2.1.2认识无理数(2)ppt
- 格式:ppt
- 大小:596.50 KB
- 文档页数:10
课题:第二章第一节认识无理数第2课时授课人:徐利华课型:新授课授课时间:2013年9月12日,星期四,第2 节课教学目标:1.能利用逼近的思想探索无理数的存在形式.2.理解并掌握无理数的概念,并能利用其特点辨别无理数.3.能够准确地将目前所学习的数按不同角度进行分类,并说明理由,进一步体会分类思想,培养学生解决问题的能力.教学重点:能根据无理数特点准确辨别无理数,并能将目前所学的数按不同角度准确分类.教学难点:利用逼近的思想探索无理数的存在形式.教法学法:教法:在上节课学生通过拼图得到a2=2、b2=5,知道a、b既不是整数,也不是分数,但它究竟是什么数,以什么形式存在,学生对此充满好奇,于是充分利用学生的好奇心,先引导学生利用计算器探索无理数的存在性,然后再引导学生自主探索无理数的特点.充分体现我校“自主、互动、反馈”的教学模式.学法:分组合作,在组内主动和组员合作交流,借助计算器探索无理数的存在,并探索出无理数的特点,通过经历对数的扩展过程来认识数的发展.课前准备:1.教师准备好多媒体课件、计算器.2.学生准备好计算器.教学过程:一、创设情境,导入新课师:上节课我们通过面积计算得到a2=2、b2=5,大家都明白了a、b既不是整数也不是分数,那它到底是什么“东西”?生:(哈哈大笑)老师它不是“东西”。
师:哦,那它是什么,它的存在形式是什么?生:它是我们没见过的一种数.师:说的好,它的确是我们没见过但是又存在的一种数,它究竟以什么形式存在,今天就让我们共同来揭开它神秘的面纱.(教师板书课题)【设计意图】:承接上节课讲的知识来激发学生的好奇心,激励学生积极探索无理数的真实存在性,培养培养学生知识迁移的能力.二、探究交流,获取新知探究活动1:探索无理数的存在形式师:大家还记的我们上节课是怎样得到面积为2的正方形的吗?(多媒体出示图片) 生:把两个边长为1的小正方形,通过剪切、拼图拼成一个大的正方形,它的面积就是2.师:你能不能估计大正方形的边长a 在什么范围内?生:(观察课件后回答)通过图形可以看出1<a <2.因为12=1,22=4,而a 2等于2,所以1<a <2. 师:既然1<a <2,那么a 是1点几呢? 生:(探究后回答)1.4<a <1.5 师:为什么?生:因为1.42=1.96,1.52=2.25,而a 的平方等于2,所以1.4<a <1.5 师:你能精确到它的百分位吗?千分位呢?万分位呢?下面给大家几分钟的时间,借助计算器进行探索. 生:(小组合作,交流探索) 师:谁能说一下小组探索的结果 生:a =1.4142师:恰好是1.4142吗?生:约等于1.4142,在1.4142与1.4143之间. 师:还有几位小数?生1:无数位.它是一个无限小数.生2:这个小数的数位无限长,而且还不循环. 师:事实上,它是一个无限不循环小数.师:模仿上一个探索过程,你能探索面积为5的正方形的边长b 吗?如果能,把探究的结果填入下表.生:(小组合作,交流探索)把探究结果填入表格. 师:谁能说一下你能得到什么结论?生:b =2.23…,它也是一个无限不循环小数.师:同学们探索的非常好. 模仿刚才的探索方法,我们也可以探索体积 为2的正方体的棱长.借助计算器,可以得到它的棱长为1.25992105…,它 也是一个无限不循环小数. 【设计意图】:通过繁琐的计算,培养学生的耐心以及严谨的治学态度,并让学生初步感受无限逼近的数学思想, 通过经历对数的扩展过程来认识数的发展. 探究活动2:认识无理数的特点师:刚才我们经过一番计算我们确认像a 、b 这样的数的确是存在的,下面我请同学们把下列各数表示成小数。