飞行原理 第五章 平飞、上升、下降
- 格式:ppt
- 大小:8.81 MB
- 文档页数:5
飞行原理及空气动力学知识飞行原理及空气动力学知识飞机的空气动力性能是决定飞机飞行性能的一个重要因素。
飞行员既要熟悉飞机空气动力的产生和变化,同时也要清楚飞机空气动力性能的基本数据。
下面是店铺为大家带来的飞行原理及空气动力学知识,欢迎大家阅读浏览。
一. 滑行飞机不超过规定的速度,在地面所作的直线或曲线运动叫滑行。
对滑行的基本要求是:飞机平稳地开始滑行,滑行中保持好速度和方向,并使飞机能停止在预定的位置。
飞机从静止开始移动,拉力或推力必须大于最大静摩擦力,故飞机开始滑行时应适当加大油门。
飞机开始移动后,摩擦力减小,则应酌量减小油门,以防加速太快,保持起滑平稳。
滑行中,如果要增大滑行速度,应柔和加大油门,使拉力或推力大于摩擦力,产生加速度,使速度增大,要减小滑行速度,则应收小油门,必要时,可使用刹车。
二. 起飞飞机从开始滑跑到离开地面,并升到一定高度的运动过程,叫做起飞。
飞机起飞的操纵原理飞机从地面滑跑到离地升空,是由于升力不断增大,直到大于飞机重力的结果。
而只有当飞机速度增大到一定时,才可能产生足以支持飞机重力的升力。
可见飞机的起飞是一个速度不断增加的加速过程。
;剩余拉力较小的活塞式螺旋桨飞机的起飞过程,一般可分为起飞滑跑、离地、小角度上升(或一段平飞)、上升四个阶段。
对有足够剩余拉力的螺旋桨飞机,或有足够剩余推力的喷气式飞机,因可使飞机加速并上升,故起飞一般只分三个阶段,即起滑跑、离地和上升。
(一)起飞滑跑的目的是为了增大飞机的速度,直到获得离地速度。
拉力或推力愈大,剩余拉力或剩余推力也愈大,飞机增速就愈快。
起飞中,为尽快地增速,应把油门推到最大位置。
1.抬前轮或抬尾轮前三点飞机为什么要抬前轮?前三点飞机的停机角比较小,如果在整个起飞滑跑阶段都保持三点姿态滑跑,则迎角和升力系数较小,必然要将速度增大到很大才能产生足够的升力使飞机离地,这样,滑咆距离势必很长。
因此,为了减小离地速度,缩短滑跑距离,当速度增大到一定程度时就需要抬起前轮作两点姿态滑跑,以增大迎角和升力系数。
什么是国际标准大气?所谓国际标准大气ISA,就是人为地规定大气温度、密度、气压等随高度变化的关系,得出统一的数据,作为计算和试验飞机的统一标准,以便比较。
空气温度:t=288.15k、15C 大气压强:p=101325N/m2=29.92incHg=1013mbar 叙述升力产生的原因空气之间的相互粘滞或牵扯的特性,就是空气的粘性。
空气分子的不规则运动,是造成空气粘性的主要原因。
相邻两层空气之间有相对运动时,会产生相互牵扯的作用力,这种作用力叫做空气的粘性力,或称空气的内摩擦力。
因为粘性的存在才使气流沿弯曲翼面流动。
当空气沿机翼表面积弯曲时,会试图与上层气流分离。
但是,由于形成真空会遇到很强的阻力,因此分离过程会降低气压并是相邻的上层气流弯曲。
气压的降低以因素传播,导致大量空气在机翼周围弯曲。
这就是机翼上表面产生低压的原因,也是机翼后缘产生下洗的原因。
空气弯曲导致了机翼上表面的压力降低,由于伯努利效应,压力降低导致气流加速,机翼上表面气流加速是压力降低的结果而不是其原因,翼表面压力差是产生升力的原因。
后缘襟翼分哪几种?各有什么特点?增升效果如何?A. 分裂襟翼、简单襟翼、富勒襟翼、开缝襟翼、双开缝襟翼B. 机翼的上表面没有移动,而下表面向下移动。
提高升力时也会产生很大的压差阻力,有助于提高低速时的升力,并使俯冲时的飞机减速C. 简单的铰接在机翼内侧最后20%左右的位置,襟翼展开的最初20 °内,他能提高升力,并且低速时阻力会增加的很多,当襟翼的展开角度超过20 °,压差阻力急剧增加,而升力增加很少或没有增加D. 不但能改变翼型的后缘形状,而且能向后移动。
结果是既增加了弯度,又增加了机翼面积。
更大的机翼能偏转更多的气流,增加的弯度能增大下洗气流速度E. 开缝襟翼既向下也想后伸展,如福勒襟翼一样,再加上襟翼和机翼之间的缝隙也被充分利用,级以上表面边界层内流过的气流损失了大量的动能,这样,当气流到达襟翼上时,有可能发生分离并导致失速。
固定翼飞机飞行原理简介飞行原理简介(一)要了解飞机的飞行原理就必须先知道飞机的组成以及功用,飞机的升力是如何产生的等问题。
这些问题将分成几个部分简要讲解。
一、飞行的主要组成部分及功用到目前为止,除了少数特殊形式的飞机外,大多数飞机都由机翼、机身、尾翼、起落装置和动力装置五个主要部分组成:1. 机翼——机翼的主要功用是产生升力,以支持飞机在空中飞行,同时也起到一定的稳定和操作作用。
在机翼上一般安装有副翼和襟翼,操纵副翼可使飞机滚转,放下襟翼可使升力增大。
机翼上还可安装发动机、起落架和油箱等。
不同用途的飞机其机翼形状、大小也各有不同。
2. 机身——机身的主要功用是装载乘员、旅客、武器、货物和各种设备,将飞机的其他部件如:机翼、尾翼及发动机等连接成一个整体。
3. 尾翼——尾翼包括水平尾翼和垂直尾翼。
水平尾翼由固定的水平安定面和可动的升降舵组成,有的高速飞机将水平安定面和升降舵合为一体成为全动平尾。
垂直尾翼包括固定的垂直安定面和可动的方向舵。
尾翼的作用是操纵飞机俯仰和偏转,保证飞机能平稳飞行。
4.起落装置——飞机的起落架大都由减震支柱和机轮组成,作用是起飞、着陆滑跑,地面滑行和停放时支撑飞机。
5.动力装置——动力装置主要用来产生拉力和推力,使飞机前进。
飞机上除了这五个主要部分外,根据飞机操作和执行任务的需要,还装有各种仪表、通讯设备、领航设备、安全设备等其他设备。
二、飞机的升力和阻力飞机是重于空气的飞行器,当飞机飞行在空中,就会产生作用于飞机的空气动力,飞机就是靠空气动力升空飞行的。
在了解飞机升力和阻力的产生之前,我们还要认识空气流动的特性,即空气流动的基本规律。
流动的空气就是气流,一种流体,这里我们要引用两个流体定理:连续性定理和伯努利定理流体的连续性定理:当流体连续不断而稳定地流过一个粗细不等的管道时,由于管道中任何一部分的流体都不能中断或挤压起来,因此在同一时间内,流进任一切面的流体的质量和从另一切面流出的流体质量是相等的。
飞⾏原理飞机为什么能飞?空⽓动⼒学空⽓与物体相互作⽤的规律操作飞机,原理?飞⾏⼒学研究飞⾏性能、操作性、稳定性更快、更远、更经济?飞⾏原理第⼀章飞机和⼤⽓的⼀般介绍第⼆章飞机的低速空动⼒空⽓动⼒学主要是低速⼩飞机第三章螺旋桨的空⽓动⼒第⼗章⾼速空⽓动⼒学基础第四章飞机的平衡、稳定性、操作性第五章平飞、上升、下降飞⾏⼒学第六章盘旋第七章起飞、着陆第⼋章特殊飞⾏着重于飞机的操作、实践、基本原理第九章重量、平衡机机型相关介绍⼤型宽体飞机:座位数在200以上,飞机上有双通道通⾏747 波⾳747载客数在350-400⼈左右(747、74E均为波⾳747的不同型号)777 波⾳777载客在350⼈左右(或以77B作为代号)767 波⾳767载客在280⼈左右M11 麦道11载客340⼈左右340 空中客车340载客350⼈左右300 空中客车300 载客280⼈左右(或以AB6作为代号)310 空中客车310载客250⼈左右ILW 伊尔86苏联飞机载客300⼈左右中型飞机:指单通道飞机,载客在100⼈以上,200⼈以下M82/M90 麦道82 麦道90载客150⼈左右737/738/733 波⾳737系列载客在130-160左右320空中客车320载客180⼈左右TU54苏联飞机载客150⼈左右146英国宇航公司BAE-146飞机载客108⼈YK2 雅克42苏联飞机载客110⼈左右⼩型飞机:指100座以下飞机,多⽤于⽀线飞⾏YN7 运7国产飞机载客50⼈左右AN4 安24苏联飞机载客50⼈左右SF3 萨伯100载客30⼈左右ATR 雅泰72A载客70⼈左右世界上现有主要机型:美国波⾳商⽤飞机制造公司、欧洲空中客车⼯业公司、美国麦克唐纳.道格拉斯公司。
1996年底,波⾳公司已同麦道合并。
波⾳系列:波⾳707、波⾳727、波⾳737、波⾳747、波⾳757、波⾳767、波⾳777 。
空中客车系列:A-300、A-310、A-320、A-330、A-340。
第一章:飞机和大气的一般介绍一、飞机的一般介绍1. 翼型的中弧曲度越大表明A:翼型的厚度越大B:翼型的上下表面外凸程度差别越大C:翼型外凸程度越大D:翼型的弯度越大2. 低速飞机翼型前缘A:较尖B:较圆钝C:为楔形D:以上都不对3. 关于机翼的剖面形状(翼型),下面说法正确的是A:上下翼面的弯度相同B:机翼上表面的弯度大于下表面的弯度C:机翼上表面的弯度小于下表面的弯度D:机翼上下表面的弯度不可比较二、1. 国际标准大气规定的标准海平面气温是A:25℃B:10℃C:20℃D:15℃2. 按照国际标准大气的规定,在高度低于11000米的高度上,高度每增加1000米,气温随季节变化A:降低6.5℃B:升高6.5℃C:降低2℃D:降低2℃3. 在3000米的高度上的实际气温为10℃,则该高度层上的气温比标准大气规定的温度A:高12.5℃B:低5℃C:低25.5℃D:高14.5℃4. 在气温比标准大气温度低的天气飞行,飞机的真实高度与气压高度表指示的高度(基准相同)相比,飞机的真实高度A:偏高B:偏低C:相等D:不确定第二章:飞机低速空气动力学1. 空气流过一粗细不等的管子时,在管道变粗处,气流速度将A:变大B:变小C:不变D:不一定2. 空气流过一粗细不等的管子时,在管道变细处,气流压强将A:增大B:减小C:不变D:不一定3. 根据伯努利定律,同一管道中,气流速度减小的地方,压强将A:增大B:减小C:不变D:不一定4. 飞机相对气流的方向A:平行于机翼翼弦,与飞行速度反向B:平行于飞机纵轴,与飞行速度反向C:平行于飞行速度,与飞行速度反向D:平行于地平线5. 飞机下降时,相对气流A:平行于飞行速度,方向向上B:平行于飞行速度,方向向下C:平行于飞机纵轴,方向向上D:平行于地平线6. 飞机的迎角是A:飞机纵轴与水平面的夹角B:飞机翼弦与水平面的夹角C:飞机翼弦与相对气流的夹角D:飞机纵轴与相对气流的夹角7. 飞机的升力A:垂直于飞机纵轴B:垂直于相对气流C:垂直于机翼翼弦D:垂直于重力8. 飞机的升力主要由产生。
飞机的副翼和升降原理飞机的副翼和升降是实现飞行控制的重要部分。
副翼一般用于横向控制,而升降则用于纵向控制。
本文将详细解析飞机副翼和升降的工作原理,并进行适当的说明。
首先,我们来探讨副翼的工作原理。
副翼通常装置在飞机的两侧,位于主翼和机身之间。
副翼通过改变其角度,可以改变空气动力学力,从而产生控制飞机的作用。
当副翼在一个侧向上升角度时,该侧的升力将增加,从而引起飞机向该侧倾斜。
相反,当副翼在一个侧向下降角度时,该侧的升力将减小,从而使飞机向相反的一侧倾斜。
副翼的控制一般通过操纵飞机的操纵杆或脚踏板来实现。
具体来说,当飞行员向左或向右施加横向力时,副翼会分别升起或下降,从而使飞机发生侧倾运动。
这种侧倾运动可以通过改变副翼的升降角度来控制,从而产生必要的横向力,使飞机朝期望的方向行进。
接下来,我们来讨论升降的工作原理。
升降用于控制飞机的上升和下降。
通常情况下,升降装置位于飞机尾部的水平安定面上。
升降通过改变水平安定面的升降角度,改变所产生的升力,从而实现飞机的垂直运动。
当升降面向上升时,升力增加,飞机将朝上升方向倾斜。
相反,当升降面向下降时,升力减小,飞机将朝下降方向倾斜。
通过连续的调整升降面的升降角度,飞行员可以控制飞机的爬升、下降和保持平飞状态。
升降的控制通常通过飞行员操作驾驶杆上的操纵轴或通过脚踏板上的操纵轴来完成。
当飞行员向前或向后推动操纵轴时,升降会相应地改变升降面的升降角度,从而改变升力的大小,引起飞机的垂直运动。
为了更好地控制飞机的副翼和升降,飞机通常配备了辅助设备。
例如,飞行员可以使用配备在操纵杆上的升降轮或副翼轮,通过旋转这些控制装置来调整副翼或升降的角度。
此外,飞机还可以使用附件设备,如自动驾驶系统和电子飞行仪表,来辅助副翼和升降的控制。
总结起来,飞机的副翼和升降是实现飞行控制的重要部分。
副翼主要用于横向控制,通过改变其升降角度来产生横向力,而升降则用于垂直控制,通过改变水平安定面的升降角度来产生升力,从而实现飞机的上升和下降。
飞行基础知识讲解(基本飞行动作)平飞、转弯、爬升、下降。
所有受控飞行都是由这些基本飞行机动中的一个或者多个复合而构成的。
控制的作用和运用:无论飞机相对于地面的姿态如何,下面的描述总是正确的:对升降舵控制施加向后的压力时,飞机头相对于飞行员上升。
对升降舵控制施加向前的压力时,飞机头相对于飞行员下降。
对副翼控制施加向右的压力时,飞机的右侧机翼相对于飞行员下降。
对副翼控制施加向左的压力时,飞机的左侧机翼相对于飞行员下降。
对右侧的方向舵脚踏施加压力时,飞机头相对飞行员向右运动(偏转)。
对左侧的方向舵脚踏施加压力时,飞机头相对飞行员向左运动(偏转)。
1、水平飞行在姿态飞行中,飞机控制由四部分组成:俯仰控制、倾斜控制、功率控制和配平控制。
俯仰控制是通过使用升降舵使飞机头相对于自然地平线升高或降低而绕飞机横轴的控制。
倾斜控制是通过使用副翼达到相对于自然地平线预期倾斜角而绕飞机纵轴的控制。
功率控制在需要改变推力的飞行状况时使用。
配平控制用于在达到预期姿态后释放保持的所有可能控制压力。
所以,姿态飞行的基本原理是:姿态+功率=性能姿态飞行的原则要求首先使用外部目视参考来建立恰当的飞行姿态,然后使用飞行仪表作为辅助的检查。
在每次俯仰姿态调整后总是再次配平飞机。
水平飞行就是有意识的固定飞机某部分的位置(用作参考点)和地平线之间的关系。
水平飞行(恒定高度)的俯仰姿态通常是通过选择飞机头的某部分为参考点,然后保持那个点相对地平线在一个固定的位置而实现的。
学员应该学会把参考点的明显运动和引起它运动的力联系起来。
通过这种方式,对于每个微小的修正,学员可以培养出通过施加于控制杆上力量的大小和方向来控制飞机姿态预期变化的能力,而不必参考仪表或者外部参考物。
执行水平飞行的常见错误有:试图用飞机上不合适的参考点来建立姿态;在后续的飞行中忘记预先选择的参考点;试图使用飞行仪表而不是外部目视参考来建立或修正飞机姿态;习惯性地以一侧机翼较低的姿态飞行;“盯着”飞行仪表而不是遵守姿态飞行的原理;不正确的扫视和/或对外部目视参考分配的时间不足(埋头在驾驶舱中);注视着机头(俯仰姿态)的参考点;不必要的或不适当的控制输入;在觉察到偏离直线水平飞行时不能作出及时准确的控制输入。