初中数学三角形证明题经典题型训练汇总(修订版)
- 格式:doc
- 大小:461.55 KB
- 文档页数:30
引言:三角形是数学中重要的几何形状之一,而三角形的证明题也是数学学习中的重要内容。
本文总结了初中阶段数学中44道经典的三角形证明题,帮助学生更深入地理解三角形的性质和定理,同时提高解题能力和逻辑思维能力。
概述:本文分为五个大点介绍了这44道经典的三角形证明题。
每个大点下面包含了59个小点详细阐述。
这些证明题涵盖了三角形的等边、等腰、直角、等腰直角以及一般三角形的性质和定理。
正文内容:一、等边三角形的证明题1.证明等边三角形三条边相等。
2.证明等边三角形三个内角都是60度。
3.证明等边三角形任意一角的正弦值都是√3/2。
4.证明等边三角形的外接圆半径等于边长的一半。
5.证明等边三角形的内切圆半径等于边长的二分之一。
二、等腰三角形的证明题1.证明等腰三角形的两个底角相等。
2.证明等腰三角形的顶角是其它两个角的一半。
3.证明等腰三角形的中线等于底边的一半。
4.证明等腰三角形的高等于底边的一半。
5.证明等腰三角形的内切圆半径等于底边的一半。
三、直角三角形的证明题1.证明直角三角形的两个锐角的和等于90度。
2.证明直角三角形斜边上的高等于直角边的乘积除以斜边长。
3.证明直角三角形的斜边是两个直角边长度之和的一半。
4.证明直角三角形的两个锐角的正弦值之和等于1。
5.证明直角三角形的斜边是两个直角边长度之差的一倍。
四、等腰直角三角形的证明题1.证明等腰直角三角形的两个锐角相等。
2.证明等腰直角三角形的斜边等于直角边的平方根。
3.证明等腰直角三角形的面积等于直角边的平方除以2。
4.证明等腰直角三角形对角线相等。
5.证明等腰直角三角形的两条直角边互相垂直。
五、一般三角形的证明题1.证明三角形内部三条角的和等于180度。
2.证明三角形外角等于不相邻的内角之和。
3.证明三角形三边之和大于第三边。
4.证明三角形两边之比的正弦值等于对应两个角的正弦值之比。
5.证明三角形中位线之和等于第三条边的一半。
总结:通过这44道经典的三角形证明题的学习,学生能够更深入地理解三角形的性质和定理。
全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD延长AD 到E,使DE=AD,则三角形ADC 全等于三角形EBD即BE=AC=2 在三角形ABE 中,AB-BE<AE<AB+BE 即:10-2<2AD<10+2 4<AD<6 又AD 是整数,则AD=52. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF 。
因为 BC=ED,CF=DF,∠BCF=∠EDF 。
所以 三角形BCF 全等于三角形EDF(边角边)。
所以 BF=EF,∠CBF=∠DEF 。
连接BE 。
在三角形BEF 中,BF=EF 。
所以 ∠EBF=∠BEF 。
又因为 ∠ABC=∠AED 。
所以 ∠ABE=∠AEB 。
所以 AB=AE 。
在三角形ABF 和三角形AEF 中,AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF 。
所以 三角形ABF 和三角形AEF 全等。
所以 ∠BAF=∠EAF (∠1=∠2)。
ADBC4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2又∵CD=DE ∴⊿ADC ≌⊿GDE (AAS )∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE ∴EF=EG ∴EF=AC5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB ,AD=AD ∴⊿AED ≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE ∴∠C=∠EDC ∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥AB 所以∠CEB =∠CEF =90° 因为EB =EF ,CE =CE , 所以△CEB ≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE +∠CFA =180° 所以∠D =∠CFA 因为AC 平分∠BAD 所以∠DAC =∠FAC 又因为AC =AC所以△ADC ≌△AFC (SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
全等三角形证明中考题精选[有答案解析]七年级数学下---全等三角形证明题1如图,已知人。
是厶ABC勺中线,分别过点B、C作BEL AD于点E,CF丄AD交AD的延长线于点F,求证:BE=CF2•如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中/(1)操作发现:如图2,固定△ ABC使厶DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是_____________②设△ BDC的面积为$,△ AEC的面积为S,则(2)猜想论证S与S2的数量关系是 _____________当厶DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S与S2的数量关系仍然成立,并尝试分别作出了△BDC ffiA AEC中BC CE边上的高,请你证明小明的猜想.(3)拓展探究已知/ABC=60,点D是角平分线上一点,BD=CD=, DE// AB交BC于点E (如图4).若在射线BA 上存在点F,使S A DC=S BDE,请直接写出相应的BF的长.3.如图,把一个直角三角形ACB(/ACB=90 )绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F, G分别是BD BE上的点,BF=BG延长CF与DG交于点H. (1)求证:CF=DG (2)求出/ FHG勺度数.全等三角形证明中考题精选[有答案解析]4•如图所示,在△ ABC 中,D E 分别是AB AC 上的点,DE// BQ 如图①,然后将厶ADE 绕A 点顺 时针旋转一定角度,得到图②,然后将 BD CE 分别延长至M N,使DM=BD EN=CE 得到图③, 请解答下列问题:(1)若AB=AC 请探究下列数量关系:① 在图②中,BD 与CE的数量关系是_ _ ;② 在图③中,猜想AM 与 AN 的数量关系、/ MAN 与/BAC 的数量关系,并证明你的猜想;(2)若AB=I?AC( k > 1),按上述操作方法,得到图④,请继续探究: AM 与 AN 的数量关系、/ MAN 与/BAC 的数量关系,直接写出你的猜想,不必证明.4. (1)如图,在△ ABC ffiA ADE 中, AB 二AC AD=AE Z BAC K DAE=90 .① 当点D 在AC 上时,如图1,线段BD CE 有怎样的数量关系和位置关系? 直接写出你猜想的结论;② 将图1中的△ ADE 绕点A 顺时针旋转口角(O °VaV 90°),如图2,线段BD CE 有怎样的数量 关系和位置关系?请说明理由.(2)当厶ABC^P ^ADE 满足下面甲、乙、丙中的哪个条件时,使线段 BD CE 在(1)中的位置关系 仍然成立?不必说明理由.甲: AB AC=AD AE=1, / BAC K DA 字90°;乙:AB AC=AD AE M 1,K BAC K DAE=90 ;丙: 6. CD 经过/ BCA 顶点C 的一条直线,CA=CB E, F 分别是直线CD 上两点,且/ BEC K CFA Ka.(1)若直线CD 经过/ BCA 的内部,且E, F 在射线CD 上,请解决下面两个问题:①如图 1,若/ BCA=90 , Ka =90°,则 BE ______________ CF; EF ___________ |BE - AF| (填“〉”, “v”或“=”);②如图2,若0°<Z BCA : 180°,请添加一个关于Ka 与/ BCA 关系的条件—AB: AC=AD AE M 1,/ BAC K DAE^ 90E__________ ,使①中的两个结论仍然成立,并证明两个结论成立.7. 如图,已知 AB=AC (1)若 CE=BD 求证:GE=G ;⑵若CE=mBD (m 为正数),试猜想GE 与 GD 有何关系.(只写结论,不证明)8. (1)已知:如图①,在△ AOBf^A COD 中, OA=OJ 3OC=OD / AOB M COD=60,求证:① AC=BD ②/ APB=6(度;(2)如图②,在△ AOBf^A COD 中,若 OA=OBOC=O , / AOB M COD a ,贝U AC 与 BD 间的等量关系式为 _____________ ; Z APB 的大小为 _____________ ;(3)如图③,在△ AOBf^ACOD 中,若 OA=?OBOC=?OD(k > 1),Z AOB ZCOD a ,贝U AC 与 BD间的等量关系式为 10.已知:EG// AF, AB=AC DE=DF 求证:BE=CF参考答案与试题解析(2)如图3,若直线CD 经过/ BCA 的外部,/ a =Z BCA 请提出EF, BE AF 三条线段数量关系的 合理猜想(不要求证明)•Z APB 的大小为 _____2. 解:(1)①DEC绕点C旋转点D恰好落在AB边上,••• AC=CD:/ BAC=90 -Z B=90°- 30° =60°,二厶ACD是等边三角形,•••/ ACD=60,又TZ CDE Z BAC=60 ,:Z ACD Z CDE 二DE// AC;②T Z B=30°,Z C=90,二CD=AC=AB /• BD=AD=AC2根据等边三角形的性质,△ ACD的边AC AD上的高相等,•••△ BDC的面积和△ AEC的面积相等(等底等高的三角形的面积相等),即S=S2;故答案为:DE// AC S=S;(2)如图,•「△ DEC是由厶ABC绕点C旋转得到,••• BC=CE AC=CD T Z ACN Z BCN=90,Z DCM Z BCN=180 - 90° =90°,•••Z ACN Z DCM T在厶ACNm DCM中,fZACM=ZDCHI ZCND=ZH=90°,[AC=CD•△ACN^A DCM( AAS, • AN=DM•△ BDC的面积和△ AEC的面积相等(等底等高的三角形的面积相等),即S i=S2;3、解(1)证明:•••在厶CBF ft^ DBG K答.fBC=BD答《二,:BF=BG•△CBF^A DBG( SAS , • CF=DQ(2)解:•••△ CBF^A DBG •Z BCF Z BDG又T Z CFB Z DFH •Z DHF Z CBF=60 ,•Z FHG=180 -Z DHF=180 - 60°=120°.4、解答:解:(1)①结论:BD=CE BDL CE②结论:BD=CE BDL CE;理由如下:T Z BAC Z DAE=90• Z BAC-Z DAC Z DAE-Z DAC 即Z BAD Z CAE ft^ ABD与△ ACE中, AB=ACT*4皿ZCAE •△ABD^A ACE(SAS • BD=CEb AD=AE延长BD交AC于F,交CE于H.在厶ABF 与厶HCF 中,T Z ABF=/ HCF Z AFB=/ HFC •Z CHF Z BAF=90••• BDL CE(2)结论:乙.AB AC=AD AE / BAC K DAE=905.6.解答:解:(1)①IK BCA=90,/a =90°,.・.K BCE K CBE=90,/ BCE K ACF=90 , • K CBE K ACF v CA=CB K BEC K CFA •△ BCE^A CAF •- BE=CF EF=|BE- AF|. ②所填的条件是:Ka +K BCA=180 . I AE=AD 卩. 7 •••△ CAE^A BAD( SAS , AC 二 AB • / ACE K ABD v DM=BD EN=CE • BM=CN 在厶 ABM ffiA ACN 中, r 瓏二 CN ••• ZAC14=ZAbr 〔AB 二AC • △ ABMm ACN( SAS , • AM=AN •/ BAM K CAN 即K MAN K BAC (2)AM=?AN 在厶BADfy CAE 中 解答: / CAE=/ BAD K MAN K BAC全等三角形证明中考题精选[有答案解析]证明:在厶 BCE 中,/ CBE# BCE=180 -Z BEC=180 — /a. v/ BCA=180 —/a,•••/ CBE Z BCE Z BCA 又v/ ACF Z BCE Z BCA CBE Z ACF又v BC=CA / BEC Z CFA •△BCE^A CAF( AAS •- BE=CF CE=AF又v EF=C- CE, • EF=|BE- AF|.(2) EF=BE+AF7.解证明:(1)过D作DF// CE交BC于F,答: 贝UZ E=Z GDF v AB=AC •/ ACB Z ABC/ DF/ CE •/ DFB Z ACB•Z DFB Z ACB Z ABC • DF=DB v CE=BD •- DF=CE 在厶GDF^ GEC中, (ZE 二ZGDFI ZDGF=ZEGC ,[DF=EC•△GDF^A GEC(AAS. • GE=GD• / AOB Z BOC Z COD Z BOC 即:/ AOC Z BOD 答:又v OA=OB OC=OD •△ AOC^A BOD • AC=BD②由①得:/ OAC Z OBDv/ AEO Z PEB / APB=180 — (/ BEP+Z OBD, / AOB=180 —(/ OAC Z AEO , • Z APB Z AOB=60 .(2) AC=BD a(3) AC=?BD 180°—a.。
全等三角形证明经典30题1. 两角和相等定理证明:设△ABC 和△DEF 是两个三角形,如果∠A = ∠D 且∠B = ∠E,则可以通过以下步骤证明△ABC ≌△DEF:步骤一:通过顶角顶点 C 、 F、和共边 CF 作直线段 CF,延长直线段 CF 至点 X,使得 CX = CE。
步骤二:连接线段 AX。
步骤三:证明∠AXB = ∠EXF:由于∠A = ∠D,所以∠AXB = ∠DXE(共同的角度)。
又由于∠B = ∠E,所以∠DXE = ∠EXF。
因此,∠AXB = ∠EXF。
步骤四:证明∠ABX = ∠EFX:由于∠B = ∠E,所以∠ABX = ∠EXF(共同的角度)。
因此,∠ABX = ∠EFX。
步骤五:证明 AB = EF:由于 CX = CE,且∠ABX = ∠EFX,根据 SSS(边-边-边)全等三角形定理,则可得∆ABX ≌ ∆EFX。
因此,AB = EF。
综上所述,根据两角和相等定理,已经证明了△ABC ≌△DEF。
2. SAS全等三角形定理证明:设△ABC 和△DEF 是两个三角形,如果 AB = DE,∠A = ∠D,且 AC = DF,则可以通过以下步骤证明△ABC ≌△DEF:步骤一:连接线段 BC 和 EF。
步骤二:证明∠ABC = ∠DEF:由于 AB = DE,且∠A = ∠D,根据线段角度定理,可得∠ABC = ∠DEF。
步骤三:证明 BC = EF:由于 AC = DF,且∠ABC = ∠DEF,根据 SAS(边-角-边)全等三角形定理,可得△ABC ≌△DEF。
综上所述,根据SAS全等三角形定理,已经证明了△ABC ≌△DEF。
3. SSS全等三角形定理证明:设△ABC 和△DEF 是两个三角形,如果 AB = DE,BC = EF,且AC = DF,则可以通过以下步骤证明△ABC ≌△DEF:步骤一:连接线段 AC 和 DF。
步骤二:连接线段 BC 和 EF。
八年级三角形的证明题一、等腰三角形性质相关证明题(8题)1. 已知:在△ABC中,AB = AC,AD是BC边上的中线。
求证:AD⊥BC。
- 证明:- 因为AB = AC,AD是BC边上的中线,所以BD = DC(中线的定义)。
- 在△ABD和△ACD中,AB = AC(已知),BD = CD(已证),AD = AD(公共边)。
- 所以△ABD≌△ACD(SSS)。
- 则∠ADB=∠ADC(全等三角形对应角相等)。
- 又因为∠ADB + ∠ADC = 180°(平角的定义),所以∠ADB = ∠ADC = 90°,即AD⊥BC。
2. 已知:在等腰△ABC中,AB = AC,∠A = 36°,求证:∠B = 72°。
- 证明:- 因为AB = AC,所以∠B = ∠C(等腰三角形两底角相等)。
- 又因为∠A+∠B + ∠C = 180°(三角形内角和定理),∠A = 36°。
- 设∠B = x,则∠C = x,可得方程36°+x + x = 180°。
- 2x=180° - 36°,2x = 144°,解得x = 72°,即∠B = 72°。
3. 已知:在△ABC中,AB = AC,D是AC上一点,且AD = BD = BC。
求∠A的度数。
- 证明:- 设∠A=x,因为AD = BD,所以∠ABD = ∠A=x(等边对等角)。
- 则∠BDC=∠A + ∠ABD = 2x(三角形外角性质)。
- 因为BD = BC,所以∠C = ∠BDC = 2x。
- 又因为AB = AC,所以∠ABC = ∠C = 2x。
- 根据三角形内角和定理,∠A+∠ABC+∠C = 180°,即x + 2x+2x = 180°。
- 5x = 180°,解得x = 36°,所以∠A = 36°。
人教版初中数学全等三角形证明题(经典50题)(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD?解析:延长AD 到E,使DE=AD,则三角形ADC 全等于三角形EBD即BE=AC=2 在三角形ABE 中,AB-BE<AE<AB+BE 即:10-2<2AD<10+2 4<AD<6 又AD 是整数,则AD=52. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2ADBC证明:连接BF 和EF 。
因为 BC=ED,CF=DF,∠BCF=∠EDF 。
所以 三角形BCF 全等于三角形EDF(边角边)。
所以 BF=EF,∠CBF=∠DEF 。
连接BE 。
在三角形BEF 中,BF=EF 。
所以 ∠EBF=∠BEF 。
又因为 ∠ABC=∠AED 。
所以 ∠ABE=∠AEB 。
所以 AB=AE 。
在三角形ABF 和三角形AEF 中, AB=AE,BF=EF, ∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF 。
所以 三角形ABF 和三角形AEF 全等。
所以 ∠BAF=∠EAF (∠1=∠2)。
4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC证明: 过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2 又∵CD=DE ∴⊿ADC ≌⊿GDE (AAS ) ∴EG=AC ∵EF//AB ∴∠DFE=∠1 ∵∠1=∠2 ∴∠DFE=∠DGE ∴EF=EG ∴EF=AC5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C证明: 在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB ,AD=AD ∴⊿AED ≌⊿ABD (SAS ) ∴∠AED=∠B ,DE=DB ∵AC=AB+BDAC=AE+CE ∴CE=DE ∴∠C=∠EDC ∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BECDB AB ACD F2 1 E证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥AB 所以∠CEB =∠CEF =90° 因为EB =EF ,CE =CE , 所以△CEB ≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE +∠CFA =180° 所以∠D =∠CFA 因为AC 平分∠BAD 所以∠DAC =∠FAC 又因为AC =AC 所以△ADC ≌△AFC (SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
全等三角形经典证明题50道1、已知∠ABC=3∠C ,∠1=∠2,BE ⊥AE ,求证:AC-AB=2BE2、已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC3、如图,在△ABC 中,BD =DC ,∠1=∠2,求证:AD ⊥BC .FAEDC B4.如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N.求证:∠OAB=∠OBA5.(5分)如图,已知AD∥BC,∠P AB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB.PCEDBA6.(6分)如图①,E、F分别为线段AC上的两个动点,且DE ⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC 于点M.(1)求证:MB=MD,ME=MF(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.7.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点,(1)求证:△AED ≌△EBC .(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):8.(7分)如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD =2CE .OEDCB AFE D CB A25、如图:DF=CE ,AD=BC ,∠D=∠C 。
求证:△AED ≌△BFC 。
FEDCBA证明:∵DF=CE , ∴DF-EF=CE-EF , 即DE=CF ,在△AED 和△BFC 中,∵ AD=BC , ∠D=∠C ,DE=CF ∴△AED ≌△BFC (SAS )26、(10分)如图:AE 、BC 交于点M ,F 点在AM 上,BE ∥CF ,BE=CF 。
《全等三角形》证明题题型归类训练题型1:全等+等腰性质1、如图,在△ABE 中,AB =AE,AD =AC,∠BAD =∠EAC, BC 、DE 交于点O. 求证:(1) △ABC ≌△AED ; (2) OB =OE .2、已知:如图,B 、E 、F 、C 四点在同一条直线上,AB =DC ,BE =CF ,∠B =∠C . 求证:OA =OD .题型2:两次全等1、AB=AC ,DB=DC ,F 是AD 的延长线上的一点。
求证:BF=CFFDCBA2、已知如图,E 、F 在BD 上,且AB =CD ,BF =DE ,AE =CF ,求证:AC 与BD 互相平分O C E BDAA B E O F D C3、如图,在四边形ABCD 中,AD ∥BC ,∠ABC=90°DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且AE=AC.求证:BG=FG题型3:直角三角形全等(余角性质)1、如图,在等腰Rt △ABC 中,∠C =90°,D 是斜边上AB 上任一点,AE ⊥CD 于E ,BF ⊥CD 交CD 的延长线于F ,CH ⊥AB 于H 点,交AE 于G . 求证:BD =CG .2、如图,将等腰直角三角形ABC 的直角顶点置于直线l 上,且过A ,B 两点分别作直线的垂线,垂足分别为D ,E ,请你在图中找出一对全等三角形,并写出证明它们全等的过程.AFCBDEG3、如图,∠ABC =90°,AB =BC ,D 为AC 上一点,分别过A 、C 作BD 的垂线,垂足分别为E 、F 求证:EF =CF -AE4、在△ABC 中,=∠90ACB ,BC AC =,直线MN 经过点C ,且MN AD ⊥于D ,MN BE ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时, 求证: ①ADC ∆≌CEB ∆;②BE AD DE +=; (2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.5、如图:BE ⊥AC ,CF ⊥AB ,BM=AC ,CN=AB 。
2021 年 05 月 03 日初中数学三角形证明组卷一.选择题〔共20 小题〕1.〔 2021?涉县模拟〕如图,在△ ABC中,∠ C=90°,AB的垂直均分线交AB 与 D,交 BC 于 E,连接 AE ,假设 CE=5, AC=12 ,那么 BE 的长是〔〕A 13B 10C 12D5....2.〔 2021?淄博模拟〕如图,在△ ABC中,AB=AC,∠ A=36°,BD、CE分别是∠ ABC、∠BCD 的角均分线,那么图中的等腰三角形有〔〕A 5个B 4个C 3个D 2个....3.〔 2021 秋 ?西城区校级期中〕如图,在△ ABC 中,AD 是它的角均分线, AB=8cm ,AC=6cm ,那么 S△ABD: S△ACD =〔〕A 4:3B 3:4C 16: 9D 9:16....4.〔 2021?丹东〕如图,在△ ABC中,AB=AC,∠ A=40°,AB的垂直均分线交AB 于点 D,交 AC 于点 E,连接 BE ,那么∠ CBE 的度数为〔〕A 70°B 80°C 40°D 30°....5.〔 2021?南充〕如图,在△ ABC 中, AB=AC ,且 D 为 BC 上一点, CD=AD , AB=BD ,那么∠B 的度数为〔〕A 30°B 36°C 40°D 45°....6.〔 2021?山西模拟〕如图,点O 在直线 AB 上,射线OC 均分∠ AOD ,假设∠AOC=35 °,那么∠BOD 等于〔〕A 145°B 110°C 70°D 35°....7.〔2021?雁塔区校级模拟〕如图,在△ABC中,∠ACB=90°,BA的垂直均分线交BC 边于 D ,假设 AB=10 ,AC=5 ,那么图中等于60°的角的个数是〔〕A 2B 3C 4D5....8.〔 2021 秋 ?腾冲县校级期末〕如图,BD 是△ABC 的中线, AB=5 , BC=3 ,△ABD和△ BCD 的周长的差是〔〕A 2B 3C 6D 不能够确定....9.〔 2021 春 ?栖霞市期末〕在 Rt△ ABC 中,以以下图,∠C=90 °,∠ CAB=60 °,AD 均分∠CAB ,点 D 到 AB 的距离 DE=3.8cm ,那么 BC 等于〔〕D....10.〔 2021 秋 ?博野县期末〕△ABC中,点O是△ ABC内一点,且点O 到△ABC 三边的距离相等;∠ A=40 °,那么∠ BOC= 〔〕A 110°B 120°C 130°D 140°....11.〔 2021 秋 ?潮阳区期末〕如图,点 P 在∠AOB 的均分线 OC 上,PF⊥ OA ,PE⊥ OB ,假设 PE=6,那么 PF 的长为〔〕A 2B 4C 6D8....12.〔 2021 秋 ?马尾区校级期末〕如图,△ ABC 中, DE 是 AB 的垂直均分线,交 BC 于点D,交 AB 于点 E, AE=1cm ,△ACD 的周长为12cm,那么△ ABC 的周长是〔〕A 13cmB 14cmC 15cmD 16cm....13.〔 2021 秋 ?西城区期末〕如图,∠ BAC=130°,假设MP和QN分别垂直均分AB 和 AC ,那么∠ PAQ 等于〔〕A 50°B 75°C 80°D 105°....14.〔 2021 秋 ?东莞市校级期中〕如图,要用“HL〞判断Rt△ ABC和Rt△A′B′C′全等的条件是〔〕A.AC=A ′C′,BC=B ′C′B.∠ A=∠ A′,AB=A′B′C.AC=A ′C′,AB=A ′B′D.∠ B=∠ B′,BC=B′C′15.〔 2021 秋 ?淄川区校级期中〕如图, MN 是线段 AB 的垂直均分线, C 在 MN 外,且与 A点在 MN 的同一侧, BC 交 MN 于 P 点,那么〔〕A BC> PC+APB BC< PC+APC BC=PC+APD BC≥PC+AP....16.〔 2021 秋 ?万州区校级期中〕如图,在△ ABC 中,AB=AC ,D 为 BC 上一点, BF=CD ,CE=BD ,那么∠ EDF 等于〔〕A90°﹣∠A B90°﹣∠ A C 180°﹣∠ A D45°﹣∠A....17.〔 2021 秋 ?泰山区校级期中〕如图,在△ ABC中,AB=AC,AD均分∠ BAC,那么以下结论不用然成立的是〔〕A .△ ABD≌ △ACD B.AD 是△ ABC 的高线C.AD 是△ ABC 的角均分线D.△ ABC是等边三角形18.〔 2021 秋 ?晋江市校级月考〕如图,点P 是△ ABC 内的一点,假设PB=PC,那么〔〕A.点P在∠ ABC的均分线上B.点P在∠ ACB的均分线上C.点P在边AB的垂直均分线上D.点P在边BC的垂直均分线上19.〔 2021?河西区二模〕如图,在∠ ECF 的两边上有点B,A ,D ,BC=BD=DA ,且∠ ADF=75 °,那么∠ ECF 的度数为〔〕A 15°B 20°C 25°D 30°....20.〔2021 秋 ?盱眙县校级期中〕如图, P 为∠ AOB 的均分线 OC 上任意一点, PM⊥ OA 于 M ,PN ⊥OB 于 N,连接 MN 交 OP 于点 D.那么① PM=PN ,② MO=NO ,③ OP⊥ MN ,④ MD=ND .其中正确的有〔〕A 1个B 2个C 3个D 4个....二.解答题〔共10 小题〕21.〔 2021 秋 ?黄浦区期末〕如图, ON 是∠AOB 的均分线, OM 、 OC 是∠ AOB 外的射线.(1〕若是∠ AOC= α,∠ BOC= β,请用含有α,β的式子表示∠ NOC .(2〕若是∠ BOC=90 °,OM 均分∠ AOC ,那么∠ MON 的度数是多少?22.〔 2021 秋 ?阿坝州期末〕如图,: E 是∠ AOB 的均分线上一点, EC⊥ OB ,ED ⊥OA ,C、D 是垂足,连接 CD,且交 OE 于点 F.(1〕求证: OE 是 CD 的垂直均分线.(2〕假设∠AOB=60 °,请你研究 OE ,EF 之间有什么数量关系?并证明你的结论.23.〔 2021 秋 ?花垣县期末〕如图,在△ ABC 中,∠ ABC=2 ∠ C, BD 均分∠ABC ,DE ⊥AB 〔E 在 AB 之间〕,DF ⊥BC , BD=5 , DE=3 , CF=4,试求△ DFC 的周长.24.〔 2021 秋 ?大石桥市期末〕如图,点 D 是△ ABC 中 BC 边上的一点,且 AB=AC=CD ,AD=BD ,求∠BAC 的度数.25.〔 2021 秋 ?安溪县期末〕如图,在△ABC中,AB=AC,∠ A=α.(1〕直接写出∠ ABC 的大小〔用含α的式子表示〕;(2〕以点 B 为圆心、 BC 长为半径画弧,分别交 AC 、AB 于 D 、E 两点,并连接 BD、DE .假设=30 °,求∠BDE 的度数.26.〔 2021 秋?静宁县校级期中〕如图,在△ ABC中,AD均分∠ BAC,点D是BC的中点,DE ⊥AB 于点 E, DF ⊥ AC 于点 F.求证:〔 1〕∠ B= ∠ C.〔2〕△ ABC 是等腰三角形.27.〔 2021 秋 ?天津期末〕如图, AB=AC ,∠ C=67°,AB 的垂直均分线 EF 交 AC 于点 D,求∠ DBC 的度数.28.〔 2021 秋 ?高坪区校级期中〕如图,△ ABC 中, AB=AD=AE , DE=EC ,∠ DAB=30 °,求∠ C 的度数.29.〔 2021 春 ?扶沟县校级期中〕阅读理解:“在一个三角形中,若是角相等,那么它们所对的边也相等.〞简称“等角同等边〞,如图,在△ ABC 中,∠ ABC 和∠ ACB 的均分线上交于点 F,过点 F 作 BC 的平行线分别交 AB 、 AC 于点 D 、E,请你用“等角同等边〞的知识说明DE=BD+CE .30.〔 2021?龙岩质检〕如图, AD 是△ ABC 的均分线, DE ,DF 分别垂直 AB 、AC 于 E、F,连接 EF,求证:△AEF 是等腰三角形.2021 年 05 月 03 日初中数学三角形证明组卷参照答案与试题解析一.选择题〔共20 小题〕1.〔 2021?涉县模拟〕如图,在△ ABC中,∠ C=90°,AB的垂直均分线交AB 与 D,交 BC 于 E,连接 AE ,假设 CE=5, AC=12 ,那么 BE 的长是〔〕A13 B 10 C 12 D 5....考线段垂直均分线的性质.点:分先依照勾股定理求出AE=13 ,再由 DE 是线段 AB 的垂直均分线,得出 BE=AE=13 .析:解解:∵ ∠ C=90 °,答:∴AE=,∵DE 是线段 AB 的垂直均分线,∴BE=AE=13 ;应选: A.点此题观察了勾股定理和线段垂直均分线的性质;利用勾股定理求出AE 是解题的关评:键.2.〔 2021?淄博模拟〕如图,在△ ABC 中,AB=AC ,∠ A=36 °,BD 、CE 分别是∠ ABC 、∠BCD 的角均分线,那么图中的等腰三角形有〔〕A 5个B 4个C 3个D 2个....考等腰三角形的判断;三角形内角和定理.点:专证明题.题:分依照条件和等腰三角形的判判定理,对图中的三角形进行解析,即可得出答案.析:解解:共有 5 个.答:〔 1〕∵ AB=AC∴ △ABC 是等腰三角形;〔 2〕∵ BD 、 CE 分别是∠ ABC 、∠ BCD 的角均分线∴ ∠EBC= ∠ ABC ,∠ ECB= ∠BCD ,∵ △ABC 是等腰三角形,∴ ∠EBC= ∠ ECB,∴ △BCE 是等腰三角形;〔 3〕∵∠ A=36 °, AB=AC ,∴ ∠ABC= ∠ACB= 〔 180°﹣36°〕=72 °,又 BD 是∠ ABC 的角均分线,∴ ∠ABD= ∠ ABC=36 °=∠ A,∴ △ABD 是等腰三角形;同理可证△ CDE 和△ BCD 是等腰三角形.应选: A.点此题主要观察学生同等腰三角形判断和三角形内角和定理的理解和掌握,属于中档评:题.3.〔 2021 秋 ?西城区校级期中〕如图,在△ ABC 中,AD 是它的角均分线, AB=8cm ,AC=6cm ,那么 S△ABD: S△ACD =〔〕A 4:3B 3:4C 16: 9D 9:16....考角均分线的性质;三角形的面积.点:专计算题.题:分第一过点 D 作 DE ⊥ AB ,DF⊥ AC ,由 AD是它的角均分线,依照角均分线的性析:质,即可求得 DE=DF ,由△ ABD 的面积为12,可求得 DE 与 DF 的长,又由AC=6 ,那么可求得△ ACD 的面积.解解:过点 D 作 DE ⊥ AB ,DF⊥ AC ,垂足分别为 E、 F〔1 分〕答:∵ AD 是∠ BAC 的均分线, DE⊥ AB , DF ⊥AC ,∴ DE=DF ,〔3 分〕∴ S△ABD=?DE ?AB=12 ,∴ DE=DF=3 〔 5 分〕∴ S△ADC= ?DF ?AC=×3×6=9〔6分〕∴ S△ABD: S△ACD =12 :9=4 : 3.应选 A.点此题观察了角均分线的性质.此题难度不大,解题的要点是熟记角均分线的性评:质定理的应用,注意数形结合思想的应用,注意辅助线的作法.4.〔 2021?丹东〕如图,在△ ABC中,AB=AC,∠ A=40°,AB的垂直均分线交AB 于点 D,交 AC 于点 E,连接 BE ,那么∠ CBE 的度数为〔〕A 70°B 80°C 40°D 30°....考点:线段垂直均分线的性质;等腰三角形的性质.专题:几何图形问题.解析:由等腰△ ABC 中, AB=AC ,∠ A=40 °,即可求得∠ ABC 的度数,又由线段AB 的垂直均分线交AB 于 D,交 AC 于 E,可得 AE=BE ,既而求得∠ ABE 的度数,那么可求得答案.解答:解:∵等腰△ ABC 中, AB=AC ,∠ A=40 °,∴∠ ABC= ∠ C==70°,∵线段 AB 的垂直均分线交AB 于 D ,交 AC 于 E,∴A E=BE ,∴∠ ABE= ∠A=40 °,∴∠ CBE= ∠ABC ﹣∠ABE=30 °.应选: D.议论:此题观察了线段垂直均分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.5.〔 2021?南充〕如图,在△ ABC 中, AB=AC ,且 D 为 BC 上一点, CD=AD , AB=BD ,那么∠B 的度数为〔〕A 30°B 36°C 40°D 45°....考等腰三角形的性质.点:分求出∠ BAD=2 ∠ CAD=2 ∠ B=2 ∠ C 的关系,利用三角形的内角和是 180°,求∠ B,析:解解:∵ AB=AC ,答:∴∠B=∠ C,∵AB=BD ,∴ ∠BAD= ∠BDA ,∵CD=AD ,∴ ∠C=∠ CAD ,∵ ∠BAD+ ∠CAD+ ∠ B+ ∠ C=180°,∴5∠B=180 °,∴∠B=36 °应选: B.点此题主要观察等腰三角形的性质,解题的要点是运用等腰三角形的性质得出评:∠ BAD=2 ∠ CAD=2 ∠ B=2 ∠ C 关系.6.〔 2021?山西模拟〕如图,点O 在直线 AB 上,射线OC 均分∠ AOD ,假设∠AOC=35 °,那么∠BOD 等于〔〕A 145°B 110°C 70°D 35°....考角均分线的定义.点:分第一依照角均分线定义可得∠ AOD=2∠AOC=70°,再依照邻补角的性质可得析:∠ BOD 的度数.解解:∵射线 OC 均分∠DOA .答:∴ ∠AOD=2 ∠ AOC ,∵ ∠COA=35 °,∴ ∠DOA=70 °,∴ ∠BOD=180 °﹣70°=110°,应选: B.点此题主要观察了角均分线定义,要点是掌握角均分线把角分成相等的两局部.评:7.〔 2021?雁塔区校级模拟〕如图,在△ ABC中,∠ ACB=90°,BA的垂直均分线交BC 边于 D ,假设 AB=10 ,AC=5 ,那么图中等于60°的角的个数是〔〕A 2B 3C 4D5....考点:线段垂直均分线的性质.解析:依照条件易得∠ B=30°,∠ BAC=60°.依照线段垂直均分线的性质进一步求解.解答:解:∵ ∠ ACB=90°,AB=10,AC=5,∴ ∠ B=30 °.∴ ∠ BAC=90 °﹣ 30°=60 °∵ DE 垂直均分BC,∴ ∠ BAC= ∠ ADE= ∠ BDE= ∠ CDA=90 °﹣ 30°=60 °.∴ ∠ BDE 对顶角 =60°,∴图中等于60°的角的个数是4.应选 C.议论:此题主要观察线段的垂直均分线的性质等几何知识.线段的垂直均分线上的点到线段的两个端点的距离相等.由易到难逐个搜寻,做到不重不漏.8.〔 2021 秋 ?腾冲县校级期末〕如图,BD 是△ABC 的中线, AB=5 , BC=3 ,△ABD和△ BCD 的周长的差是〔〕A 2B 3C 6D 不能够确定....考点:三角形的角均分线、中线和高.专题:计算题.解析:依照三角形的中线得出AD=CD ,依照三角形的周长求出即可.解答:解:∵BD 是△ ABC的中线,∴AD=CD ,∴△ ABD 和△BCD 的周长的差是:〔 AB+BD+AD 〕﹣〔 BC+BD+CD 〕 =AB ﹣BC=5 ﹣ 3=2.应选 A.议论:此题主要观察对三角形的中线的理解和掌握,能正确地进行计算是解此题的要点.9.〔 2021 春 ?栖霞市期末〕在 Rt△ ABC 中,以以下图,∠C=90 °,∠ CAB=60 °,AD 均分∠CAB ,点 D 到 AB 的距离 DE=3.8cm ,那么 BC 等于〔〕....考点:角均分线的性质.解析:由∠ C=90°,∠ CAB=60 °,可得∠ B 的度数,故 BD=2DE=7.6 ,又 AD 均分∠CAB ,故 DC=DE=3.8 ,由 BC=BD+DC求解.解答:解:∵ ∠ C=90 °,∠ CAB=60 °,∴ ∠ B=30 °,在 Rt△ BDE 中, BD=2DE=7.6 ,又∵AD 均分∠CAB ,∴ DC=DE=3.8 ,∴ BC=BD+DC=7.6+3.8=11.4 .应选 C.议论:此题主要观察均分线的性质,由能够注意到D到AB的距离 DE即为CD长,是解题的要点.10.〔 2021 秋 ?博野县期末〕△ ABC 中,点 O 是△ ABC 内一点,且点O 到△ABC 三边的距离相等;∠A=40 °,那么∠ BOC= 〔〕A110° B 120°C130° D 140°....考角均分线的性质;三角形内角和定理;三角形的外角性质.点:专计算题.题:分由, O 到三角形三边距离相等,得O 是内心,再利用三角形内角和定理即可求析:出∠BOC 的度数.解解:由, O 到三角形三边距离相等,所以O 是内心,答:即三条角均分线交点, AO , BO , CO 都是角均分线,所以有∠ CBO= ∠ ABO=∠ ABC ,∠ BCO= ∠ ACO=∠ACB ,∠ABC+ ∠ ACB=180 ﹣40=140∠OBC+ ∠ OCB=70∠BOC=180 ﹣70=110°应选 A.点此题主要观察学生对角均分线性质,三角形内角和定理,三角形的外角性质等知识评:点的理解和掌握,难度不大,是一道基础题.11.〔 2021 秋 ?潮阳区期末〕如图,点P在∠ AOB的均分线OC 上,PF⊥ OA ,PE⊥ OB ,假设 PE=6,那么 PF 的长为〔〕A 2B 4C 6D8....考点:角均分线的性质;全等三角形的判断与性质.专题:计算题.解析:利用角均分线性质得出∠ POF=∠ POE,尔后利用 AAS 定理求证△ POE≌ △POF,即可求出 PF 的长.解答:解:∵ OC均分∠ AOB,∴ ∠ POF=∠ POE,∵PF⊥OA , PE⊥ OB,∴∠ PFO=∠ PEO,PO 为公共边,∴ △ POE≌△ POF,∴PF=PE=6 .应选 C.议论:此题观察学生对角均分线性质和全等三角形的判断与性质的理解和掌握,解答此题的要点是求证△POE≌ △ POF.12.〔 2021 秋 ?马尾区校级期末〕如图,△ ABC中,DE是AB的垂直均分线,交BC于点D,交 AB 于点 E, AE=1cm ,△ACD 的周长为12cm,那么△ ABC 的周长是〔〕A13cm B 14cm C 15cm D 16cm....考线段垂直均分线的性质.点:分要求△ ABC 的周长,先有AE 可求出 AB ,只要求出 AC+BC 即可,依照线段垂直平析:分线的性质可知, AD=BD ,于是 AC+BC=AC+CD+AD等于△ ACD 的周长,答案可得.解解:∵ DE 是 AB 的垂直均分线,答:∴ AD=BD , AB=2AE=2又∵△ ACD 的周长 =AC+AD+CD=AC+BD+CD=AC+BC=12∴ △ABC 的周长是 12+2=14cm .应选 B点此题主要观察线段的垂直均分线的性质:线段的垂直均分线上的点到线段的两个端评:点的距离相等;进行线段的等效转移,把与未知联系起来是正确解答此题的关键.13.〔 2021 秋 ?西城区期末〕如图,∠ BAC=130°,假设MP和QN分别垂直均分AB 和 AC ,那么∠ PAQ 等于〔〕A 50°B 75°C 80°D 105°....考线段垂直均分线的性质.点:分依照线段垂直均分线性质得出BP=AP ,CQ=AQ ,推出∠ B= ∠BAP ,∠ C=∠ QAC ,析:求出∠B+ ∠C,即可求出∠ BAP+ ∠ QAC ,即可求出答案.解解:∵MP 和 QN 分别垂直均分AB 和 AC ,答:∴ BP=AP , CQ=AQ ,∴ ∠B= ∠ PAB,∠C=∠ QAC ,∵ ∠BAC=130 °,∴ ∠B+ ∠ C=180°﹣∠BAC=50 °,∴ ∠BAP+ ∠ CAQ=50 °,∴ ∠PAQ= ∠ BAC ﹣〔∠ PAB+∠ QAC 〕 =130°﹣50°=80°,应选: C.点此题观察了等腰三角形的性质,线段垂直均分线性质,三角形的内角和定理,注评:意:线段垂直均分线上的点到线段两个端点的距离相等,等边同等角.14.〔 2021 秋 ?东莞市校级期中〕如图,要用“HL〞判断Rt△ ABC和Rt△A′B′C′全等的条件是〔〕A AC=A ′C′,B∠A=∠A′,.BC=B ′C′.AB=A ′B′C AC=A ′C′,D∠ B=∠ B′,.AB=A ′B′.BC=B ′C′考直角三角形全等的判断.点:分依照直角三角形全等的判断方法〔HL 〕即可直接得出答案.析:解解:∵在 Rt△ ABC 和 Rt△ A ′B′C′中,答:若是 AC=A ′C′, AB=A ′B′,那么 BC 必然等于 B ′C′,Rt △ABC 和 Rt△A ′B′C′必然全等,应选 C.点此题主要观察学生对直角三角形全等的判断的理解和掌握,难度不大,是一道基评:础题.15.〔 2021 秋 ?淄川区校级期中〕如图, MN 是线段 AB 的垂直均分线, C 在 MN 外,且与 A 点在 MN 的同一侧, BC 交 MN 于 P 点,那么〔〕A BC> PC+APB BC< PC+APC BC=PC+APD BC≥PC+AP....考点:线段垂直均分线的性质.解析:从条件进行思虑,依照垂直均分线的性质可得 PA=PB,结合图形知 BC=PB+PC ,经过等量代换获取答案.解答:解:∵点 P 在线段 AB 的垂直均分线上,∴PA=PB .∵BC=PC+BP ,∴BC=PC+AP .应选 C.议论:此题观察了垂直均分线的性质:线段的垂直均分线上的点到线段的两个端点的距离相等;结合图形,进行线段的等量代换是正确解答此题的要点.16.〔 2021 秋 ?万州区校级期中〕如图,在△ ABC 中,AB=AC ,D 为 BC 上一点, BF=CD ,CE=BD ,那么∠ EDF 等于〔〕A90°﹣∠A B90°﹣∠ A C 180°﹣∠ A D45°﹣∠A....考点:等腰三角形的性质.解析:由 AB=AC ,利用等边同等角获取一对角相等,再由 BF=CD ,BD=CE ,利用 SAS 获取三角形 FBD 与三角形 DEC 全等,利用全等三角形对应角相等获取一对角相等,即可表示出∠ EDF .解答:解:∵ AB=AC ,∴∠B=∠C°,在△BDF 和△CED 中,,∴ △ BDF ≌△ CED 〔SAS〕,∴ ∠ BFD= ∠CDE ,∴ ∠ FDB+ ∠EDC= ∠ FDB+ ∠ BFD=180 °﹣∠ B=180 °﹣=90°+ ∠A ,那么∠ EDF=180 °﹣〔∠ FDB+ ∠ EDC 〕=90 °﹣∠ A.应选 B.议论:此题观察了全等三角形的判断与性质,熟练掌握全等三角形的判断与性质是解此题的要点.17.〔 2021 秋 ?泰山区校级期中〕如图,在△ ABC中,AB=AC,AD均分∠ BAC,那么以下结论不用然成立的是〔〕A△ABD ≌△ B AD 是△ ABC. ACD.的高线C AD 是△ ABC D △ABC 是等.的角均分线.边三角形考点:等腰三角形的性质.解析:利用等腰三角形的性质逐项判断即可.解答:解:A 、在△ABD 和△ ACD 中,,所以△ABD ≌△ ACD ,所以 A 正确;B 、因为 AB=AC , AD 均分∠ BAC ,所以 AD 是 BC 边上的高,所以 B 正确;C、由条件可知 AD 为△ ABC 的角均分线;D 、由条件无法得出 AB=AC=BC ,所以△ABC 不用然是等边三角形,所以 D 不正确;应选 D.议论:此题主要观察等腰三角形的性质,掌握等腰三角形“三线合一〞的性质是解题的关键.18.〔 2021 秋 ?晋江市校级月考〕如图,点P 是△ ABC 内的一点,假设PB=PC,那么〔〕A点 P 在.∠ABC的平分线上C点 P在边 AB .的垂直均分线上B点 P 在.∠ACB的平分线上D点P在边 BC .的垂直均分线上解析:依照到线段两端点的距离相等的点在这条线段的垂直均分线上由PC=PB 即可得出P 在线段 BC 的垂直均分线上.解答:解:∵ PB=PC,∴ P 在线段 BC 的垂直均分线上,应选 D.议论:此题观察了角均分线的性质和线段垂直均分线定理,注意:到线段两端点的距离相等的点在这条线段的垂直均分线上,角均分线上的点到角的两边的距离相等.19.〔 2021?河西区二模〕如图,在∠ ECF 的两边上有点B,A ,D ,BC=BD=DA ,且∠ ADF=75 °,那么∠ ECF 的度数为〔〕A 15°B 20°C 25°D 30°....考等腰三角形的性质.点:分依照等腰三角形的性质以及三角形外角和内角的关系,渐渐推出∠ECF的度数.析:解解:∵ BC=BD=DA ,答:∴ ∠C=∠BDC ,∠ABD= ∠BAD ,∵ ∠ ABD= ∠ C+∠ BDC ,∠ ADF=75 °,∴3∠ ECF=75 °,∴∠ECF=25 °.应选: C.点观察了等腰三角形的性质:等腰三角形的两个底角相等,三角形外角和内角的运评:用.20.〔 2021 秋 ?盱眙县校级期中〕如图, P 为∠AOB 的均分线 OC 上任意一点, PM⊥ OA 于 M ,PN ⊥OB 于 N,连接 MN 交 OP 于点 D.那么① PM=PN ,② MO=NO ,③ OP⊥ MN ,④ MD=ND .其中正确的有〔〕A 1个B 2个C 3个D 4个考角均分线的性质.点:分由很易获取△ OPM≌ △ OPN,进而得角相等,边相等,进而得△ OMP≌ △ ONP,析:△ PMD ≌ △PND ,可得 MD=ND ,∠ODN= ∠ ODM=9O °,答案可得.解解: P 为∠AOB 的均分线OC 上任意一点, PM⊥ OA 于 M ,PN⊥OB 于 N答:连接 MN 交OP于点 D,∴ ∠ MOP= ∠NOP ,∠OMP= ∠ ONP ,OP=OP,∴ △OPM ≌△ OPN,∴MP=NP ,OM=ON ,又 OD=OD∴△OMD ≌ △ OND ,∴MD=ND ,∠ ODN= ∠ ODM=9O °,∴OP⊥ MN∴① PM=PN ,② MO=NO ,③ OP⊥ MN ,④ MD=ND 都正确.应选 D.点此题主要观察了角均分线的性质,即角均分线上的一点到两边的距离相等;发现并评:利用△OMD ≌ △OND 是解决此题的要点,证明两线垂直时常常经过证两角相等且互补来解决.二.解答题〔共10 小题〕21.〔 2021 秋 ?黄浦区期末〕如图,ON 是∠ AOB 的均分线, OM 、OC 是∠ AOB 外的射线.(1〕若是∠ AOC= α,∠ BOC= β,请用含有α,β的式子表示∠ NOC .(2〕若是∠ BOC=90 °,OM 均分∠ AOC ,那么∠ MON 的度数是多少?考点:角均分线的定义.解析:〔 1〕先求出∠ AOB= α﹣β,再利用角均分线求出∠ AON,即可得出∠ NOC;〔 2〕先利用角均分线求出∠ AOM=∠ AOC,∠ AON=∠ AOB,即可得出∠MON= ∠ BOC.解答:解:〔 1〕∵ ∠ AOC= α,∠BOC= β,∴ ∠ AOB= α﹣β,∵ON 是∠ AOB 的均分线,∴ ∠ AON= 〔α﹣β〕,∠ NOC= α﹣〔α﹣β〕=〔α+β〕;(2〕∵OM 均分∠AOC,ON 均分∠ AOB ,∴ ∠ AOM=∠AOC,∠ AON=∠ AOB,∴ ∠ MON= ∠ AOM ﹣∠AON=〔∠AOC﹣∠ AOB〕=∠ BOC=×90°=45°.议论:此题观察了角均分线的定义和角的计算;弄清各个角之间的数量关系是解决问题的要点.22.〔 2021 秋 ?阿坝州期末〕如图,: E 是∠ AOB 的均分线上一点, EC⊥ OB ,ED ⊥OA ,C、D 是垂足,连接 CD,且交 OE 于点 F.(1〕求证: OE 是 CD 的垂直均分线.(2〕假设∠AOB=60 °,请你研究 OE ,EF 之间有什么数量关系?并证明你的结论.考点:线段垂直均分线的性质.专题:研究型.解析:〔 1〕先依照 E 是∠ AOB 的均分线上一点,EC⊥ OB, ED⊥OA 得出△ODE≌ △ OCE,可得出 OD=OC ,DE=CE ,OE=OE ,可得出△ DOC 是等腰三角形,由等腰三角形的性质即可得出OE 是 CD 的垂直均分线;(2〕先依照 E 是∠ AOB 的均分线,∠AOB=60 °可得出∠ AOE= ∠ BOE=30 °,由直角三角形的性质可得出 OE=2DE ,同理可得出 DE=2EF 即可得出结论.解答:解:〔 1〕∵ E 是∠ AOB 的均分线上一点,EC⊥ OB , ED⊥OA ,∴DE=CE , OE=OE ,∴Rt△ ODE≌ Rt△ OCE,∴OD=OC ,∴△ DOC 是等腰三角形,∵ OE 是∠AOB 的均分线,∴OE 是 CD 的垂直均分线;〔 2〕∵OE 是∠ AOB 的均分线,∠AOB=60 °,∴ ∠ AOE= ∠ BOE=30 °,∵EC⊥ OB ,ED⊥ OA ,∴OE=2DE ,∠ ODF= ∠ OED=60 °,∴∠ EDF=30 °,∴DE=2EF ,∴OE=4EF .议论:此题观察的是角均分线的性质及直角三角形的性质、等腰三角形的判断与性质,熟知以上知识是解答此题的要点.23.〔 2021 秋 ?花垣县期末〕如图,在△ ABC 中,∠ ABC=2 ∠ C, BD 均分∠ABC ,DE ⊥AB 〔E 在 AB 之间〕,DF ⊥BC , BD=5 , DE=3 , CF=4,试求△ DFC 的周长.考点:角均分线的性质.解析:依照角均分线的性质可证∠ ABD=∠ CBD,即可求得∠ CBD=∠ C,即BD=CD,再依照角均分线上的点到角两边距离相等即可求得DE=DF ,即可解题.解答:解:∵ ∠ ABC=2 ∠ C, BD 均分∠ABC ,∴ ∠CBD= ∠C,∴ BD=CD ,∵ BD 均分∠ABC ,∴ DE=DF ,∴ △DFC 的周长 =DF+CD+CF=DE+BD+CF=3+5+4=12.议论:此题观察了角均分线上点到角两边距离相等的性质,观察了角均分线均分角的性质,观察了三角形周长的计算,此题中求证DE=DF 是解题的要点.24.〔 2021 秋 ?大石桥市期末〕如图,点 D 是△ ABC 中 BC 边上的一点,且 AB=AC=CD ,AD=BD ,求∠BAC 的度数.考点:等腰三角形的性质.解析:由AD=BD得∠ BAD=∠ DBA,由AB=AC=CD得∠CAD=∠CDA=2∠ DBA,∠DBA= ∠ C,进而可推出∠ BAC=3 ∠ DBA ,依照三角形的内角和定理即可求得∠DBA 的度数,进而不难求得∠ BAC 的度数.解答:解:∵ AD=BD∴设∠ BAD= ∠ DBA=x °,∵AB=AC=CD∴ ∠ CAD= ∠ CDA= ∠ BAD+ ∠DBA=2x °,∠DBA= ∠C=x °,∴ ∠ BAC=3 ∠ DBA=3x °,∵ ∠ ABC+ ∠ BAC+ ∠ C=180°∴5x=180 °,∴∠ DBA=36 °∴∠ BAC=3 ∠ DBA=108 °.议论:此题主要观察学生同等腰三角形的性质及三角形内角和定理的综合运用能力;求得角之间的关系利用内角和求解是正确解答此题的要点.25.〔 2021 秋 ?安溪县期末〕如图,在△ABC中,AB=AC,∠ A=α.(1〕直接写出∠ ABC 的大小〔用含α的式子表示〕;(2〕以点 B 为圆心、 BC 长为半径画弧,分别交 AC 、AB 于 D 、E 两点,并连接 BD、DE .假设=30 °,求∠BDE 的度数.考点:等腰三角形的性质.解析:〔1〕依照三角形内角和定理和等腰三角形两底角相等的性质即可求得∠ABC的大小;〔 2〕依照等腰三角形两底角相等求出∠BCD=∠ BDC,再求出∠ CBD,尔后依照∠ ABD= ∠ ABC ﹣∠ CBD ,求得∠ABD ,再依照三角形内角和定理和等腰三角形两底角相等的性质计算即可得解.解答:解:〔 1〕∠ ABC 的大小为×〔 180°﹣α〕 =90°﹣α;〔 2〕∵ AB=AC ,∴ ∠ABC= ∠ C=90 °﹣α=90°﹣×30°=75°,由题意得: BC=BD=BE ,由 BC=BD 得∠ BDC= ∠ C=75°,∴∠CBD=180 °﹣ 75°﹣75°=30°,∴ ∠ABD= ∠ABC ﹣∠CBD=75 °﹣30°=45°,由 BD=BE 得.故∠BDE 的度数是°.议论:此题观察了三角形内角和定理、等腰三角形的性质,主要利用了等腰三角形两底角相等,熟记性质是解题的要点.26.〔 2021 秋?静宁县校级期中〕如图,在△ ABC中,AD均分∠ BAC,点D是BC的中点,DE ⊥AB 于点 E, DF ⊥ AC 于点 F.求证:〔 1〕∠ B= ∠ C.〔2〕△ ABC 是等腰三角形.考等腰三角形的判断.点:分由条件可得出 DE=DF ,可证明△ BDE ≌△ CDF ,可得出∠ B=∠ C,再由等腰三角析:形的判断可得出结论.解证明:〔 1〕∵AD 均分∠BAC ,DE ⊥ AB 于点 E, DF ⊥ AC 于点 F,答:∴ DE=DF ,在 Rt△BDE 和 Rt△ CDF 中,,∴ Rt△BDE ≌ Rt△ CDF 〔HF〕,∴ ∠B=∠C;〔 2〕由〔 1〕可得∠ B=∠ C,∴ △ABC 为等腰三角形.点此题主要观察等腰三角形的判断及全等三角形的判断和性质,利用角均分线的性质评:得出 DE=DF 是解题的要点.27.〔 2021 秋 ?天津期末〕如图, AB=AC ,∠ C=67°,AB 的垂直均分线 EF 交 AC 于点 D,求∠ DBC 的度数.考点:线段垂直均分线的性质;等腰三角形的性质.解析:求出∠ ABC ,依照三角形内角和定理求出∠A,依照线段垂直均分线得出AD=BD ,求出∠ ABD ,即可求出答案.解答:解:∵ AB=AC ,∠ C=67 °,∴ ∠ ABC= ∠ C=67 °,∴ ∠ A=180 °﹣ 67°﹣ 67°=46°,∵ EF 是 AB 的垂直均分线,∴ AD=BD ,∴ ∠ A= ∠ ABD=46 °,∴ ∠ DBC=67 °﹣ 46°=21 °.议论:此题观察了线段垂直均分线,三角形的能或定理,等腰三角形的性质和判断等知识点,要点是求出∠ ABC和∠ ABD的度数,题目比较好.28.〔 2021 秋 ?高坪区校级期中〕如图,△ ABC 中, AB=AD=AE ,DE=EC ,∠ DAB=30 °,求∠C 的度数.考点:等腰三角形的性质.解析:第一依照 AB=AD=AE ,DE=EC ,获取∠ B= ∠ADB ,∠ ADE= ∠ AED ,∠C=∠EDC ,进而获取∠ ADE= ∠ AED= ∠ C+∠ EDC=2 ∠ C,依照∠ DAB=30 °,求得∠B= ∠ ADB=75 °,利用∠ ADC= ∠ ADE+ ∠ EDC=3 ∠ C=105°,求得∠C即可.解答:解:∵AB=AD=AE ,DE=EC ,∴ ∠B= ∠ADB ,∠ADE= ∠AED ,∠ C=∠EDC ,∴ ∠ADE= ∠AED= ∠ C+∠ EDC=2 ∠ C,∵ ∠DAB=30 °,∴ ∠B= ∠ADB=75 °,∴ ∠ADC= ∠ADE+ ∠EDC=3 ∠C=105 °,∴ ∠C=35 °.议论:此题观察了等腰三角形的性质,解题的要点是利用等腰三角形的性质求得有关角的度数.29.〔 2021 春 ?扶沟县校级期中〕阅读理解:“在一个三角形中,若是角相等,那么它们所对的边也相等.〞简称“等角同等边〞,如图,在△ ABC 中,∠ ABC 和∠ ACB 的均分线上交于点 F,过点 F 作 BC 的平行线分别交 AB 、 AC 于点 D 、E,请你用“等角同等边〞的知识说明DE=BD+CE .考等腰三角形的性质.点:专证明题.题:分由 DE ∥BC, BF 均分∠ABC ,CF 均分∠ ACB 可知, DB=DF ,CE=EF .即可得出析:结论.解证明:∵ BF 均分∠ABC 〔〕, CF 均分∠ACB 〔〕,答:∴ ∠ABF= ∠ CBF,∠ ACF= ∠FCB ;又∵DE 平行 BC 〔〕∴ ∠DFB= ∠ FBC 〔两直线平行,内错角相等〕,∠ EFC=∠ FCB〔两直线平行,内错角相等〕,∴ ∠DBF= ∠ DFB ,∠ EFC= ∠ECF〔等量代换〕∴DF=DB , EF=EC 〔等角同等边〕∴DE=BD+CE .点此题观察学生同等腰三角形的判断与性质和平行线的性质的理解和掌握,主要利评:用等腰三角形两边相等.稍微有点难度是一道中档题.30.〔 2021?龙岩质检〕如图, AD 是△ ABC 的均分线, DE ,DF 分别垂直 AB 、AC 于 E、F,连接 EF,求证:△AEF 是等腰三角形.考等腰三角形的判断;全等三角形的判断与性质.点:专证明题.题:分依照角均分线的性质知∠BAD=∠ CAD;尔后依照条件“DE,DF分别垂直AB 、析:AC 于 E、 F〞获取∠ DEA= ∠ DFA=90 °;再加上公共边AD=AD ,进而证明,△ ADE ≌ △ ADF ;最后依照全等三角形的对应边相等证明△ AEF的两边相等,所以△AEF 是等腰三角形.解证明:∵ AD 是△ABC 的均分线,答:∴ ∠BAD= ∠CAD ,〔3 分〕又∵DE ,DF 分别垂直 AB 、 AC 于 E, F∴ ∠DEA= ∠ DFA=90 °〔 6 分〕又∵AD=AD ,∴ △ ADE ≌△ ADF .〔 8 分〕∴ AE=AF ,即△ AEF 是等腰三角形〔10 分〕点此题综合观察了等腰三角形的判断、全等三角形的判断与性质.解答此题时,根评:据全等三角形的判判定理ASA 判断△ ADE ≌ △ ADF .。
2015年05月03日初中数学三角形证明组卷一.选择题(共20小题)1.(2015•涉县模拟)如图,在△ABC中,∠C=90°,AB的垂直平分线交AB与D,交BC 于E,连接AE,若CE=5,AC=12,则BE的长是()A .13 B.10 C.12 D.52.(2015•淄博模拟)如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是∠ABC、∠BCD的角平分线,则图中的等腰三角形有()A .5个B.4个C.3个D.2个3.(2014秋•西城区校级期中)如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD:S△ACD=()A .4:3 B.3:4 C.16:9 D.9:164.(2014•丹东)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为()A .70°B.80°C.40°D.30°5.(2014•南充)如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A .30°B.36°C.40°D.45°6.(2014•山西模拟)如图,点O在直线AB上,射线OC平分∠AOD,若∠AOC=35°,则∠BOD等于()A .145°B.110°C.70°D.35°7.(2014•雁塔区校级模拟)如图,在△ABC中,∠ACB=90°,BA的垂直平分线交BC边于D,若AB=10,AC=5,则图中等于60°的角的个数是()A .2 B.3 C.4 D.58.(2014秋•腾冲县校级期末)如图,已知BD是△ABC的中线,AB=5,BC=3,△ABD 和△BCD的周长的差是()A .2 B.3 C.6 D.不能确定9.(2014春•栖霞市期末)在Rt△ABC中,如图所示,∠C=90°,∠CAB=60°,AD平分∠CAB,点D到AB的距离DE=3.8cm,则BC等于()A .3.8cm B.7.6cm C.11.4cm D.11.2cm10.(2014秋•博野县期末)△ABC中,点O是△ABC内一点,且点O到△ABC三边的距离相等;∠A=40°,则∠BOC=()A .110°B.120°C.130°D.140°11.(2013秋•潮阳区期末)如图,已知点P在∠AOB的平分线OC上,PF⊥OA,PE⊥OB,若PE=6,则PF的长为()A .2 B.4 C.6 D.812.(2013秋•马尾区校级期末)如图,△ABC中,DE是AB的垂直平分线,交BC于点D,交AB于点E,已知AE=1cm,△ACD的周长为12cm,则△ABC的周长是()A .13cm B.14cm C.15cm D.16cm13.(2013秋•西城区期末)如图,∠BAC=130°,若MP和QN分别垂直平分AB和AC,则∠PAQ等于()A .50°B.75°C.80°D.105°14.(2014秋•东莞市校级期中)如图,要用“HL”判定Rt△ABC和Rt△A′B′C′全等的条件是()A.AC=A′C′,BC=B′C′B.∠A=∠A′,AB=A′B′C.AC=A′C′,AB=A′B′D.∠B=∠B′,BC=B′C′15.(2014秋•淄川区校级期中)如图,MN是线段AB的垂直平分线,C在MN外,且与A 点在MN的同一侧,BC交MN于P点,则()A .BC>PC+AP B.BC<PC+AP C.BC=PC+AP D.BC≥PC+AP16.(2014秋•万州区校级期中)如图,已知在△ABC中,AB=AC,D为BC上一点,BF=CD,CE=BD,那么∠EDF等于()A .90°﹣∠A B.90°﹣∠AC.180°﹣∠A D.45°﹣∠A17.(2014秋•泰山区校级期中)如图,在△ABC中,AB=AC,AD平分∠BAC,那么下列结论不一定成立的是()A.△ABD≌△ACD B.AD是△ABC的高线C.AD是△ABC的角平分线D.△ABC是等边三角形18.(2014秋•晋江市校级月考)如图,点P是△ABC内的一点,若PB=PC,则()A.点P在∠ABC的平分线上B.点P在∠ACB的平分线上C.点P在边AB的垂直平分线上D.点P在边BC的垂直平分线上19.(2013•河西区二模)如图,在∠ECF的两边上有点B,A,D,BC=BD=DA,且∠ADF=75°,则∠ECF的度数为()A .15°B.20°C.25°D.30°20.(2013秋•盱眙县校级期中)如图,P为∠AOB的平分线OC上任意一点,PM⊥OA于M,PN⊥OB于N,连接MN交OP于点D.则①PM=PN,②MO=NO,③OP⊥MN,④MD=ND.其中正确的有()A .1个B.2个C.3个D.4个二.解答题(共10小题)21.(2014秋•黄浦区期末)如图,已知ON是∠AOB的平分线,OM、OC是∠AOB外的射线.(1)如果∠AOC=α,∠BOC=β,请用含有α,β的式子表示∠NOC.(2)如果∠BOC=90°,OM平分∠AOC,那么∠MON的度数是多少?22.(2014秋•阿坝州期末)如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.23.(2014秋•花垣县期末)如图,在△ABC中,∠ABC=2∠C,BD平分∠ABC,DE⊥AB (E在AB之间),DF⊥BC,已知BD=5,DE=3,CF=4,试求△DFC的周长.24.(2014秋•大石桥市期末)如图,点D是△ABC中BC边上的一点,且AB=AC=CD,AD=BD,求∠BAC的度数.25.(2014秋•安溪县期末)如图,在△ABC中,AB=AC,∠A=α.(1)直接写出∠ABC的大小(用含α的式子表示);(2)以点B为圆心、BC长为半径画弧,分别交AC、AB于D、E两点,并连接BD、DE.若=30°,求∠BDE的度数.26.(2014秋•静宁县校级期中)如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF⊥AC于点F.求证:(1)∠B=∠C.(2)△ABC是等腰三角形.27.(2012秋•天津期末)如图,AB=AC,∠C=67°,AB的垂直平分线EF交AC于点D,求∠DBC的度数.28.(2013秋•高坪区校级期中)如图,△ABC中,AB=AD=AE,DE=EC,∠DAB=30°,求∠C的度数.29.(2012春•扶沟县校级期中)阅读理解:“在一个三角形中,如果角相等,那么它们所对的边也相等.”简称“等角对等边”,如图,在△ABC中,已知∠ABC和∠ACB的平分线上交于点F,过点F作BC的平行线分别交AB、AC于点D、E,请你用“等角对等边”的知识说明DE=BD+CE.30.(2011•龙岩质检)如图,AD是△ABC的平分线,DE,DF分别垂直AB、AC于E、F,连接EF,求证:△AEF是等腰三角形.2015年05月03日初中数学三角形证明组卷参考答案与试题解析一.选择题(共20小题)1.(2015•涉县模拟)如图,在△ABC中,∠C=90°,AB的垂直平分线交AB与D,交BC 于E,连接AE,若CE=5,AC=12,则BE的长是()A .13 B.10 C.12 D.5考点:线段垂直平分线的性质.分析:先根据勾股定理求出AE=13,再由DE是线段AB的垂直平分线,得出BE=AE=13.解答:解:∵∠C=90°,∴AE=,∵DE是线段AB的垂直平分线,∴BE=AE=13;故选:A.点评:本题考查了勾股定理和线段垂直平分线的性质;利用勾股定理求出AE是解题的关键.2.(2015•淄博模拟)如图,在△ABC中,AB=AC,∠A=36°,BD、CE分别是∠ABC、∠BCD 的角平分线,则图中的等腰三角形有()A .5个B.4个C.3个D.2个考等腰三角形的判定;三角形内角和定理.点:专题:证明题.分析:根据已知条件和等腰三角形的判定定理,对图中的三角形进行分析,即可得出答案.解答:解:共有5个.(1)∵AB=AC∴△ABC是等腰三角形;(2)∵BD、CE分别是∠ABC、∠BCD的角平分线∴∠EBC=∠ABC,∠ECB=∠BCD,∵△ABC是等腰三角形,∴∠EBC=∠ECB,∴△BCE是等腰三角形;(3)∵∠A=36°,AB=AC,∴∠ABC=∠ACB=(180°﹣36°)=72°,又BD是∠ABC的角平分线,∴∠ABD=∠ABC=36°=∠A,∴△ABD是等腰三角形;同理可证△CDE和△BCD是等腰三角形.故选:A.点评:此题主要考查学生对等腰三角形判定和三角形内角和定理的理解和掌握,属于中档题.3.(2014秋•西城区校级期中)如图,在△ABC中,AD是它的角平分线,AB=8cm,AC=6cm,则S△ABD:S△ACD=()A .4:3 B.3:4 C.16:9 D.9:16考点:角平分线的性质;三角形的面积.专题:计算题.分析:首先过点D作DE⊥AB,DF⊥AC,由AD是它的角平分线,根据角平分线的性质,即可求得DE=DF,由△ABD的面积为12,可求得DE与DF的长,又由AC=6,则可求得△ACD的面积.解答:解:过点D作DE⊥AB,DF⊥AC,垂足分别为E、F…(1分)∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,…(3分)∴S△ABD=•DE•AB=12,∴DE=DF=3…(5分)∴S△ADC=•DF•AC=×3×6=9…(6分)∴S△ABD:S△ACD=12:9=4:3.故选A.点评:此题考查了角平分线的性质.此题难度不大,解题的关键是熟记角平分线的性质定理的应用,注意数形结合思想的应用,注意辅助线的作法.4.(2014•丹东)如图,在△ABC中,AB=AC,∠A=40°,AB的垂直平分线交AB于点D,交AC于点E,连接BE,则∠CBE的度数为()A .70°B.80°C.40°D.30°考点:线段垂直平分线的性质;等腰三角形的性质.专题:几何图形问题.分析:由等腰△ABC中,AB=AC,∠A=40°,即可求得∠ABC的度数,又由线段AB的垂直平分线交AB于D,交AC于E,可得AE=BE,继而求得∠ABE的度数,则可求得答案.解答:解:∵等腰△ABC中,AB=AC,∠A=40°,∴∠ABC=∠C==70°,∵线段AB的垂直平分线交AB于D,交AC于E,∴AE=BE,∴∠ABE=∠A=40°,∴∠CBE=∠ABC﹣∠ABE=30°.故选:D.点评:此题考查了线段垂直平分线的性质以及等腰三角形的性质.此题难度不大,注意掌握数形结合思想的应用.5.(2014•南充)如图,在△ABC中,AB=AC,且D为BC上一点,CD=AD,AB=BD,则∠B的度数为()A .30°B.36°C.40°D.45°考点:等腰三角形的性质.分析:求出∠BAD=2∠CAD=2∠B=2∠C的关系,利用三角形的内角和是180°,求∠B,解答:解:∵AB=AC,∴∠B=∠C,∵AB=BD,∴∠BAD=∠BDA,∵CD=AD,∴∠C=∠CAD,∵∠BAD+∠CAD+∠B+∠C=180°,∴5∠B=180°,∴∠B=36°故选:B.点评:本题主要考查等腰三角形的性质,解题的关键是运用等腰三角形的性质得出∠BAD=2∠CAD=2∠B=2∠C关系.6.(2014•山西模拟)如图,点O在直线AB上,射线OC平分∠AOD,若∠AOC=35°,则∠BOD等于()A .145°B.110°C.70°D.35°考点:角平分线的定义.分析:首先根据角平分线定义可得∠AOD=2∠AOC=70°,再根据邻补角的性质可得∠BOD的度数.解答:解:∵射线OC平分∠DOA.∴∠AOD=2∠AOC,∵∠COA=35°,∴∠DOA=70°,∴∠BOD=180°﹣70°=110°,故选:B.点评:此题主要考查了角平分线定义,关键是掌握角平分线把角分成相等的两部分.7.(2014•雁塔区校级模拟)如图,在△ABC中,∠ACB=90°,BA的垂直平分线交BC边于D,若AB=10,AC=5,则图中等于60°的角的个数是()A .2 B.3 C.4 D.5考点:线段垂直平分线的性质.分析:根据已知条件易得∠B=30°,∠BAC=60°.根据线段垂直平分线的性质进一步求解.解答:解:∵∠ACB=90°,AB=10,AC=5,∴∠B=30°.∴∠BAC=90°﹣30°=60°∵DE垂直平分BC,∴∠BAC=∠ADE=∠BDE=∠CDA=90°﹣30°=60°.∴∠BDE对顶角=60°,∴图中等于60°的角的个数是4.故选C.点评:此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.由易到难逐个寻找,做到不重不漏.8.(2014秋•腾冲县校级期末)如图,已知BD是△ABC的中线,AB=5,BC=3,△ABD 和△BCD的周长的差是()A .2 B.3 C.6 D.不能确定考点:三角形的角平分线、中线和高.专题:计算题.分析:根据三角形的中线得出AD=CD,根据三角形的周长求出即可.解答:解:∵BD是△ABC的中线,∴AD=CD,∴△ABD和△BCD的周长的差是:(AB+BD+AD)﹣(BC+BD+CD)=AB﹣BC=5﹣3=2.故选A.点评:本题主要考查对三角形的中线的理解和掌握,能正确地进行计算是解此题的关键.9.(2014春•栖霞市期末)在Rt△ABC中,如图所示,∠C=90°,∠CAB=60°,AD平分∠CAB,点D到AB的距离DE=3.8cm,则BC等于()A .3.8cm B.7.6cm C.11.4cm D.11.2cm考点:角平分线的性质.分析:由∠C=90°,∠CAB=60°,可得∠B的度数,故BD=2DE=7.6,又AD平分∠CAB,故DC=DE=3.8,由BC=BD+DC求解.解答:解:∵∠C=90°,∠CAB=60°,∴∠B=30°,在Rt△BDE中,BD=2DE=7.6,又∵AD平分∠CAB,∴DC=DE=3.8,∴BC=BD+DC=7.6+3.8=11.4.故选C.点评:本题主要考查平分线的性质,由已知能够注意到D到AB的距离DE即为CD长,是解题的关键.10.(2014秋•博野县期末)△ABC中,点O是△ABC内一点,且点O到△ABC三边的距离相等;∠A=40°,则∠BOC=()A .110°B.120°C.130°D.140°考点:角平分线的性质;三角形内角和定理;三角形的外角性质.专题:计算题.分析:由已知,O到三角形三边距离相等,得O是内心,再利用三角形内角和定理即可求出∠BOC的度数.解答:解:由已知,O到三角形三边距离相等,所以O是内心,即三条角平分线交点,AO,BO,CO都是角平分线,所以有∠CBO=∠ABO=∠ABC,∠BCO=∠ACO=∠ACB,∠ABC+∠ACB=180﹣40=140∠OBC+∠OCB=70∠BOC=180﹣70=110°故选A.点评:此题主要考查学生对角平分线性质,三角形内角和定理,三角形的外角性质等知识点的理解和掌握,难度不大,是一道基础题.11.(2013秋•潮阳区期末)如图,已知点P在∠AOB的平分线OC上,PF⊥OA,PE⊥OB,若PE=6,则PF的长为()A .2 B.4 C.6 D.8考点:角平分线的性质;全等三角形的判定与性质.专题:计算题.分析:利用角平分线性质得出∠POF=∠POE,然后利用AAS定理求证△POE≌△POF,即可求出PF的长.解答:解:∵OC平分∠AOB,∴∠POF=∠POE,∵PF⊥OA,PE⊥OB,∴∠PFO=∠PEO,PO为公共边,∴△POE≌△POF,∴PF=PE=6.故选C.点评:此题考查学生对角平分线性质和全等三角形的判定与性质的理解和掌握,解答此题的关键是求证△POE≌△POF.12.(2013秋•马尾区校级期末)如图,△ABC中,DE是AB的垂直平分线,交BC于点D,交AB于点E,已知AE=1cm,△ACD的周长为12cm,则△ABC的周长是()A .13cm B.14cm C.15cm D.16cm考点:线段垂直平分线的性质.分析:要求△ABC的周长,先有AE可求出AB,只要求出AC+BC即可,根据线段垂直平分线的性质可知,AD=BD,于是AC+BC=AC+CD+AD等于△ACD的周长,答案可得.解答:解:∵DE是AB的垂直平分线,∴AD=BD,AB=2AE=2又∵△ACD的周长=AC+AD+CD=AC+BD+CD=AC+BC=12 ∴△ABC的周长是12+2=14cm.故选B点评:此题主要考查线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等;进行线段的等效转移,把已知与未知联系起来是正确解答本题的关键.13.(2013秋•西城区期末)如图,∠BAC=130°,若MP和QN分别垂直平分AB和AC,则∠PAQ等于()A .50°B.75°C.80°D.105°考点:线段垂直平分线的性质.分根据线段垂直平分线性质得出BP=AP,CQ=AQ,推出∠B=∠BAP,∠C=∠QAC,析:求出∠B+∠C,即可求出∠BAP+∠QAC,即可求出答案.解答:解:∵MP和QN分别垂直平分AB和AC,∴BP=AP,CQ=AQ,∴∠B=∠PAB,∠C=∠QAC,∵∠BAC=130°,∴∠B+∠C=180°﹣∠BAC=50°,∴∠BAP+∠CAQ=50°,∴∠PAQ=∠BAC﹣(∠PAB+∠QAC)=130°﹣50°=80°,故选:C.点评:本题考查了等腰三角形的性质,线段垂直平分线性质,三角形的内角和定理,注意:线段垂直平分线上的点到线段两个端点的距离相等,等边对等角.14.(2014秋•东莞市校级期中)如图,要用“HL”判定Rt△ABC和Rt△A′B′C′全等的条件是()A .AC=A′C′,BC=B′C′B.∠A=∠A′,AB=A′B′C .AC=A′C′,AB=A′B′D.∠B=∠B′,BC=B′C′考点:直角三角形全等的判定.分析:根据直角三角形全等的判定方法(HL)即可直接得出答案.解答:解:∵在Rt△ABC和Rt△A′B′C′中,如果AC=A′C′,AB=A′B′,那么BC一定等于B′C′,Rt△ABC和Rt△A′B′C′一定全等,故选C.点评:此题主要考查学生对直角三角形全等的判定的理解和掌握,难度不大,是一道基础题.15.(2014秋•淄川区校级期中)如图,MN是线段AB的垂直平分线,C在MN外,且与A 点在MN的同一侧,BC交MN于P点,则()A .BC>PC+AP B.BC<PC+AP C.BC=PC+AP D.BC≥PC+AP考点:线段垂直平分线的性质.分析:从已知条件进行思考,根据垂直平分线的性质可得PA=PB,结合图形知BC=PB+PC,通过等量代换得到答案.解答:解:∵点P在线段AB的垂直平分线上,∴PA=PB.∵BC=PC+BP,∴BC=PC+AP.故选C.点评:本题考查了垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等;结合图形,进行线段的等量代换是正确解答本题的关键.16.(2014秋•万州区校级期中)如图,已知在△ABC中,AB=AC,D为BC上一点,BF=CD,CE=BD,那么∠EDF等于()A .90°﹣∠A B.90°﹣∠AC.180°﹣∠A D.45°﹣∠A考点:等腰三角形的性质.分析:由AB=AC,利用等边对等角得到一对角相等,再由BF=CD,BD=CE,利用SAS得到三角形FBD与三角形DEC全等,利用全等三角形对应角相等得到一对角相等,即可表示出∠EDF.解答:解:∵AB=AC,∴∠B=∠C°,在△BDF和△CED中,,∴△BDF≌△CED(SAS),∴∠BFD=∠CDE,∴∠FDB+∠EDC=∠FDB+∠BFD=180°﹣∠B=180°﹣=90°+∠A,则∠EDF=180°﹣(∠FDB+∠EDC)=90°﹣∠A.故选B.点评:此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.17.(2014秋•泰山区校级期中)如图,在△ABC中,AB=AC,AD平分∠BAC,那么下列结论不一定成立的是()A.△ABD≌△ACDB.AD是△ABC的高线C.AD是△ABC的角平分线D.△ABC是等边三角形考点:等腰三角形的性质.分析:利用等腰三角形的性质逐项判断即可.解答:解:A、在△ABD和△ACD中,,所以△ABD≌△ACD,所以A正确;B、因为AB=AC,AD平分∠BAC,所以AD是BC边上的高,所以B正确;C、由条件可知AD为△ABC的角平分线;D、由条件无法得出AB=AC=BC,所以△ABC不一定是等边三角形,所以D不正确;故选D.点评:本题主要考查等腰三角形的性质,掌握等腰三角形“三线合一”的性质是解题的关键.18.(2014秋•晋江市校级月考)如图,点P是△ABC内的一点,若PB=PC,则()A.点P在∠ABC的平分线上B.点P在∠ACB的平分线上C.点P在边AB的垂直平分线上D.点P在边BC的垂直平分线上考点:线段垂直平分线的性质.分析:根据到线段两端点的距离相等的点在这条线段的垂直平分线上由PC=PB即可得出P 在线段BC的垂直平分线上.解答:解:∵PB=PC,∴P在线段BC的垂直平分线上,故选D.点评:本题考查了角平分线的性质和线段垂直平分线定理,注意:到线段两端点的距离相等的点在这条线段的垂直平分线上,角平分线上的点到角的两边的距离相等.19.(2013•河西区二模)如图,在∠ECF的两边上有点B,A,D,BC=BD=DA,且∠ADF=75°,则∠ECF的度数为()A .15°B.20°C.25°D.30°考点:等腰三角形的性质.分析:根据等腰三角形的性质以及三角形外角和内角的关系,逐步推出∠ECF的度数.解答:解:∵BC=BD=DA,∴∠C=∠BDC,∠ABD=∠BAD,∵∠ABD=∠C+∠BDC,∠ADF=75°,∴3∠ECF=75°,∴∠ECF=25°.故选:C.点评:考查了等腰三角形的性质:等腰三角形的两个底角相等,三角形外角和内角的运用.20.(2013秋•盱眙县校级期中)如图,P为∠AOB的平分线OC上任意一点,PM⊥OA于M,PN⊥OB于N,连接MN交OP于点D.则①PM=PN,②MO=NO,③OP⊥MN,④MD=ND.其中正确的有()A .1个B.2个C.3个D.4个考点:角平分线的性质.分析:由已知很易得到△OPM≌△OPN,从而得角相等,边相等,进而得△OMP≌△ONP,△PMD≌△PND,可得MD=ND,∠ODN=∠ODM=9O°,答案可得.解答:解:P为∠AOB的平分线OC上任意一点,PM⊥OA于M,PN⊥OB于N 连接MN交OP于点D,∴∠MOP=∠NOP,∠OMP=∠ONP,OP=OP,∴△OPM≌△OPN,∴MP=NP,OM=ON,又OD=OD∴△OMD≌△OND,∴MD=ND,∠ODN=∠ODM=9O°,∴OP⊥MN∴①PM=PN,②MO=NO,③OP⊥MN,④MD=ND都正确.故选D.点评:本题主要考查了角平分线的性质,即角平分线上的一点到两边的距离相等;发现并利用△OMD≌△OND是解决本题的关键,证明两线垂直时常常通过证两角相等且互补来解决.二.解答题(共10小题)21.(2014秋•黄浦区期末)如图,已知ON是∠AOB的平分线,OM、OC是∠AOB外的射线.(1)如果∠AOC=α,∠BOC=β,请用含有α,β的式子表示∠NOC.(2)如果∠BOC=90°,OM平分∠AOC,那么∠MON的度数是多少?考点:角平分线的定义.分析:(1)先求出∠AOB=α﹣β,再利用角平分线求出∠AON,即可得出∠NOC;(2)先利用角平分线求出∠AOM=∠AOC,∠AON=∠AOB,即可得出∠MON=∠BOC.解答:解:(1)∵∠AOC=α,∠BOC=β,∴∠AOB=α﹣β,∵ON是∠AOB的平分线,∴∠AON=(α﹣β),∠NOC=α﹣(α﹣β)=(α+β);(2)∵OM平分∠AOC,ON平分∠AOB,∴∠AOM=∠AOC,∠AON=∠AOB,∴∠MON=∠AOM﹣∠AON=(∠AOC﹣∠AOB)=∠BOC=×90°=45°.点评:本题考查了角平分线的定义和角的计算;弄清各个角之间的数量关系是解决问题的关键.22.(2014秋•阿坝州期末)如图,已知:E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,C、D是垂足,连接CD,且交OE于点F.(1)求证:OE是CD的垂直平分线.(2)若∠AOB=60°,请你探究OE,EF之间有什么数量关系?并证明你的结论.考点:线段垂直平分线的性质.专题:探究型.分析:(1)先根据E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA得出△ODE≌△OCE,可得出OD=OC,DE=CE,OE=OE,可得出△DOC是等腰三角形,由等腰三角形的性质即可得出OE是CD的垂直平分线;(2)先根据E是∠AOB的平分线,∠AOB=60°可得出∠AOE=∠BOE=30°,由直角三角形的性质可得出OE=2DE,同理可得出DE=2EF即可得出结论.解答:解:(1)∵E是∠AOB的平分线上一点,EC⊥OB,ED⊥OA,∴DE=CE,OE=OE,∴Rt△ODE≌Rt△OCE,∴OD=OC,∴△DOC是等腰三角形,∵OE是∠AOB的平分线,∴OE是CD的垂直平分线;(2)∵OE是∠AOB的平分线,∠AOB=60°,∴∠AOE=∠BOE=30°,∵EC⊥OB,ED⊥OA,∴OE=2DE,∠ODF=∠OED=60°,∴∠EDF=30°,∴DE=2EF,∴OE=4EF.点评:本题考查的是角平分线的性质及直角三角形的性质、等腰三角形的判定与性质,熟知以上知识是解答此题的关键.23.(2014秋•花垣县期末)如图,在△ABC中,∠ABC=2∠C,BD平分∠ABC,DE⊥AB (E在AB之间),DF⊥BC,已知BD=5,DE=3,CF=4,试求△DFC的周长.考点:角平分线的性质.分析:根据角平分线的性质可证∠ABD=∠CBD,即可求得∠CBD=∠C,即BD=CD,再根据角平分线上的点到角两边距离相等即可求得DE=DF,即可解题.解答:解:∵∠ABC=2∠C,BD平分∠ABC,∴∠CBD=∠C,∴BD=CD,∵BD平分∠ABC,∴DE=DF,∴△DFC的周长=DF+CD+CF=DE+BD+CF=3+5+4=12.点评:本题考查了角平分线上点到角两边距离相等的性质,考查了角平分线平分角的性质,考查了三角形周长的计算,本题中求证DE=DF是解题的关键.24.(2014秋•大石桥市期末)如图,点D是△ABC中BC边上的一点,且AB=AC=CD,AD=BD,求∠BAC的度数.考点:等腰三角形的性质.分析:由AD=BD得∠BAD=∠DBA,由AB=AC=CD得∠CAD=∠CDA=2∠DBA,∠DBA=∠C,从而可推出∠BAC=3∠DBA,根据三角形的内角和定理即可求得∠DBA的度数,从而不难求得∠BAC的度数.解答:解:∵AD=BD∴设∠BAD=∠DBA=x°,∵AB=AC=CD∴∠CAD=∠CDA=∠BAD+∠DBA=2x°,∠DBA=∠C=x°,∴∠BAC=3∠DBA=3x°,∵∠ABC+∠BAC+∠C=180°∴5x=180°,∴∠DBA=36°∴∠BAC=3∠DBA=108°.点评:此题主要考查学生对等腰三角形的性质及三角形内角和定理的综合运用能力;求得角之间的关系利用内角和求解是正确解答本题的关键.25.(2014秋•安溪县期末)如图,在△ABC中,AB=AC,∠A=α.(1)直接写出∠ABC的大小(用含α的式子表示);(2)以点B为圆心、BC长为半径画弧,分别交AC、AB于D、E两点,并连接BD、DE.若=30°,求∠BDE的度数.考点:等腰三角形的性质.分析:(1)根据三角形内角和定理和等腰三角形两底角相等的性质即可求得∠ABC的大小;(2)根据等腰三角形两底角相等求出∠BCD=∠BDC,再求出∠CBD,然后根据∠ABD=∠ABC﹣∠CBD,求得∠ABD,再根据三角形内角和定理和等腰三角形两底角相等的性质计算即可得解.解答:解:(1)∠ABC的大小为×(180°﹣α)=90°﹣α;(2)∵AB=AC,∴∠ABC=∠C=90°﹣α=90°﹣×30°=75°,由题意得:BC=BD=BE,由BC=BD得∠BDC=∠C=75°,∴∠CBD=180°﹣75°﹣75°=30°,∴∠ABD=∠ABC﹣∠CBD=75°﹣30°=45°,由BD=BE得.故∠BDE的度数是67.5°.点评:本题考查了三角形内角和定理、等腰三角形的性质,主要利用了等腰三角形两底角相等,熟记性质是解题的关键.26.(2014秋•静宁县校级期中)如图,在△ABC中,AD平分∠BAC,点D是BC的中点,DE⊥AB于点E,DF⊥AC于点F.求证:(1)∠B=∠C.(2)△ABC是等腰三角形.考点:等腰三角形的判定.分析:由条件可得出DE=DF,可证明△BDE≌△CDF,可得出∠B=∠C,再由等腰三角形的判定可得出结论.解答:证明:(1)∵AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,∴DE=DF,在Rt△BDE和Rt△CDF中,,∴Rt△BDE≌Rt△CDF(HF),∴∠B=∠C;(2)由(1)可得∠B=∠C,∴△ABC为等腰三角形.点评:本题主要考查等腰三角形的判定及全等三角形的判定和性质,利用角平分线的性质得出DE=DF是解题的关键.27.(2012秋•天津期末)如图,AB=AC,∠C=67°,AB的垂直平分线EF交AC于点D,求∠DBC的度数.考点:线段垂直平分线的性质;等腰三角形的性质.分析:求出∠ABC,根据三角形内角和定理求出∠A,根据线段垂直平分线得出AD=BD,求出∠ABD,即可求出答案.解答:解:∵AB=AC,∠C=67°,∴∠ABC=∠C=67°,∴∠A=180°﹣67°﹣67°=46°,∵EF是AB的垂直平分线,∴AD=BD,∴∠A=∠ABD=46°,∴∠DBC=67°﹣46°=21°.点评:本题考查了线段垂直平分线,三角形的能或定理,等腰三角形的性质和判定等知识点,关键是求出∠ABC和∠ABD的度数,题目比较好.28.(2013秋•高坪区校级期中)如图,△ABC中,AB=AD=AE,DE=EC,∠DAB=30°,求∠C的度数.考点:等腰三角形的性质.分析:首先根据AB=AD=AE,DE=EC,得到∠B=∠ADB,∠ADE=∠AED,∠C=∠EDC,从而得到∠ADE=∠AED=∠C+∠EDC=2∠C,根据∠DAB=30°,求得∠B=∠ADB=75°,利用∠ADC=∠ADE+∠EDC=3∠C=105°,求得∠C即可.解答:解:∵AB=AD=AE,DE=EC,∴∠B=∠ADB,∠ADE=∠AED,∠C=∠EDC,∴∠ADE=∠AED=∠C+∠EDC=2∠C,∵∠DAB=30°,∴∠B=∠ADB=75°,∴∠ADC=∠ADE+∠EDC=3∠C=105°,∴∠C=35°.点评:本题考查了等腰三角形的性质,解题的关键是利用等腰三角形的性质求得有关角的度数.29.(2012春•扶沟县校级期中)阅读理解:“在一个三角形中,如果角相等,那么它们所对的边也相等.”简称“等角对等边”,如图,在△ABC中,已知∠ABC和∠ACB的平分线上交于点F,过点F作BC的平行线分别交AB、AC于点D、E,请你用“等角对等边”的知识说明DE=BD+CE.考点:等腰三角形的性质.专题:证明题.分析:由DE∥BC,BF平分∠ABC,CF平分∠ACB可知,DB=DF,CE=EF.便可得出结论.解答:证明:∵BF平分∠ABC(已知),CF平分∠ACB(已知),∴∠ABF=∠CBF,∠ACF=∠FCB;又∵DE平行BC(已知)∴∠DFB=∠FBC(两直线平行,内错角相等),∠EFC=∠FCB(两直线平行,内错角相等),∴∠DBF=∠DFB,∠EFC=∠ECF(等量代换)∴DF=DB,EF=EC(等角对等边)∴DE=BD+CE.点评:此题考查学生对等腰三角形的判定与性质和平行线的性质的理解和掌握,主要利用等腰三角形两边相等.稍微有点难度是一道中档题.30.(2011•龙岩质检)如图,AD是△ABC的平分线,DE,DF分别垂直AB、AC于E、F,连接EF,求证:△AEF是等腰三角形.考点:等腰三角形的判定;全等三角形的判定与性质.专题:证明题.分析:根据角平分线的性质知∠BAD=∠CAD;然后根据已知条件“DE,DF分别垂直AB、AC于E、F”得到∠DEA=∠DFA=90°;再加上公共边AD=AD,从而证明,△ADE≌△ADF;最后根据全等三角形的对应边相等证明△AEF的两边相等,所以△AEF是等腰三角形.解答:证明:∵AD是△ABC的平分线,∴∠BAD=∠CAD,(3分)又∵DE,DF分别垂直AB、AC于E,F∴∠DEA=∠DFA=90°(6分)又∵AD=AD,∴△ADE≌△ADF.(8分)∴AE=AF,即△AEF是等腰三角形(10分)点评:本题综合考查了等腰三角形的判定、全等三角形的判定与性质.解答此题时,根据全等三角形的判定定理ASA判定△ADE≌△ADF.。