或-4 D .2或-4
16.设y=ax 15+bx 13+cx 11
-5(a 、b 、c 为常数),已知当x=7时,y=7,则x= -7时,y 的值等于( )
A 、-7
B 、-17
C 、17
D 、不确定 三、认真解答,一定要细心哟!(各6分,共18分) 17. 先化简再求值:[
]
y y x y x y x 4)4()2)(2(2
÷+--+,其中x =5,y=2。
18.如图,要在河边修建一个水泵站,分别向张庄、李庄送水,修在河边什么地方,(1)到张庄、李庄的距离相等。
(2)可使所用的水管最短?(请通过你所学的知识画出这个地点的位置)
第(1)题图 第(2)题图
19.如图所示,两根旗杆间相距12m ,某人从B 点沿BA 走向A ,一定时间后他到达点M ,此时他仰望旗杆的顶点C 和D ,两次视线的夹角为90°,且CM=DM ,已知旗杆AC 的高为3m ,该人的运动速度为1m/s ,求这个人运动了多长时间?
四、数学知识应用(20题、21题各8分,共16分)
20.已知,△ABC 是等边三角形,D 、E 分别是BC 、AC 边上的点,AE=CD ,连接AD 、BE 相交于点P ,BQ ⊥AD 于Q
(1)求∠BPD 的度数;
(2)若PQ=3,PE=1,求AD 的长。
21.两个三位整数,它们的和加1得1000,如果把大数放在小数的左边,并在这两数之间点上一个小数点,则所成的数正好等于把小数放在大数的左边,中间点一个小数点所成的数的6倍,求这两个数。
五、探究题,努力就会成功(各9分,共18分) 22、某军加油飞机接到命令,立即给另一架正在飞行
的运输飞机进行空中加油.在加油的过程中, 设运输飞机的油箱余油量为Q 1吨,加油飞机的 加油油箱的余油量为Q 2吨,加油时间为t 分钟, Q 1、Q 2与t 之间的函数关系如图.回答问题: (1) 加油飞机的加油油箱中装载了多少吨油? 将这些油全部加给运输飞机需要多少分钟? (2) 求加油过程中,运输飞机的余油量Q 1(吨) 与时间t (分钟)的函数关系式;
(3) 运输飞机加完油后,以原速继续飞行,需10小时到达目的地,油料是否够用? 请通过计算说明理由.
23.如图所示,在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,AE 平分∠BAC 交BC 于E ,交CD•于F ,FG ∥AB 交BC 于G .试判断CE ,CF ,GB 的数量关系,并说明理由.(友情提示:角平分线上的点到这个角两边的距离相等)
G
F E D
C
B
A
C A B
D E
P Q
一、精心填一填
1、a ≥1
2、∠B =∠C
3、1
4、y=-x-2(答案不唯一)
5、-1
6、15厘米
7、108°
8、8
9、163/113 10、2 二、选择题 C CADBB
三、17、解:原式= [(x 2-4y 2)-(x 2+8xy+16y 2)]/4y (2分)
=(-8xy-20 y 2)/4y (3分) =-2x-5y (4分) 当x =5,y=2 时,原式=-2x-5y=-2*5-5*2=-20 (6分)
18、画图正确各2分,结论各1分。
19、解析:∵∠CMD=90°,
∴∠CMA+∠DMB=90°. 又∵∠CAM=90°,
∴∠CMA+∠ACM=90°,
∴∠ACM=∠DMB . (2分)
又∵CM=MD ,
∴Rt △ACM ≌Rt △BMD , (4分) ∴AC=BM=3,
∴他到达点M 时,运动时间为3÷1=3(s ). 这人运动了3s .
(6分)
四、20、解(1)证得,△ABE ≌△ACD -—-—-(3分)
∴∠ABE=∠CAD
∴∠BPQ=∠ABE+∠BAP =∠CAD+∠BAP
=∠BAC=60° (5分)
(2)在RT △BPQ 中,∠BPQ=60°,∴∠PBQ =30° 又PQ=3,∴BP=2PQ=6 (7分) 又PE=1,∴BE=BP+PE=7
由(1)得△ABE ≌△ACD ∴AD =BE =7 (8分)
21、解:设大数为x ,则小数为999-x , (1分 ) 由题意得
)1000
999(61000999x
x x x +-=-+
(5分 )
解这个方程得:x=857, (7分 ) ∴999-x=142
答:大数为857,小数为142。
(8分)
五、22、解 (1)由图象知,加油飞机的加油油箱中装载了30吨油,全部加给运输飞机需10分钟. (2分) (2)设Q 1=kt +b ,把(0,36)和(10,65)代入,得
b=36
10k+b=65 (3分)
解得 k=2.9 (5分) 所以Q 1=2.9t +36(0≤t ≤10). (6分) (3)根据图象可知运输飞机的耗油量为每分钟0.1吨. (7分) 所以10小时耗油量为:10×60×0.1=60(吨)<65(吨), (8分) 所以油料够用. (9分) 23.解析:CE=CF=GB . (1分) 理由:(1)∵∠ACB=90°, ∴∠BAC+∠ABC=90°.
∵CD ⊥AB ,∴∠ACD+∠CAD=90°. ∴∠ACD=∠ABC .
∵AE 平分∠BAC ,∴∠BAE=∠CAE . ∵∠CEF=∠BAE+∠ABC , ∠CEF=∠CAE+∠ACD ,
∴∠CEF=∠CFE ,∴CE=CF (等角对等边). (5分) (2)如答图,过E 作EH ⊥AB 于H . (6分) ∵AE 平分∠BAC ,EH ⊥AB ,EC ⊥AC .
∴EH=EC (角平分线上的点到角两边的距离相等). ∴EH=EC ,∴EH=CF .
∵EG ∥AB ,∴∠CGF=∠EBH .
∵CD ⊥AB ,EH ⊥AB ,∴∠CFG=∠EHB=90°. 在Rt △CFG 和Rt △EHB 中,
∠CGF=∠EBH ,∠CFG=∠EHB ,CF=EH , ∴Rt △CFG ≌Rt △EHB . ∴CG=EB ,∴CE=GB .
∴CE=CF=GB . (9分)
其他方法酌情给分。