《从算式到方程》教学设计-参考模板
- 格式:doc
- 大小:35.50 KB
- 文档页数:4
从算式到方程—教学设计及点评一、教学设计1.教学目标:(1)知识目标:了解算式和方程的概念,认识算式和方程之间的关系。
(2)能力目标:能够通过给定的算式写出相应的方程,并能够根据方程解决问题。
(3)情感目标:培养学生的数学思维能力和问题解决能力,增强他们对数学的兴趣和信心。
2.教学重点:(1)理解算式和方程的定义。
(2)掌握从算式到方程的转换方法。
(3)理解方程的意义和用途。
3.教学难点:(1)理解方程的意义和用途。
(2)掌握根据给定的算式写出方程的方法。
4.教学过程:步骤一:导入新课(1)引入问题:有一些运算式,例如:"5+2=7",你能发现其中的规律吗?(2)学生回答并解释规律:等号左边的算式和等号右边的值相等。
(3)教师引导学生总结:这种形式的式子叫做算式,其中有一个等号,左右两边相等。
步骤二:引入方程的概念(1)引导学生思考问题:如果我们把算式中的一些数用一个字母表示,如"5+x=7",这种式子叫什么?(2)学生回答并解释:这种式子叫做方程,字母代表的是一个未知数。
(3)教师解释:方程和算式的结构非常相似,只不过其中有一个未知数,我们可以通过解方程来求出未知数的值。
步骤三:从算式到方程(1)教师出示一些算式,并要求学生根据算式写出相应的方程。
(2)学生通过思考和分析,用未知数表示算式中的一些数,并写出方程。
(3)学生互相交流并对答案进行讨论。
步骤四:解决问题(1)教师给出一些实际问题,并要求学生用方程去解决问题。
(2)学生根据问题提供的信息写出方程,然后解方程求出未知数的值。
(3)学生互相交流并对答案进行讨论。
步骤五:巩固练习(1)教师出示一些练习题,让学生自己用方程来解决。
(2)学生独立完成练习,并互相交换答案进行对比。
(3)教师进行讲评,梳理学生解题思路和方法。
步骤六:总结和拓展(1)教师引导学生总结今天学习的内容:什么是方程?怎样从算式到方程?(2)教师拓展讲解方程的更复杂形式,如多项式方程、二元一次方程等。
从算式到方程(第1课时)教学目标1.感受运用代数法解决问题的必要性,体会“方程”是解决实际问题的有效工具.2.理解方程的定义,会设未知数,列方程.3.感受用方程解决实际问题的优越性,体会从算式到方程是数学的进步.教学重点会设未知数,列方程.教学难点分析实际问题中的相等关系,并利用相等关系正确列出方程.教学过程新课导入【思考】小明向小蓝询问年龄,小蓝说:“我的年龄乘2减5得21”.小明立刻说出了小蓝的年龄,你会吗?【师生活动】学生回答:年龄=(21+5)÷2=13.教师提问:问题中蕴含的数量关系是什么?学生回答:年龄×2-5=21.【设计意图】从学生熟知的问题入手,引出用算式解决问题的本质是找出问题中的数量关系,为进一步根据具体问题列方程做好铺垫.新知探究一、探究学习【问题】一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是70 km/h,卡车的行驶速度是60 km/h,客车比卡车早1 h经过B地.A,B两地间的路程是多少?你会用算术方法解决这个问题吗?列算式试试.【师生活动】教师提问1:如何表示客车和卡车“同时同向行驶”?教师提问2:如何表示“客车比卡车早1 h经过B地”?教师提问3:如何用算术方法求“A,B两地间的路程”?学生思考并回答:行驶1 km 的路程,客车所用时间是170h ;行驶1 km 的路程,卡车所用时间是160h ; 行驶1 km 的路程,客车比卡车少用170160⎛⎫- ⎪⎝⎭h ;行驶1170160⎛⎫÷- ⎪⎝⎭km 的路程,客车比卡车少用1 h .教师总结:可见,列算式比较困难,不容易想.教师追问4:如果设A ,B 两地相距x km ,你能分别列式表示客车和卡车从A 地到B 地的行驶时间吗?教师分析,学生回答. (1)列表:(2)在上面的表格中,有一些未知的量,根据设A ,B 两地相距x km ,分别列式表示客车和卡车从A 地到B 地的行驶时间,完成表格.教师提问5:如何用式子表示两车的行驶时间之间的关系? 学生分作讨论并回答,教师总结:寻找相等关系,列方程. 卡车行驶时间-客车行驶时间=1,列方程:16070x x -=. 教师总结:我们已经知道,方程是含有未知数的等式,上面的等式中的x 是未知数,这个等式是一个方程.【新知】方程必须满足两个条件: (1)是等式;(2)化简后含有未知数.注意:方程是等式,但等式不一定是方程,如3+1=4是等式,但不含未知数,所以不是方程.教师提问6:用算术方法和用列方程法解决这个问题,各有什么特点?学生回答:用算术方法解题时,列出的算式表示用算术方法解题的计算过程,其中只包含已知数.用列方程法解题时,方程中既含有已知数,又含有用字母表示的未知数.教师提问7:对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?学生回答:设卡车从A地到B地的行驶时间为t h,则客车从A地到B地的行驶时间为(t-1) h,依据路程相等可得:70(t-1)=60t.求出t之后,60t就是路程.【归纳】列方程的一般步骤如下:(1)设未知数,一般求什么就设什么为x.(2)分析题意,找相等关系.(3)根据相等关系列方程.【设计意图】教师引导学生采用不同设未知数的方法列方程,让学生体会解题策略的多样性.二、典例精讲【例1】根据下列问题,设未知数并列出方程:(1)用一根长24 cm的铁丝围成一个正方形,正方形的边长是多少?(2)一台计算机已使用1 700 h,预计每个月再使用150 h,经过多少个月这台计算机的使用时间达到规定的检修时间2 450 h?(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?【答案】解:(1)设正方形的边长为x cm.列方程为4x=24.(2)设x个月后这台计算机的使用时间达到2 450 h,那么在x个月里这台计算机使用了150x h.列方程为1 700+150x=2 450.(3)设这个学校的学生数为x,那么女生数为0.52x,男生数为(1-0.52)x.列方程为0.52x-(1-0.52)x=80.【设计意图】将简单的列方程题目大胆地放给学生自主、合作学习,学生通过展示自己的学习成果,进一步激发学习兴趣.通过例题1的练习与讲解,让学生学会如何列方程解决实际问题.课堂小结板书设计一、方程的定义二、列方程的一般步骤课后任务完成教材第80页练习1~4题.。
3.1从算式到方程教学设计教案第一篇:3.1 从算式到方程教学设计教案教学准备1.教学目标知识与技能:①体验从算术方法到代数方法是一种进步;②初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念;③理解一元一次方程、方程的解等概念;④掌握检验某个值是不是方程的解的方法。
过程与方法:①通过处理实际问题,让学生体验从算术方法到代数方法是一种进步。
②培养学生根据问题寻找等量关系,根据相等关系列出方程。
情感态度与价值观:①培养学生热爱数学,热爱生活的乐观人生态度。
②体验用估算方法寻求方程的解的过程,培养学生求实的态度。
2.教学重点/难点教学重点①了解一元一次方程及相关概念。
②寻找相等关系,列出方程。
教学难点①寻找问题中的相等关系,列出方程。
②对于复杂一点的方程,用估算的方法寻求方程的解,需要多次的尝试,也需要一定的估计能力。
3.教学用具4.标签教学过程问题引入及方程概念问题一:汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水两地之间,距青山50千米,距秀水70千米.王家庄到翠湖的路程有多远?怎样用算术方法解决这个问题?怎样用方程的方法解决这个问题?【教师说明】总结学生的回答,得出算术方法为:,如果用方程解答,设王家庄到翠湖的路程为x千米,用含有x的式子表示下列路程,王家庄距青山 x-50 千米,王家庄距秀水 x+70 千米.根据时间表得知,从王家庄到青山行车 3 小时,王家庄到秀水行车 5 小时.而整个行驶过程中车是匀速的,所以可列方程为:。
说明什么是方程。
=【板书】3.1.1一元一次方程含有未知数的等式叫做方程。
【问题】从题目中可以得到什么等量关系?根据等量关系列出怎样的方程?【教师说明】=等式中,的意义是从王家庄到青山的车速;的意义是从王家庄到秀水的车速。
汽车是匀速前进的,所以两段路程的速度相等,从而得到方程。
2如何用方程解决问题1.对于上面的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?2.想一想列方程的过程?【教师说明】首先要设字母表示数------->然后找出问题中的等量关系------>最后写出含有未知数的等式(方程)3 一元一次方程练习1 根据下列问题,设未知数并列方程:(1)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机使用时间达到规定的检修时间2450小时?(2)用一根长600px的铁丝围成一个长方形,使它的长是宽的1.5倍,长方形的长、宽各应是多少?(3)某校女学生占全体学生数的52%,比男生多80人,这个学校有多少学生?【教师说明】观察上述所得方程(1)1700+150x=2450(2)2(x+1.5x)=24(3)0.52x-(1-0.52)x=80 像这样只含有一个未知数(元)x,未知数x的次数是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。
从算式到方程教学设计教案
一、教学目标
1、基本掌握从算式到方程的概念,能够把算式转化为方程,能解决
一元一次方程组;
2、能够灵活运用适当的算法解决算式转化为方程的问题,熟练掌握
解一元一次方程的方法。
二、教学重点
1、掌握从算式到方程的概念;
2、掌握从算式转化为方程的算法;
3、掌握解一元一次方程的方法。
三、教学过程
1.交流提问:本节课将学习从算式到方程的概念,在开始本节课前,
大家交流一下以前对方程的了解情况。
让学生说出他们之前对方程的认知,让孩子们了解方程的概念,让他们更加熟悉方程的概念。
2.精讲从算式到方程的概念:老师结合部分例题,举一反三,讲解从
算式到方程的概念。
让学生熟悉从算式到方程的概念,通过演示好例子,
让学生更好地理解从算式到方程的概念,以促使他们更好地记住和使用概念。
3.练习练习:结合老师讲课的知识点,让学生认真完成练习题,让学
生运用所学知识,便于他们更好地理解从算式到方程的概念,以及从算式
转化为方程的方法,有效帮助学生学习从算式到方程。
4.要点梳理:把学生练习完后,老师需要复习答案,结合学生的实际情况,把重要的考点和重点再次仔细梳理。
初中七年级上册数学《从算式到方程》教案五篇初中七年级上册数学《从算式到方程》教案一1、通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义;2、了解什么是方程,什么是一元一次方程及什么是方程的解。
1、认识列方程解决问题的思想以及用字母表示未知数,用方程表示相等关系的符号化的方法2、结合从实际问题中得出的方程,学会用“去分母”解一元一次方程,进一步体会化归的思想。
体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决,激发学习数学的热情。
建立一元一次方程的概念。
问题与情境师生活动设计意图一、创设情境,展示问题:问题1:世界最大的动物是蓝鲸,一只蓝鲸重124吨,比一头大象体重的25倍少一吨,这头大象重几吨? 问题2:章前图中的汽车匀速行驶途经王家庄、青山、秀水三地的时间如表所示,翠湖在青山、秀水之间,距青山50千米,距秀水70千米,王家庄到翠湖有多远? 地名时间王家庄10:00 青山13:00 秀水15:00 教师展示问题,要求用算术解法,让学生充分发表意见。
算术方法:(124+1)25=5(吨)方程方法:可设大象重为`吨,则124=25`-1 学生独立思考,小组交流,代表发言,解释说明。
问题1的算术解法:(50+70)2=60(千米/时) 605-70=230(千米) 问题1用算术法较容易解决,但问题2却不容易解决,这样产生矛盾冲突,使学生认识到进一步学习的必要性。
示意图有助于分析问题。
二、寻找关系,列出方程1、对于问题1,如果设王家庄到翠湖的路程是`千米,则:路程时间速度王家庄-青山王家庄-秀水根据汽车匀速前进,可知各路段汽车速度相等,列方程。
2、比一比:列算式与列方程有什么不同?哪一个更简便?3、想一想:对于问题1,你还能列出其他方程吗?如果能,你根据的是哪个相等关系?你认为列方程的关键是什么? 结合图形,引导学生分析各路段的路程、速度、时间之间的关系,填写表格。
学生思考回答:1、王家庄-青山(`50)千米,王家庄-秀水(`+70)千米。
七年级数学《从算式到方程》教案设计一、教学目标1.知识与技能:(1)回顾算式的定义和运算法则,提高学生的基本计算能力,包括加减乘除;(2)引导学生从算式到方程的转变,理解方程的概念,并掌握一元一次方程的解法;(3)了解方程在实际问题中的应用。
2.过程与方法:(1)通过课堂讲解、板书演示和实践运算等方式,帮助学生掌握方程解法的基本思路和方法;(2)通过引导学生自主探究、小组合作等方式,激发学生学习数学的兴趣;(3)通过思考问题、讨论解法等方式,培养学生的逻辑思维和分析问题的能力。
3.情感态度与价值观:(1)激发学生学习数学的热情,培养学生对数学的兴趣和好奇心;(2)培养学生批判思维和创新思维,提高学生的学习能力和综合素质;(3)通过深入分析实例问题,培养学生将课程所学知识应用于实际问题的能力和价值观。
二、教学内容与安排第一部分:算式回顾(20分钟)1.算式的定义和运算法则;2.算式的加减乘除的运算规律;3.算式的练习。
第二部分:从算式到方程(40分钟)1.方程的定义和分类;2.一元一次方程的概念和解法;3.实际问题转化为方程的方法。
第三部分:实例讲解与练习(50分钟)1.实例问题分析与解法讲解;2.练习与答疑。
三、教学方法1.讲授法教师通过讲授法,向学生传授方程的基本概念和解法。
讲解过程中,教师应当注意举例和引导学生思考问题。
2.实例分析法通过实际的问题分析和解法讲解,激发学生学习数学的兴趣和好奇心,让学生更好地理解方程的应用。
3.小组讨论法按照能力分组,让学生在小组内进行探究式学习,互相讨论和交流,并通过互帮互助的方式,提高学生的学习能力和综合素质。
四、教学重点1.理解方程的概念和基本性质;2.掌握一元一次方程的基本解法;3.将实际问题转化为方程的能力。
五、课堂延伸1.学生可根据所学知识应用于实际问题,如小学数学奥数竞赛、中考智力类题目等。
2.学生掌握方程的基本解法后,可以进行更高级别的数学学科的学习,如高中数学等。
七年级数学《从算式到方程》教案设计方程是初等数学的基本学问,也是进一步学习一元一次方程,二元一次方程组,一元一次不等式及一元二次方程的基础。
接下来是我为大家整理的(七班级数学)《从算式到方程》教案设计,盼望大家喜爱!七班级数学《从算式到方程》教案设计一一、教材分析1.教学目标、重点、难点.教学目标:(1)了解方程的解的概念.(2)体验对方程解的估算,会检验一个数是不是某个一元方程的解.(3)渗透对应思想.重点:方程解的意义,会检验一个数是不是一个一元方程的解.难点:方程解的意义,会检验一个数是不是一个一元方程的解.2.例、习题的意图本节课重点是了解方程的解的意义. 通过实际问题中对所列方程解的估算,了解什么是方程的解以及由于估算遇到了困难,产生寻求方程解法的需求,为后面的学习做好铺垫.例1是通过实际问题列出方程,依据(1)题未知数的取值范围以及方程解的概念逐一代入方程来寻求方程的解,使同学亲身体验什么是方程的解,也为例2检验一个数值是不是方程的解做好铺垫. 对第(2)、(3)题再采纳(1)题(方法)寻求方程的解已不简单,这又为后边学习解方程奠定了乐观的心理储备.例2是依据方程的解的意义,使同学会检验一个数值是不是方程的解,这一点应切实使同学把握.3.认知难点与突破方法难点是方程解的意义和检验一个数是不是一个一元方程的解. 例1起着承上启下的作用,在估算方程解的过程中,理解方程解的意义,学会检验一个数是不是一个一元方程的解.抓住关键字“等号左右两边相等”,检验一个数是不是一个一元方程的解,要分别计算方程的左右两边,若其值相等,则这个未知数是方程的解,若不相等,则不是方程的解.二、新课引入复习:1.什么是一元一次方程?2.练习:当,,时,求式子的值.答案:,, .通过练习2强调求式子的值的一般步骤,其中易错易混的地方,如代入的值是负数,应加上括号,数与数相乘时应恢复乘号,运算关系不能混淆等.三、例题讲解例1 教材P69 中例1分析:三个题目中的相等关系分别是:(1)计算机已使用的时间+连续使用的时间=规定的检修时间.(2)2(长+宽)=周长.(3)女生人数—男生人数= .问题:列方程是解决问题的重要方法,利用所列的方程我们可以得出未知数的值,你能估算方程中的的值吗?分析:方程中等号左边有未知数,估算的值代入方程应使等号左边的值等于等号右边的值2450,这样的值才适合方程. 由于表示月份,是正整数,不妨让,,……分别代入方程算一算.由计算结果可以看到,每一个的允许值都使代数式有一个确定的数值,为便利起见,可以列一个表格:1 2 3 4 5 6 7 … 1850 2000 2150 2300 2450 2600 2750 … 从表中发觉:当时,的值是,也就是,当时,方程中等号的左边: . 等号的右边:2450. 由此得到方程的左边=右边,就说叫做方程的解,也就是方程中,未知数的值为5. 所以,方程的解就是 .教材P71中的小云朵,可以多选几个情况来说明,以加强对方程解得意义的理解.从表中你还能发觉哪个方程的解?(引导同学得出)如方程的解是 ;方程的解是等等,使同学进一步体会方程解的概念.方程解的意义:使方程中等号左右两边相等的未知数的值,叫做方程的解.教材P71的思索:你能估算方程和方程的解吗?通过估算这两个方程的解,你有什么想法?由于这两个方程估算其解有肯定的困难,数不整齐,或方程比较简单,消失冲突冲突,引导同学得出:学习解方程的方法非常必要.怎样检验一个数是否是方程的解呢?七班级数学《从算式到方程》教案设计二目标 1.使同学初步把握一元一次方程应用题的设未知数和列方程; 2.培育同学观看力量,提高他们分析问题和解决问题的力量; 3.使同学初步养成正确思索问题的良好习惯. 教重难点重点:从同学原有的认知结构提出问题在学校算术中,我们学习了用算术方法解决实际问题的有关学问,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?难点:师生共同分析、讨论利用等式的性质解一元一次方程和依据实际问题设未知数和列方程。
x=—4(3)两边加5,得—化简,得两边同乘—3,得x=—27一般地,从方程解出未知数的值以后,可以带如原方程检验,看这个值能否使方程的两边相等。
让学生检验上题是否正确。
(四)课堂练习利用等式的性质解下列方程并检验。
(1)x—5=2;(2)0。
3x=45;(3)2—x=3;(4)5x+4=0教师引导学生做,做好师生互动。
四、课后总结1。
本节课学习了哪些内容?2。
利用等式的性质解方程方法和步骤是什么?3。
在运用上述方法和步骤时应注意什么?五、作业布置;习题3。
1,3,4,5题一元一次方程——系统习题课(第4课时)一、教学目标(一)。
及时巩固所学知识;(二)。
培养学生观察能力,提高他们分析问题和解决问题的能力;(三)。
使学生初步养成正确思考问题的良好习惯。
二、教学重点和难点一元一次方程解简单的应用题的方法和步骤。
三、教学过程主要为习题处理,由浅入深,使学生把所学知识系统化。
主要由学生完成,老师引导。
习题3。
1中,1。
2。
3都是基础知识题,让学生到黑板上做几道有代表意义的题,然后老师对错的给与纠正,让学生对基础知识题的正确把握。
主要针对学生比较难懂的应用题来讲解;习题5,把1400元奖学金按照两种奖项奖给22名学生,其中一等奖每人200元,二等奖每人50元,获得一等奖的学生有多少人?分析:设获得一等奖的学生有X人,由已知条件得:X×200+(22—X)×50=1400本题要让学生理解这种设未知数建立方程的思想,设获得一等奖的学生有X人,那么二等奖的人数就是22—X。
习题6,种一批树苗,如果每人种10棵,则剩6棵树苗未种,如果每人种12棵,则缺少6棵苗,有多少人种数?分析:两种方法种树苗,等式就是总树苗相等,设有X人种树,那么:10X+6=12X—6所以找到等式就是列出方程的重要一步。
习题7,一辆汽车已经行驶了12000千米,计划每月再行驶800千米,几个月后这辆汽车将行驶20800千米?分析:由已经行驶了12000千米,计划每月再行驶800千米,最后达到20800千米,我们设X个月后达到目标,列出等式12000+800X=20800总之,找出他们之间存在的相等关系就是解决问题的关键。
初一数学《从算式到方程》教案范文大全方程的学习是初中数学中极其重要的基础知识,它的应用十分广泛,也是今后学习相关学科,如物理、化学等知识的重要工具,因此,使学生学会利用方程的模型去解决实际问题的方法十分重要。
接下来是小编为大家整理的初一数学《从算式到方程》教案范文大全,希望大家喜欢!初一数学《从算式到方程》教案范文大全一【教学习目标】一、知识与技能1、通过处理实际问题,让学生体验从算术方法到代数方法是一种进步。
2、初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念。
3、培养学生获取信息,分析问题,处理问题的能力。
二、过程与方法通过实际问题,感受数学与生活的联系。
三、情感态度与价值观培养学生热爱数学热爱生活的乐观人生态度。
【教学方法】探索式教学法教师准备教学用课件。
【教学过程】一、新课引入教师提出教科书第79页的问题,同时出现下图:问题2:你会用算术方法求出王家庄到翠湖的距离吗?问题3:能否用方程的知识来解决这个问题呢?可以提示学生从时间、路程、速度、四地的排列顺序等方面去考虑。
)当学生列出不同算式时,应让他们说明每个式子的含义)教师可以在学生回答的基础上做回顾小结:1、问题涉及的三个基本物理量及其关系;2、从知的信息中可以求出汽车的速度;3、从路程的角度可以列出不同的算式:如果设王家庄到翠湖的路程为x千米,那么王家庄距青山千米,王家庄距秀水千米.问题1:题目中的“汽车匀速行驶”是什么意思?问题2:汽车在王家庄至青山这段路上行驶的速度该怎样表示?你能表示其他各段路程的车速吗?问题3:根据车速相等,你能列出方程吗?教师引导学生设未知数,并用含未知数的字母表示有关的数量教师引导学生寻找相等关系,列出方程.教师根据学生的回答情况进行分析,如:依据“王家庄至青山路段的车速=王家庄至秀水路段的车速”可列方程:依据“王家庄至青山路段的车速=青山至秀水路段的车速”可列方程:给出方程的概念,介绍等式、等式的左边、等式的右边等概念.含有未知数的等式叫方程.归纳列方程解决实际问题的两个步骤:初一数学《从算式到方程》教案范文大全二教学目标:1.通过处理实际问题,让学生体验从算术方法到代数方法是一种进步.2.初步学会如何寻找问题中的相等关系,列出方程,了解方程的概念.3.培养学生获取信息、分析问题、处理问题的能力.教学重难点:从实际问题中寻找相等关系.教学过程:一、情境引入提出课本P78的问题,可用多媒体演示题目描述的行驶情境.1.理解题意:客车比卡车早1小时经过B地,从这句话中可知客车、卡车行驶的路程和时间分别有什么关系?2.能否列算式求出A、B两地之间的路程,要求能够解释列出的算式表示的实际意义.3.提出问题,如果用字母x表示A、B两地的路程,根据题意会得到一个什么样的式子?二、学习新知1.引导学生把题中的数量用表格形式反映题意:路程(km) 速度(km/h) 时间(h) 卡车 x 60 客车 x 702.学生回顾方程的概念,探讨、列出方程,并说出列得方程的依据.3.讨论列出方程表示的意义,并对比算术方法,体会列方程解决问题与列算式解决问题的优越性.4.反思:这个问题中除了A、B两地的路程是一个未知量,还有没有其它的量是未知的?如果还有其它的量是未知的,能否用字母(或未知数y)表示这个未知量,列出与前面不同的方程呢?学生分组讨论.5.将题中的已知量和未知量用表格列出:路程(km) 速度(km/h) 时间(h) 卡车 60 y 客车 70 y-16.探讨:①列出关于y的方程;②解释这个方程表示的实际意义(或列出这个方程的依据);③如何求题目问题:A、B之间的路程.7.总结以上列出两个含不同未知数x、y的方程的方法:①以路程为未知数,则根据两车行驶时间的关系列方程.②以行驶时间为未知数,则从两车行驶路程的关系列方程.8.比较列算式和列方程两种方法的特点:阅读课本P79.9.举一反三:分别列算式和设未知数列方程解决下列问题:(1)某数与它的的和是8,求这个数;(2)班上有女生32人,比男生多,求男生人数;(3)公园购回一批风景树,其中桂花树占总数的,樟树比桂花树的棵数多,杉树比前两种树木的棵数和还多12棵,求这批树木总共多少棵?三、初步应用1.例1:课本P79例1.例2(补充):根据下列条件,列出关于x的方程:(1)x与18的和等于54;(2)27与x的差的一半等于x的4倍.列出方程后教师说明:“4x”表示4与x的积,当乘数中有字母时,通常省略乘号“×”,并把数字乘数写在字母乘数的前面.2.练习(补充)(1)列式表示:① 比a小9的数; ② x的2倍与3的和;③ 5与y的差的一半; ④ a与b的7倍的和.(2)根据下列条件,列出关于x的方程:①12与x的差等于x的2倍;②x的三分之一与5的和等于6.四、课时小结1.本节课我们学了什么知识?2.你有什么收获?五、课堂作业小青家3月份收入a元,生活费花去了三分之一,还剩2400元,求三月份的收入.第2课时一元一次方程教学目标:1.理解一元一次方程、方程的解等概念.2.掌握检验某个值是不是方程的解的方法.3.培养学生根据问题寻找相等关系、根据相等关系列出方程的能力.4.体验用估算方法寻求方程的解的过程,培养学生求实的态度.教学重点:寻找相等关系,列出方程.教学难点:对于复杂一点的方程,用估算的方法寻求方程的解,需要多次的尝试,也需要一定的估计能力.教学过程:一、情境引入问题:小雨、小思的年龄和是25.小雨年龄的2倍比小思的年龄大8岁,小雨、小思的年龄各是几岁?如果设小雨的年龄为x岁,你能用不同的方法表示小思的年龄吗?(25-x,2x-8)由于这两个不同的式子表示的是同一个量,因此我们又可以写成:25-x=2x-8,这样就得到了一个方程.二、自主尝试1.尝试:让学生尝试解答课本P79的例1.2.交流:在学生基本完成解答的基础上,请几名学生汇报所列的方程,并解释方程等号左右两边式子的含义.3.教师在学生回答的基础上作补充讲解,并强调:(1)方程等号两边表示的是同一个量;(2)左右两边表示的方法不同.4.讨论:问题1:在第(1)题中,你还能用两种不同的方法来表示另一个量,再列出方程吗?问题2:在第(3)题中,你还能设其它的未知数为x吗?5.建立概念(1)概念的建立:在学生观察上述方程的基础上,教师进行归纳:各方程都只含有一个未知数,并且未知数的次数都是1,这样的方程叫做一元一次方程.“一元”:一个未知数;“一次”:未知数的指数是一次.判断下列方程是不是一元一次方程:①23-x=-7; ②2a-b=3;初一数学《从算式到方程》教案范文大全三教学目标 1.了解方程、一元一次方程、方程的解、解方程等概念;2.掌握等式的性质,能对等式进行变形。
初中数学《从算式到方程》教案设计范文一、教学目标1.知识与技能:a)理解方程的概念,掌握方程的书写方法。
b)学会从实际问题中抽象出方程,解决实际问题。
c)掌握方程的解法,包括一元一次方程和简单的一元二次方程。
2.过程与方法:a)通过观察、分析、归纳,培养学生的逻辑思维能力。
b)通过小组讨论,培养学生的合作能力。
3.情感态度与价值观:a)培养学生对数学的兴趣,增强学习的积极性。
b)培养学生独立解决问题的能力,提高自信心。
二、教学重点与难点1.教学重点:a)方程的概念及其书写方法。
b)方程的解法。
2.教学难点:a)从实际问题中抽象出方程。
b)方程的解法,尤其是二次方程。
三、教学过程1.导入a)引导学生回顾算式的概念,如加法、减法、乘法、除法等。
b)提问:算式与方程有什么区别?2.知识讲解a)介绍方程的定义:含有未知数的等式。
b)举例说明方程的书写方法,如2x+3=7。
c)讲解方程的解法,如一元一次方程、一元二次方程等。
3.实例分析a)分析教材中的实例,如“小明的年龄是妈妈的1/3,妈妈的年龄是多少?”b)引导学生从实际问题中抽象出方程,如设妈妈的年龄为x,则小明的年龄为1/3x。
c)指导学生用方程解决问题。
4.练习与讨论a)让学生独立完成教材中的练习题,如“已知一个数的平方减去这个数等于2,求这个数。
”b)组织学生进行小组讨论,交流解题过程和心得。
b)提问:方程在实际生活中有哪些应用?c)拓展:介绍二元一次方程、三元一次方程等。
6.作业布置a)布置教材中的课后习题,如一元一次方程、一元二次方程的练习题。
b)鼓励学生从生活中发现方程的应用,记录下来并与同学分享。
四、教学反思1.课堂效果:a)观察学生在课堂上的反应,了解他们对方程的理解程度。
b)反思教学过程中的不足,如讲解是否清晰、例题是否典型等。
2.学生反馈:a)收集学生的反馈意见,了解他们对课堂内容的掌握程度。
b)根据反馈调整教学方法,提高教学效果。
第五章一元一次方程5.1.1 从算式到方程【学习目标】1.让学生在掌握算式和简单方程的基础上,过渡到一元一次方程的学习;2.理解方程的意义,会根据实际情境列方程;3.掌握方程的解的概念,会判断方程的解;4.掌握一元一次方程的概念,会判断所给方程是否为一元一次方程.【学习重难点】重点:掌握一元一次方程的概念.难点:从实际问题中寻找等量关系,进而列出方程.【教学内容】新知探究1:方程的概念甲、乙两支登山队沿同一条路线同时向一山峰进发,甲队从距大本营1km的一号营地出发,每小时行进1.2km;乙队从距大本营3km的二号营地出发,每小时行进0.8km,多长时间后,甲队在途中追上乙队?你会用算术方法解决这个问题吗?列算式试试.甲、乙两队相距km,甲、乙两队的速度差是km/h,所以甲队追上乙队需要h.下面,我们引入一种新的方法来解决这个问题.思考:在这个问题中,已知:甲乙两队的行进速度及甲乙两队到大本营的距离.未知:行进的时间和路程.如果设两队的行进时间为x h,根据“路程=速度×时间”,甲队和乙队行进路程可以分别表示为1.2x km和0.8x km.甲队距大本营的路程:(1.2x+1)km乙队距大本营的路程:(0.8x+3)km想一想,甲队追上乙队时,他们距大本营的路程之间有什么关系?甲队追上乙队时,他们距大本营的路程相等.比较:列算式和列方程用算术方法解题时,列出的算式只含有已知数,对于较复杂的问题,列算式比较困难;而方程是根据问题中的等量关系列出的等式,其中既含有已知数,又含有用字母表示的未知数,解决问题比较方便.问题探究问题1 用买12个大水杯的钱,可以买16个小水杯,大水杯的单价比小水杯的单价多5元,两种水杯的单价各是多少元?思考:本题的等量关系是什么?设大水杯的单价为x元,那么小水杯的单价为(x-5)元.根据“单价×数量=总价”,可以列方程12x = 16(x-5).由这个含有未知数x的等式可以求出大水杯的单价,进而可以求出小水杯的单价.思考:若将小水杯的单价设为x元?你会列方程吗?设小水杯的单价为x元,那么大水杯的单价为元.根据“单价×数量=总价”,可以列方程12(x+5)=16x.由这个含有未知数x的等式可以求出小水杯的单价,进而可以求出大水杯的单价.问题2 下图是一枚长方形的庆祝中国共产党成立100周年纪念币,其面积是4 000mm2,长和宽的比为8:5(即宽是长的58). 这枚纪念币的长和宽分别是多少毫米?如果设这枚纪念币的长为x mm,则纪念币的宽可以表示为58x mm,依据长方形的面积公式,面积可以表示为58x2 mm.已知纪念币面积为4 000mm2,所以58x2 =4 000.由这个含有未知数x的等式可以求出这枚纪念币的长,进而可以求出纪念币的宽.像这样,先设出字母表示未知数,然后根据问题中的相等关系,列出一个含有未知数的等式,这样的等式叫作方程.注意:方程必须满足两个条件:(1)是等式;(2)化简后含有未知数. 二者缺一不可.考点解析例下列式子中,是方程的有()①8+2=10;② 3x+y=10;③x-1;④1x - 1y=1;⑤x >3;⑥x=1;⑦a2-1=0;⑧b2 ≠-1.A.4个B.5个C.6个D.7个注意:方程一定是等式,但等式不一定是方程.巩固练习1.下列各式中,是方程的是( )A.4-5=-1B.x+3y-1C.s+2t= -5D.a-6<32.下列各式中,不是方程的是.(填序号)①3x+1=4;②x2+2x+1=0;③ 4-3=1;④ |x|-1=0;⑤3x+1;⑥1a=a+1. ⑦x>0.3. 判断下列各式哪些是方程?是的标记“√”,不是的标记“×”.(1) 5x+3y-6x=37 ( ) (2) 4x-7 ( )(3) 5x ≥ 3 ( ) (4) 1+2=3 ( )(5) 6x2+x-2=0 ( ) (6) -7x- m=11 ( )注意:(1)方程中的未知数可以用字母x表示,也可以用其他字母表示,如y、z等.(2)方程中未知数的个数可以是一个,也可以是两个或两个以上,如x+y=12等.总结归纳用算术方法解题时,列出的算式表示用算术方法解题的计算过程,其中只含有已知数,不含未知数;而方程是根据问题中的相等关系列出的等式,其中既含有已知数,也含有用字母表示的未知数,这为解决许多问题带来了方便.通过今后的学习,你会逐步认识到:从算式到方程是数学的一大进步.新知探究2:列方程典例解析例1 根据下列问题,设未知数并列出方程:(1) 某校女生占全体学生数的52%,比男生多80人,这所学校有多少名学生?思考:本题的等量关系是什么?解:设这所学校的学生数为x,那么女生数为0.52x,男生数为(1-0.52)x,根据“女生比男生多80人”,列得方程0.52x - (1-0.52)x = 80.(2) 如图,一块正方形绿地沿某一方向加宽5m,扩大后的绿地面积是500m2,求正方形绿地的边长.解:设正方形绿地的边长为x m,依据扩大后的绿地面积= 500m2女生人数-男生人数=80.列得方程x(x+5)=500→x2+5x=500.巩固练习1.《算法统宗》是我国古代数学著作,其中记载了一道数学问题,大意如下:用绳子测水井深度,若将绳子折成三等份,则井外余绳4尺;若将绳子折成四等份,则井外余绳1尺.问绳长和井深各多少尺?设井深为x尺,则可列方程为.解析:根据将绳三折测之,绳多四尺,则绳长为:3(x+4);根据绳四折测之,绳多一尺,则绳长为:4(x+1).故3(x+4)=4(x+1).2.甲、乙两人分别从相距30千米的A,B两地骑车相向而行,甲骑车的速度是10千米/时,乙骑车的速度是8千米/时,甲先出发25分钟后,乙骑车出发,问乙出发后多少小时两人相遇?(只列方程)莉莉:设乙出发后x小时两人相遇,列出的方程为25×10+8x+10x=30.请问莉莉列出的方程正确吗?如果不正确,请说明理由并列出正确的方程.解:莉莉列出的方程不正确.理由:列方程时未统一单位.正确方程:设乙出发后x小时两人相遇,等量关系为:甲的路程+乙的路程=30千米依×10+10x+8x=30.题意得2560总结提升归纳分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法. 这个过程可以表示如下:列方程的基本思路:(1)理解题意,弄清已知是什么,未知是什么;(2)找出题目中的相等关系;(3)根据相等关系列方程。
初中七年级上册数学《从算式到方程》教案一、教学目标1. 知识与技能:(1)了解算式和方程的基本概念和区别。
(2)能够通过变形将一个算式转化为一个简单的方程。
(3)能够解一元一次方程。
2. 过程与方法:(1)通过例题引导学生掌握解方程的基本方法和思路。
(2)通过练习和讨论,提高学生解题的能力和思考的技巧。
3. 情感态度与价值观:(1)培养学生的数学兴趣和好奇心,增强解题信心。
(2)感受数学知识在实际问题中的应用。
二、教学重难点1. 教学重点:(1)算式和方程的基本概念和区别。
(2)一元一次方程的解法。
2. 教学难点:(1)如何将一个算式转化为一个简单的方程。
(2)如何处理含分数、含括号的方程。
三、教学过程(一)导入新知识教师通过简单的口算练习,引导学生回顾和复习初中六年级以前的知识,然后向学生展示下面的算式和方程:1、7+5=122、x+5=123、3x=15请学生思考这三个式子的区别,解释算式和方程的概念。
(二)讲授新课1. 解释算式和方程的概念算式是由数和符号组成的式子,其结果是唯一的。
例如7+5=12就是一个算式,它的结果是12。
方程是一个表示两个量相等的式子,其中含有一个未知量(通常用字母表示这个未知量)。
例如x+5=12就是一个方程,它表示x加上5的结果等于12。
2. 利用等式变形将算式转化为方程将一个算式转化为一个方程的方法有很多种,其中最常见的就是等式变形。
例如,将7x-20=5x+20转化为方程,可以按照下面的步骤来操作:a. 将5x移项,得到7x-5x=20+20,即2x=40。
b. 将2x除以2,得到x=20。
注意:化简方程时要注意符号的变化,如负数的移项和分配律的运用。
3. 解一元一次方程下面以一个简单的例子来说明解一元一次方程的方法:例:解方程2x+3=7+5xa. 将变量移到一边,常数移到另一边,得到2x-5x=7-3,即-3x=4。
b. 将方程两边都除以-3,得到x=-4/3。
第二章一元一次方程2.1 从算式到方程2.1.1 一元一次方程(一)一、教材分析1.教学目标、重点、难点.教学目标:(1)了解什么是方程,什么是一元一次方程.(2)会用未知数表示生活中的数量关系.(3)体会用字母表示数的优越性.重点:知道什么是方程,什么是一元一次方程.难点:方程的意义和一元一次方程的意义.2.例、习题的意图本节课的知识点有三个:知识点1 通过实例体会方程是研究数量关系的重要数学模型.方程的学习是初中数学中极其重要的基础知识,它的应用十分广泛,也是今后学习相关学科,如物理、化学等知识的重要工具,因此,使学生学会利用方程的模型去解决实际问题的方法十分重要.例1中的两个问题的提出,目的是让学生亲身体验两种解法,算术方法和列方程(代数法)方法解决问题,其思维方向是不同的,感受两种解题中,列方程更便于思考,尤其是问题2体现的更加明显,使学生认识到引进未知数列方程解决实际问题的必要性,这是数学的一个进步.教材P69的思考,利用不同的相等关系还可以有不同的列方程的方法,可根据学生实际情况,教师带领学生完成,不必让学生在思考相等关系上耽误很长时间.采用填空方法列式,继而列方程是在引导学生得到结论,重点应放在从算式到方程这是一个进步,而不是放在如何列方程上.知识点2 方程的意义.例2(补充题)由实际问题引出方程的概念后,为使学生对方程概念有一个准确的认识,补充这个例题.判断下列各式哪些是等式,哪些是方程,并说出为什么?使学生能正确的认识什么是等式,什么是方程,培养学生的观察能力和言必有据的良好学习习惯.知识点3 一元一次方程的意义.借助例2引出一元一次方程的意义,在具体题目中,注意培养学生的说理能力.例3(补充题)巩固一元一次方程的概念,求某些未知数的值.3.认知难点及突破方法教学难点之一是方程的概念,应使学生在具体问题中,分清什么是等式,什么是方程,建立起等式不一定是方程,但方程一定是等式的正确认识.教学难点之二是一元一次方程的概念,应紧紧抓住一元一次方程的概念,引导学生通过观察、比较、学生之间的交流,来认识什么是一元一次方程.二、新课引入填空:1、 小明的体重是11公斤,爸爸的体重是小明体重的7倍少1,爸爸的体重是 76 公斤,如果小明的体重是x 公斤,那么爸爸的体重是(71)x - 公斤.2、 从王家庄到青山的路程是x 千米,汽车行驶需2小时,则汽车的速度可以表示为2x 千米/时. 三、例题讲解例1 问题1 (补充题) 小明爸爸的体重是76公斤,他比小明体重的7倍少1公斤,你知道小明的体重是多少公斤吗?不限解法,说出你的思考.用算术解法:()761711+÷= (公斤).用方程解法(即代数法):设未知数,找相等关系,列方程求解.此题的相等关系是:爸爸的体重=小明体重的7倍-1.解:设小明体重为x 公斤,根据题意,得 7176x -=,解得11x =.答:小明的体重是11公斤.让学生比较两种解法思维方式有什么不同?哪种解法更便于思考?算术法属于逆向思维,列方程(代数法)属于顺向思维,未知数作为已知数直接参与列式,方程解法从思维方式上直接,更便于思考,所以说方程解法优于算术解法(可能会有一部分学生说算术解法更好,这里不能强加给学生这个结论,随即引出问题2,让学生自己去感受).问题2:教材P68章前图中的问题.引导学生搜集表中的信息:王家庄到青山需3小时,青山到秀水需2小时,王家庄到秀水需5小时;搜集图中的信息:青山距翠湖50千米,翠湖距秀水70千米,青山距秀水120千米.用算术法解,可由汽车从青山到秀水用2个小时及两地相距50+70=120千米,得到汽车的时速为5070602+=(千米),进而得出王家庄距离秀水共(3+2)×60=300(千米),最终求出王家庄距翠湖300-70=230(千米),列综合算式为:(50+70)÷2×(3+2)-70=230(千米),还有其它列式方法请学生课下完成,在这不必耽误更多时间,重点放在下面的用方程方法上.用方程(代数法)解,用教材P68填空部分,引导学生列方程. 注意利用书上的示意图,帮助学生理解问题,直接设未知数,利用汽车匀速行驶,各段路程的车速是相等的这个关系列方程,得507035x x -+=. 以后我们将学习如何求出这个方程中的未知数x ,从而得出王家庄到翠湖的路程. 教材P69思考栏目,带领学生完成. 也可以利用:“路程比等于时间比”这个相等关系列方程,得50350702x -=+.若间接设未知数,王家庄到青山的路程为x 千米,则根据题意,得()32703x +- 50x =+.也可以利用:“路程比等于时间比”这个相等关系列方程,得350702x =+. 注意:各种列方程的方法,可结合学生实际情况,如果学生有困难,教师要带领学生得出,以便控制课堂时间,重点应放在对方程解法的感受上.问题2中对两种解法(算术解法和方程解法)比较其思维方式的优劣,得出用方程解决问题更直接,更便于思考.归纳为:注意收集题目中所提供的表格、图形信息,多角度全面思考问题.本章我们将学习一元一次方程.1.方程的意义:列方程时,要先设字母表示未知数(一般用x ),然后根据问题中的相等关系,写出含有未知数的等式,这样的等式叫做方程.注意:等式是含有等号的式子. (这里的等式指只含一个等号的式子)方程满足两个条件2⎧⎨⎩(1)是等式(含有等号的式子);()等号的左边或右边含有未知数.例2(补充题)下列各式哪些是等式,哪些方程,为什么?(1)53a b -; (2)437+=;(3)5323x x -=+; (4)102x y -=; (5)61x -<-; (6)2534y -=; (7)()2423a a -=-; (8)2154m m -=; (9)135x x-=. 分析:解这个题目可根据方程的意义来判断. 含有未知数的等式叫做方程,否则就不是方程.培养学生细心观察,言必有据的良好学习习惯.答案:(1)不是等式,所以也不是方程,因为53a b -只有运算关系没有相等关系.(2)是等式,但不是方程,因为虽然是等式但不含有未知数.(3)是等式,也是方程.(4)是等式,也是方程.(5)不是等式,所以也不是方程.(6)是等式,也是方程.(7)是等式,也是方程.(8)是等式,也是方程.(9)是等式,也是方程.可以进一步让学生指明方程中的未知数是什么?2.一元一次方程的意义:只含有一个未知数(元),且未知数的指数都是1(次),这样的方程叫做一元一次方程.注意:一元一次方程首先是方程,其次一元指一个未知数,这里不考虑同一个未知数出现了几次,且未知数的最高指数是1次.再来看前面例1(一题多用),我们从方程中选出一元一次方程是第(3)、(6)、(7);方程(4)含有两个未知数x 和y ;方程(8)未知数的最高次数不是1;方程(7)中的()24-,底数不是未知数,其次数与未知数的次数无关;方程(9)未知数在分母,不是一元一次方程,今后我们再研究它是什么方程.回顾前面例1中的问题1和问题2,所列的方程是什么方程?例3※(补充题)已知关于x 的方程()212m x mx -+=是一元一次方程,求m 的值. 分析:由一元一次方程的意义,只有()210m x -=,即10m -=,得1m =. 解:略.四、随堂练习1、(补充题)选择题:(1)下列各式中,是方程的是( ).A .530m -<B . 538+=C . 83x -D . 269a b += (2 ) 在方程3xy =,350y -=,2176a a a -+=-,230m m -=, 374x=,0x =中,是一元一次方程的有( )个.A . 2B . 3C . 4D . 52.(补充题)七年级一班全体学生去旅游,租车每人交20元,还差19元;每人交21元,又多18元,设该班有x 名学生,可用式子_____________或______________表示租车的费用,并列方程为________________.答案:1.(1)D ; (2)B .2. 2019x +;2118x -;20192118x x +=-2.五、课后练习1.(补充题)指出下列方程中的未知数是什么,方程的左边是什么,方程的右边是什么?并且判断它是否是一元一次方程?(1)321x =-; (2)27x y +=;(3)2515x x +-=; (4)222x y y =+; (5)3x π-=; (6)23547m m +=-; (7)11123a a +--=. 2. (补充题)方程 ()()22230a x a x +---=是一元一次方程,则a 等于( ).A .2-B . 2C . 2±D . 03. (补充题)若关于x 的方程()1350n m x +--=是一元一次方程,则m 、n 的取值是( ).A . 3,1m n ==-B . 3,0m n ≠=C . 0,0m n ≠=D . 3,1m n ≠=-4.(补充题)甲厂有某种原料120吨,乙厂有同样原料96吨,现在每天甲厂用原料15吨,乙厂用原料9吨,请你用数学式子表示x 天后两厂剩下的原料相等.5. 教材P75习题2.1 5、6、7.答案:1. 略. 2. A 3. B 4. 设x 天后两厂剩下原料相等,则有12015969x x -=-.。
《从算式到方程》教案【教学目标】1.掌握方程的概念,了解方程与代数式之间的区别与联系。
2.学会用方程解决简单的实际问题,感受方程的实用价值。
3.培养学生的数学思维能力和解决问题的能力,激发学生对数学的兴趣。
【教学重点】掌握方程的概念,学会用方程解决简单的实际问题。
【教学难点】理解方程与代数式之间的区别与联系,感受方程的实用价值。
【教具准备】多媒体课件、小黑板、练习纸。
【教学过程】一、导入新课1.通过多媒体展示一些简单的数学问题,如计算人数、重量、长度等,让学生用算式来表示。
2.引导学生回顾算式和方程的概念,并思考算式和方程之间的区别与联系。
3.引出本节课的主题:从算式到方程。
二、探索新知1.通过实例讲解方程的概念和特点。
2.通过例题的解析,让学生理解如何用方程解决实际问题。
3.通过多个例题的讲解,让学生掌握用方程解决简单实际问题的技巧和方法。
4.引导学生自主探究和合作交流,鼓励他们提出问题和解决问题。
5.总结从算式到方程的思路和方法:首先分析问题中的等量关系,然后用字母代替未知数,建立方程,最后解方程求出未知数的值。
三、巩固提高1.通过一系列的练习题,让学生进一步巩固所学的知识。
2.通过一些实际问题,让学生应用所学的知识解决实际问题。
3.通过一些拓展性问题,激发学生的思维能力和创新能力。
四、课堂小结1.回顾本节课所学的知识点,让学生再次明确从算式到方程的概念和方法。
2.引导学生总结用方程解决简单实际问题的思路和方法。
3.强调数学思维能力和解决问题的能力在数学学习中的重要性。
2024从算式到方程人教版数学七年级上册教案一、教学目标1.让学生理解方程的概念,掌握方程的解法。
2.培养学生运用方程解决实际问题的能力。
3.培养学生的逻辑思维和推理能力。
二、教学重点与难点1.教学重点:理解方程的概念,掌握方程的解法。
2.教学难点:列方程解实际问题,方程的变形和化简。
三、教学过程1.导入新课教师通过展示一些简单的算式,引导学生回顾已学的数学知识。
提问:同学们,我们已经学过很多算式,那么你们知道算式和方程有什么区别吗?2.探究方程的概念教师通过展示一些具体的方程,让学生观察方程的特点。
提问:同学们,你们觉得方程和算式有什么不同?方程有什么特殊的地方?3.学习方程的解法教师通过示例,引导学生学习方程的解法。
示例:解方程2x+3=7第一步:将方程中的常数项移至等式的右边,得到2x=73。
第二步:将方程两边同时除以2,得到x=2。
4.实际应用教师通过设计一些实际问题,让学生运用方程解决。
问题1:小明的年龄是爸爸的1/3,今年小明12岁,求爸爸的年龄。
解:设爸爸的年龄为x,根据题意得到方程x/3=12,解得x=36。
问题2:一本书的价格是另一本书的2倍,两本书的总价是60元,求两本书的价格。
解:设便宜的书价格为x元,贵的书价格为2x元,根据题意得到方程x+2x=60,解得x=20,贵的书价格为40元。
5.巩固练习教师设计一些练习题,让学生独立完成,巩固所学知识。
练习题:解方程:3x4=19解方程:5x+2=32解方程:2(x3)=86.课堂小结提问:同学们,你们在本节课中学到了什么?有什么收获?7.作业布置教师布置一些作业,让学生课后巩固所学知识。
作业:解方程:4x+5=37解方程:3(x2)=12解方程:2(3x4)=14四、教学反思五、教学拓展教师可以引导学生进一步学习方程的变形和应用,如一元二次方程、不等式等。
通过本节课的教学,让学生掌握方程的概念和解法,培养学生运用方程解决实际问题的能力,为今后的数学学习打下坚实基础。
5.1.1从算式到方程一、教学目标1. 了解方程及一元一次方程的概念与其解方程和方程的解的概念。
2. 通过列方程的过程,体会由算式到方程是数学的一大进步。
3. 体验用具体数值的计算和比较来加深对方程解的理解,渗透从特殊到一般,从具体到抽象的数学思想。
二、教学重点一元一次方程概念及方程的解的理解三、教学难点列一元一次方程,思维习惯的转变问题四、教学过程设计1.复习巩固根据题目要求,列出下列代数式(1)比a的3倍小4的数3a-4a+6(2)a的一半与6的和12(3)苹果原价是p元/kg,现在按九折优惠出售,苹果的售价?0.9p(4)一个长方形的长是5,宽是p,这个长方形的面积? 5p2.创设情境,提出问题问题1:一辆快车和一辆慢车同时从A地出发沿同一公路同方向行驶,快车的行驶速度是70 km/h,慢车的行驶速度是60 km/h,快车比慢车早1 h经过B地A,B两地间的路程是多少?(1)上述问题中涉及到了哪些量?路程速度时间(2)如果将AB之间的路程用x表示,用含x的式子表示下列时间关系:客车行完AB全程所用时间:卡车行完AB全程所用时间:两车所用的时间关系为:快车比慢车早到1h即:(慢车用时)- (快车用时)=1(3)如果用y表示快车行完AB 的总时间,你能从快车与慢车的路程关系中找到等量关系,从而列出方程吗?等量关系:快车y小时路程=慢车(y+1)小时路程(4)如果用z表示慢车行完AB的总时间,你能找到等量关系列出方程?等量关系:慢车z小时路程= 快车提前1 小时走的路程3.典例分析例:根据下列问题,设未知数并列出方程:(1)用一根长24cn的铁丝围成一个正方形,正方形的边长是多少?(2)一台计算机已经使用1700 h,预计每月再使用150 h,经过多少月这台计算机的使用时间达到规定的检修时间2450 h?(3)某校女生占全体学生数的52%,比男生多80 人,这个学校有多少学生?解:(1)设正方形的边长为x cm.等量关系:正方形边长×4=周长,列方程:4x=24.(2)设x月后这台计算机的使用时间达到2450 h.等量关系:已用时间+再用时间=检修时间,列方程:1700+150x=2 450.(3)解:设这个学校的学生人数为x,那么女生人数为0.52x,男生人数为(1-0.52)x.等量关系:女生人数-男生人数=80,列方程:0.52x-(1-0.52)x=80.问题:观察上面的例题,列出的三个方程有什么特征?学生作答,教师完善总结。
《从算式到方程》教学设计
设计教师:薛俊龙
教材分析:本节课是人教版七年级数学上册第三章第一节内容,在掌握整式的基本性质以后,本章利用整式的性质和基本运算对方程求解,建立方程模型是本章的重点之一。
从算数到方程正是本章第一节,它是本章的一个窗口,理解方程的列法及列方程的必要性是本节的一个重点。
学情分析:七年级学生正处于从感性认识到理性认识,从形象思维到抽象思维转变时期,从算式到方程正好符合学生的认识特点;另外,学生有求知的需求,有独立思考,协作探究的能力,这就要求教师来合理的引导,并且开发、利用学生的思维特点。
学习目标:1.初步掌握一元一次方程解简单应用题的方法和步骤;并会列出一元一次方程解简单的应用题;
2.培养学生观察能力,提高他们分析问题和解决问题的能力;
3.使学生初步养成正确思考问题的良好习惯.
学习重点和难点
一元一次方程解简单的应用题的方法和步骤.
学习过程设计:
一、从学生原有的认知结构提出问题
在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否应用一元一次方程来解决呢?若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较,它有什么优越性呢?
为了回答上述这几个问题,我们来看下面这个例题.
问题1:某数的3倍减2等于某数与4的和,求某数.
(首先,用算术方法解,由学生回答,教师板书)
解法1:(4+2)÷(3-1)=3.
答:某数为3.
(其次,用代数方法来解,教师引导,学生口述完成)
解法2:设某数为x,则有3x-2=x+4.
解之,得x=3.
答:某数为3.
纵观上述问题的这两种解法,很明显,算术方法不易思考,而应用设未知数,列出方程并通过解方程求得应用题的解的方法,有一种化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.
我们知道方程是一个含有未知数的等式,而等式表示了一个相等关系.因此对于任何一个应用题中提供的条件,应首先从中找出一个相等关系,然后再将这个相等关系表示成方程.
本节课,我们就通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.
二、师生共同分析、研究一元一次方程解简单应用题的方法和步骤
问题2 一辆汽车匀速行驶,途中经王家庄、青山、秀水三地的时间和王家庄、青山、秀水的位置如下图所示:
观察上图,根据图表中给出的信息,回答以下问题.
(1)根据图中的汽车匀速行驶途经王家庄、青山、秀水三地的时间表,•你知道,汽车从王家庄行驶到青山用了多少时间?青山到秀水呢?
(2)青山与翠湖、秀水到翠湖的距离分别是多少?
(3)本问题要求什么?
(4)你会用算术方法解决这个实际问题呢?不妨试试列算式.
(5)如果设王家庄到翠湖的路程为x(千米),你能列出方程吗?
解:(1)汽车从王家庄行驶到青山用了小时,青山到秀水用了小时.
(2)青山与翠湖的距离为千米,秀水与翠湖的距离为千米.
(3)王家庄到翠湖的距离是多少千米?
(4)分析:要求王家庄到翠湖的距离,只要求出王家庄到青山的距离,•而王家庄到青山的时间为小时,所以必需求汽车的速度.
如何求汽车的速度呢?
这里青山到秀水的时间为小时,路程为千米,因此可求的汽车的平均速度为(千米/时)
王家庄到青山的路程为:(千米)
所以王家庄到翠湖的路程为:(千米)
列综合算式为:。
(5)分析:先画出示意图,示意图往往有助于分析问题.
从上图中可以用含x的式子表示关于路程的数量:
王家庄距青山千米,王家庄距秀水千米.
从章前图表中可以得出关于时间的数量:
从王家庄到青山行车小时,从王家庄到秀水行车小时.
由路程数量和行车时间的数量,可以得到行车速度的表达式.
汽车从王家庄开往青山时的速度为千米/时,汽车从王家庄开往秀水的速度为千米/时.
要列出方程,必需找出“相等关系”,题目中还有哪些相等关系吗?
根据汽车是匀速行驶的,可知各段路程的车速相等.
于是列出方程:。
以后我们将学习如何解这个方程,求出未知数x的值,•从而得出王家庄到翠湖的路程.思考:对于以上的问题,你还能列出其他方程吗?如果能,你依据的是哪个相等关系?
根据汽车匀速行驶,可知各段路程的车速相等.
所以还可以列方程:
50
3
x-
=
5070
2
+
或
70
5
x+
=
5070
2
+
(前者是汽车从王家庄到青山与从青山到秀水,这两段路程的车速相等,后者是汽车从王家庄到翠湖与从青山到秀水,这两段路程的车速相等)
比较用算术方法和列方程方法解应用题,用算术方法解题时,列出的算式表示用算术方法解题的计算过程,其中只能用已知数,对于较复杂的问题,列算式比较困难;而方程是根据问题中的等量关系列出的等式,其中既含有已知数,又含有用字母表示的未知数,有了这个未知数,问
题中的已知量与未知量之间的关系就很容易用含有这个未知数的式子表示,再根据
“相等关系”列出方程.
有了方程后人们解决许多问题就更方便了,通过今后的学习,你会逐步认识:从算式到方程是数学的进步.
列方程时,要先设字母表示未知数,通常用x、y、z等字母表示未知数,•然后根据问题中的相等关系,写出含有未知数的等式即方程.
例1:根据下列问题,设未知数并列出方程.
(1)用一根长24cm的铁丝围成一个正方形,正方形的边长是多少?
(2)一台计算机已使用1700小时,预计每月再使用150小时,经过多少月这台计算机的使用时间达到规定的检修时间2450小时?
(3)某校女生占全体学生的52%,比男生多80人,这个学校有多少学生?
三、一元一次方程的概念.
观察以上所列出的各方程,有什么特点?每个方程有几个未知数,•未知数的指数是多少?
只含有一个未知数,并且未知数的指数是1,这样的方程叫做一元一次方程.
以上分析过程可归纳为:
分析问题中的数量关系──设未知数x──用含x的式子表示实际问题中的数量关系──找出相等关系,利用相等关系列出方程(一元一次方程).
列方程是解决实际问题的一种重要方法,利用方程可以解出未知数.
解方程就是求出使方程中等号两边相等的未知数的值的过程,•这个值就是方程的解.
四、巩固练习
课本第80页练习.
五、课堂小结
方程在小学里已初步学过,对于方程中的一些概念,如:方程的解和解方程等,要进一步弄清楚,今天还学习了一元一次方程的定义,“一元”是指方程中只有一个未知数,“一次”是指方程中未知数的指数是一,这样的方程才是一元一次方程.
用估算求方程的解,实际上是检验一个数是否为方程的解,方法是:把这个数分别代入方程的左、右两边,看是否相等,若方程只有一边含有未知数,而另一边只有一个数,则只需代入只有未知数的一边,计算出结果,看其是否和另一边相等.
列方程是本节课重点,掌握列方程解决实际问题方法步骤:
设未知数──用含未知数的式子表示问题中的数量关系.
找出相等关系──列出一元一次方程.
其中找相等关系是关键也是一个难点,这个相等关系要能够表示应用题全部含义的相等关系,也就是题目中给出的条件应予充分利用,不能把同一条件重复利用.
六、作业布置
课本第80页习题3.1第1、2、5、6、9题.
---精心整理,希望对您有所帮助。