最新北师大版七年级数学上册《有理数及其运算》单元测试卷及答案解析(精品试题).docx
- 格式:docx
- 大小:88.45 KB
- 文档页数:18
有理数及其运算单元测试卷(满分100分,时间60分)一、选择题( 30分,每个小题3分 )1.下面说法正确的有( )① π的相反数是14.3-;②符号相反的数互为相反数;③ ()8.3--的相反数是8.3; ④ 一个数和它的相反数不可能相等;⑤正数与负数互为相反数.A .0个B .1个C .2个D .3个2.下面计算正确的是( )A .()2222--= B .()22363⎛⎫--= ⎪⎝⎭C .()4433-=-D .()220.10.1-= 3.如图,在数轴上有a 、b 两个有理数,则下列结论中,不正确的是( )A .0<+b aB .0<-b aC .0a b ⋅<D .03>⎪⎭⎫ ⎝⎛-b a 4.下列各组算式中,其值最小的是( )A .()232---B .()()32-⨯-C .()()232-⨯- D .()()232-÷- 5.比较大小的式子中,错误的是( )A .()()()()3838+⨯-<+⨯-B .313.0->- C .32)2()3(-<- D .100001.0->6.下列代数式中,值一定是正数的是( )A .2xB .1+-xC .()22+-x D .12+-x 7.绝对值大于或等于1,而小于4的所有的正整数的和是( )A .8B .7C .6D .58.下列说法中正确的个数是( )①有理数a 的倒数是a 1;②两个有理数相减,差为正,则被减数大于减数; ③符号相反的两个数是相反数;④任意两个有理数的和一定大于其中的一个加数.A .1B .2C .3D .49.如果0a b +>,且0ab <,那么( )A .0,0a b >>B .0,0a b <<C .a 、b 异号D .a 、b 异号且负数的绝对值较小10.任意整数a ,它的平方2a 的个位数字不可能出现在( )中.A .3,4,9,0B .2,3,7,8C .4,5,6,7D .1,5,6,9二、填空题( 每空3分,共24分 )11.31-的倒数是________;321的相反数是_________. 12.截止到2020年6月1日为止,北京市已建成34个地下蓄水设施,蓄水能力达到140 0003m ,将140 000用科学记数法表示为 .13.把)11()9()10()8(--+--+-写成省略加号的和式是_________________.14.所有绝对值小于4的整数的积是____________,和是 .15.将一根长1米的木棒,第一次截去一半,第二次截去剩下的一半,如此截下去,截至第五次,剩下的木棒长是________米.16.小明学了计算机运算法则后,编制了一个如下图的程序,当他任意输入一个有理数以后,计算机会计算出这个有理数的结果,请把各次结果填入表内:三、解答题(18题 4分,19题16分,其余每题10分) 17.将下列各数填入相应的集合内:15,-21,0.81,-3,722,-3.1,-4,171,0,3.14,π,正数集合:{ …},负分数集合:{ …}.非负整数集合:{ …},有理数集合:{ …},18.计算:(1))4(2)3(623-⨯+-⨯- (2)61)3161(1⨯-÷(3)51)2(423⨯-÷- (4)75.04.34353.075.053.1⨯-⨯+⨯-19.某检修小组1乘一辆汽车沿公路检修线路,约定向东为正.某天从A地出发到收工时,行走记录为(单位:千米):+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6.另一小组2也从A地出发,在南北向修,约定向北为正,行走记录为:-17,+9,-2,+8,+6,+9,-5,-1,+4,-7,-8.(1)分别计算收工时,1,2两组在A地的哪一边,距A地多远?(2)若每千米汽车耗油a升,求出发到收工各耗油多少升?20.请先阅读下列一组内容,然后解答问题:因为:11111111111 1,,12223233434910910 =-=-=-⋯=-⨯⨯⨯⨯所以:1111 122334910+++⋯+⨯⨯⨯⨯1111112334910⎛⎫⎛⎫⎛⎫=+-+-+⋯+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1111112334910=-+-+⋯+- 1911010=-= 问题: 计算: ①111112233420042005+++⋯+⨯⨯⨯⨯; ②11111335574951+++⋯+⨯⨯⨯⨯答案一、1. A ; 2. D ; 3. B ; 4. A ; 5. C ; 6. C ; 7. C ; 8. A ; 9. D ; 10. B 二、11. -3、-132; 12. 5104.1⨯ ; 13. -8-10-9+11; 14. 0、0; 15. 321 ; 16. -23、-49、-101三、17. 正数集合:{ 15,0.81,722,171,3.14,π …},18.(1)解:原式=81823-+=33,(2)解:原式=61611⨯-÷)(=6161⨯-⨯)(=1-, (3)解:原式=51464⨯÷-=5116⨯-=516-,(4)解:原式=434.353.053.1⨯-+-)(=)434.4⨯-=-3.3. 19.(1)根据题意得:3965412231015215=+-++--+-+-+,∴1组在A 地的东边,距A 地39千米,根据题意得:4874159682917---+--+++-+-=,∴2组在A 地的南边,距A 地4千米;(2)根据题意得:()a 65412231015215++-+++++-+-+++-+++-++a 65=(升) 答:出发到收工1小组耗油65a 升,根据题意得:()874159682917-+-+++-+-+++++++-+++-a a 76=(升), 答:出发到收工2小组耗油76a 升.20.① 111112233420042005+++⋯+⨯⨯⨯⨯ 2005120041...41313121211-++-+-+-= 200511-= 20052004=② 11111335574951+++⋯+⨯⨯⨯⨯ 21511491 (7)1515131311⨯⎪⎭⎫ ⎝⎛-++-+-+-= 215111⨯⎪⎭⎫ ⎝⎛-=215150 = 5125=。
七年级数学上册《第二章 有理数及其运算》单元检测卷及答案(北师大版)学校:___________班级:___________姓名:___________考号:___________一、单选题(共10小题,满分40分) 1.若2x 9=,y 2=且x y <,则x y -的值为( )A .5±B .1±C .5-或1-D . 5或1 2.某商场对顾客实行优惠,规定:(1)如一次购物不超过200元,则不予折扣;(2)如一次购物超过200元但不超过500元的,按标价给予九折优惠;(3)如一次购物超过500元的,其中500元按第(2)条给予优惠,超过500元的部分则给予八折优惠.某人两次去购物,分别付款168元与423元,如果他只去一次购买同样的商品,则应付款是( )A .52.8元B .510.4元C .560.4元D .472.8元3.对于任意一个三位数n ,如果n 满足各个数位上的数字互相不同,且都不为零,将其任意两个数位上的数字对调后可以得到三个不同的新三位数﹒把这三个新三位数的和与111的商记为()F n ,则()246F 的值为( )A .12B .11C .16D .184.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量即“结绳计数”.如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数,由图可知,孩子自出生后的天数是多少天?( )A .9天B .69天C .76天D .126天5.下列各数中,最大的是( )A .-3B .0C .1D .26.a,b 对应点的位置如图所示,把﹣a , b ,0按照从小到大的顺序排列,正确的是( )A.﹣a<b<0B.0<﹣a<b C.b<0<﹣a D.0<b<-a 7.2020年长春市双阳区体育场升级改造,旨在提升全民文化体育生活质量,体育场改造后总面积约为23800平方米,则23800用科学记数法表示为()A.323.810⨯C.3⨯D.52.38102.3810⨯B.4⨯2.310A.50B.63C.83D.1009.一天早晨的气温是7-℃,中午上升了11℃,半夜又下降了9℃,半夜的气温是()A.9-B.2-C.2D.5-10.0到-3之间的负数共有()A.1个B.2个C.3个D.无数个二、填空题(共8小题,满分32分)三、解答题(共6小题,每题8分,满分48分) 19.用简便方法计算:(1)2215130.34(13)0.343737-⨯-⨯+⨯--⨯; (2)111()(60)345--+⨯- .20.某机械厂计划平均每天生产300个零件,但是由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超过计划量记为正):星期一 星期二 星期三 星期四 星期五 星期六 星期日+6 -2 -8 +10 -7 +5 +4(1)根据记录的数据,求该厂星期二生产零件多少个?(2)根据记录的数据,求产量最多的一天比产量最少的一天多生产零件多少个? (3)根据记录的数据,求该厂本周实际共生产零件多少个?21.在数轴上,把原点记作点O ,表示数1的点记作点A . 对于数轴上任意一点P (不与点O ,点A 重合),将线段PO 与线段PA 的长度之比定义为点P 的特征值,记作ˆP,即ˆPO P PA=. 例如:当点P 是线段OA 的中点时,因为PO PA =,所以ˆ1P =. 如图,点123,,P P P 为数轴上三个点,点1P 表示的数为14-,点2P 表示的数与点1P 表示的数互为相反数,点3P 表示的数为2.(1)点2P 表示的数为:___________;(2)求123ˆˆ,ˆ,P P P 的值,比较123ˆˆ,ˆ,P P P 的大小,并用“<”连接; (3)若数轴上有一点M 满足13OM OA =,求ˆM .1.C 2.C 3.A4.B5.D6.A7.B8.C9.D10.D11.012.-6.13.614.21.15.016.217.10或-418.819.(1)-13.34;(2)23.20.(1)292个;(2)18个;(3)2108个21.(1)14(2)115P =,213P =与32P =和123ˆˆˆP P P << (3)12或1422.(1)-2;(2)5;(3)13;(4)107;(5)-3923.(1)有2个,分别是1,-1.(2)有1个,是0.(3)不存在. 24.(1)21x x ++-(2)☆-2,4;☆4,不小于0且不大于2,2(3)最小值为4, x =2。
北师大版(2024版)七年级(上)数学单元测试卷第2章《有理数及其运算》满分120分时间100分钟题号得分一、选择题(共10题;共30分)1.−110的绝对值是( )A.110B.10C.−110D.−102.如果“亏损5%”记作−5%,那么+3%表示( )A.多赚3%B.盈利−3%C.盈利3%D.亏损3%3.如图,数轴上点P表示的数是( )A.-1B.0C.1D.24.2023年3月13日,十四届全国人大一次会议闭幕后,国务院总理李强在答记者问时表示,我们国家现在适合劳动年龄人口已经有近9亿人,每年新增劳动力是1500万人,人力资源丰富仍然是中国一个巨大优势或者说显著优势.其中1500万用科学记数法表示为( )A.1.5×103B.1500×104C.1.5×106D.1.5×1075.如图,数轴上的点A,B,C,D表示的数与−13互为相反数的是( )A.A B.B C.C D.D6.下列各式中,计算结果最大的是( )A.3+(−2)B.3−(−2)C.3×(−2)D.3÷(−2)7.式子−2−1+6−9有下面两种读法;读法一:负2,负1,正6与负9的和;读法二:负2减1加6减9.则关于这两种读法,下列说法正确的是( )A.只有读法一正确B.只有读法二正确C .两种读法都不正确D .两种读法都正确8.用“▲”定义一种新运算:对于任何有理数a 和b ,规定a▲b =ab +b 2,如2▲3=2×3+32=15,则(−4)▲2的值为( )A .−4B .4C .−8D .89.已知两个有理数a ,b ,如果ab <0且a +b >0,那么( )A .a >0,b >0B .a >0,b <0C .a ,b 同号D .a ,b 异号,且正数的绝对值较大10.已知有理数a ,b ,c 在数轴上的位置如图所示,则a 2|a 2|−|b |b−c |c |=( )A .−1B .1C .2D .3二、填空题(共6题;共18分)11.既不是正数也不是负数的数是 . 12.−25 的倒数是 .13.某天最高气温为6℃,最低气温为−3℃.这天的温差是 ℃.14.一个整数8150…0用科学记数法表示为8.15×1010,则原数中“0”的个数为 个.15.比较大小:−|−8| −42.(填“>”“ <”或“=”)16.数轴上的A 点与表示−3的点距离4个单位长度,则A 点表示的数为 .三、解答题(共9题;共72分)17.(6分) 把下列数填在相应的集合内.−56,0,-3.5,1.2,6.(1)负分数集合:{}.(2)非负数集合:{ }.18.(8分)计算:(1)(−7)+13−5;(2)(−14)−(−34)−|12−1|.19.(6分)阅读下面的解题过程,并解决问题.计算:53.27−(−18)+(−21)+46.73−(+15)+21.解:原式=53.27+18−21+46.73−15+21…①=(53.27+46.73)+(21−21)+(18−15)…②=100+0+3…③=103(1)第①步经历了哪些转变:_____,体现了数学中的转化思想,为了计算简便,第②步应用了哪些运算律:_______.(2)根据以上解题技巧进行计算:−2123+314−(−23)−(+14).20.(8分)已知算式“(−2)×4−8”.(1)请你计算上式结果;(2)嘉嘉将数字“8”抄错了,所得结果为−11,求嘉嘉把“8”错写成了哪个数;(3)淇淇把运算符号“×”错看成了“+”,求淇淇的计算结果比原题的正确结果大多少?21.(8分)如图的数轴上,每小格的宽度相等.(1)填空:数轴上点A表示的数是 ,点B表示的数是 .(2)点C表示的数是−13,点D表示的数是−1,请在数轴上分别画出点C和点D的位置.(3)将A,B,C,D四个点所表示的数按从大到小的顺序排列,用“>”连接.22.(8分)一辆出租车从A 站出发,先向东行驶12km ,接着向西行驶8km ,然后又向东行驶4km .(1)画一条数轴,以原点表示A 站,向东为正方向,在数轴上表示出租车每次行驶的终点位置.(2)求各次路程的绝对值的和.这个数据的实际意义是什么?23.(8分)如图,一只甲虫在5×5的方格(每一格边长为1)上沿着网格线运动.它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右为正,向下向左为负.例如:从A 到B 记为:A→B(+1,+3);从C 到D 记为:C→D(+1,−2)(其中第一个数表示左右方向,第二个数表示上下方向).(1)填空:A→C ( , );C→B ( , ).(2)若甲虫的行走路线为:A→B→C→D→A ,请计算甲虫走过的路程.24.(8分)(1)如果a ,b 互为相反数(a ,b 均不为0),c ,d 互为倒数,|m |=4,则b a =______,求a +b 2024−cd +b a ×m 的值;(2)若实数a ,b 满足|a |=3,|b |=5,且a <b ,求a +13b 的值.25.(12分) 学习了绝对值的概念后,我们知道一个非负数的绝对值等于它本身,负数的绝对值等于它的相反数,即当a ≥0时,|a|=a ;当a <0时,|a|=−a .请完成下面的问题:(1)因为3<π,所以3−π<0,|3−π|=−(3−π)= ;(2)若有理数a <b ,则|a−b|= ;(3)(6分)计算:|13−12|+|14−13|+|15−14|+⋯+|12022−12021|+|12023−12022|参考答案一、选择题1.A 2.C 3.A 4.D 5.D 6.B 7.D 8.A 9.D 10.B二、填空题11.0 12.- 52 13.9 14.8 15.> 16.−7或1三、解答题17.(1)解:负分数集合:{−56,−3.5⋅⋅⋅}.(2)解:非负数集合:{0,1.2,6⋅⋅⋅}18.(1)解:(−7)+13−5=6−5=1(2)解:(−14)−(−34)−|12−1|=(−14)+34−|−12|=12−12=0.19.(1)去括号,省略加号;加法交换律、结合律(2)−1820.(1)−16(2)嘉嘉把“8”错写成了3(3)淇淇的计算结果比原题的正确结果大1021.(1)23;213(2)解:如图.(3)解:由数轴可知,213>22>−13−122.(1)解:如图所示,(2)解:|12|+|−8|+|4|=24km ,这个数据的实际意义是出租车行驶的总路程为24km.23.(1)+3;+4;-2;-1(2)如图所示,∵A→B =3+1=4,B→C =1+2=3,C→D =1+2=3,D→A =2+4=6.∴AB +BC +CD +DA =4+3+3+6=16.∴甲虫走过的路程为16.24.(1)−1,−5或3;(2)a +13b 的值是143或−4325.(1)π−3(2)b−a(3)解:原式=12−13+13−14+14−15+⋯+12021−12022+12022−12023=12−12023=20214046。
北师大版(2024)七年级上册数学第2章有理数及其运算达标测试卷(时间:45分钟。
满分:100分)一、选择题(本大题共8小题,每小题3分,共24分。
每小题只有一个正确选项)1.计算(-7)-(-5)的结果是()。
A.-12B.12C.-2D.22.中国是最早采用正负数表示相反意义的量并进行负数运算的国家。
若收入500元记作+500元,则支出237元记作()。
A.+237元B.-237元C.0元D.-474元3.在3,-7,0,1四个数中,最大的数是()。
9A.3B.-7C.0D.194.近似数5.0×102精确到()。
A.十分位B.个位C.十位D.百位5.“绿水青山就是金山银山”,多年来,某湿地保护区针对过度放牧问题,投入资金实施湿地生态效益补偿,完成季节性限牧还湿29.47万亩(1亩≈666.67 m2),使得湿地生态环境状况持续向好。
其中数据29.47万用科学记数法表示为()。
A.0.294 7×106B.2.947×104C.2.947×105D.29.47×1046.下列说法,正确的是()。
A.23表示2×3B.-110读作“-1的10次幂”C.(-5)2中-5是底数,2是指数D.2×32的底数是2×37.(2023内蒙古中考)定义新运算“⊗”,规定:a⊗b=a2-|b|。
则(-2)⊗(-1)的运算结果为()。
A.-5B.-3C.5D.3<0。
则其中正8.如图,数轴上点A,B,C分别表示数a,b,c,有下列结论:①a+b>0;②abc<0;③a-c<0;④-1<ab确结论的个数是()。
A.1B.2C.3D.4二、填空题(本大题共5小题,每小题4分,共20分)9.(2024重庆奉节期末)若a是最小的正整数,b是最大的负整数,则a+b=。
10.(2023重庆渝中区校级月考)计算:-|-335|-(-225)+45=。
北师大版七年级数学上册 第二章 有理数及其运算 单元测试题时间:100分钟 满分:120分一、选择题(共10小题,每小题3分,共30分)1.在54,-5,0,-3.141 592 6这四个数中,属于负分数的是( ) A .54 B . -5 C . 0 D . -3.141 592 6 2.在数轴上,点M 表示-2的点,将点M 沿数轴向右平移5个单位到点N ,则点N 表示的数是( )A . 3B . 5C . -7D . 3或-7 3.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是( )A .B .C .D . 4.存折中有存款200元,取出125元,又存入100元,存折中还有( )A . 425元B . 225元C . 185元D . 175元 5.某天广州气温是18℃,长春气温是-15℃,这天长春比广州气温低( )A . 3℃B . -3℃C . 33℃D . -33℃ 6.中国奥运劲儿在伦敦赛场上夺得奖牌共88枚,按相对于中国的相关奖牌多一枚记作+1枚的记法,俄罗斯队获金,银,铜的奖牌数分别记为-14枚,-1枚,+9枚,则俄罗斯队实际共获奖牌( )A . 82枚B . 74枚C . 87枚D . 94枚 7.已知|x |=1,|y |=54,则xy 的值是( ) A .54 B . -54 C . ±54 D . ±54,±51 8.某种商品标价为1200元,售出价800元,则最接近打( )折售出.A . 6折B . 7折C . 8折D . 9折9.一根1m 长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第六次后剩下的绳子长为a m ,则a 的值为( )A .81B . ±81C .641 D . 以上都不对 10.人类的遗传物质是DNA ,DNA 是一个很长的链,最短的22号染色体与长达30 000 000个核苷酸,30 000 000用科学记数法表示为( )A . 3×107B . 30×104C . 0.3×107D . 0.3×108二、填空题(共8小题,每小题3分,共24分)11.在数-1,8,2.5,-21,0,+7.5,-4.3中,非负数有____________个. 12.已知数轴上点A 表示数-3,点A 在数轴上平移2个单位长度,则平移后点A 表示的数是___________.13.某部分检测一种零件,零件的标准长度是6cm ,超过的长度用正数表示,不足的长度用负数表示,抽查了5个零件,其结果如下:①-0.002,②+0.015,③+0.02,④-0.018 ⑤-0.008,这5个零件中最接近标准长度的是________(填序号).14.响水某天上午的温度是25℃,中午又上升了3℃,下午由于冷空气南下,到夜间又下降到15℃,则这天的温差是________℃.15.国际空间站测得站外温度的变化范围是-157℃~121℃,则站外的最大温差是___________. 16.一架飞机进行飞行表演,先上升3.2千米,又下降2.4千米,最后又上升1.2千米,此时,飞机比最初点高了________________千米.17.“十一”期间,某商店举行促销活动,一种商品原价120元,按八折(即原价的80%)出售,则现售价应为___________元.18.你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如图所示:这样捏合到第___________次后可以拉出64根面条.三、解答题(共9小题,共66分)19.(12分)计算:(1)341-253+543-852; (2)(-331)-(+21)+(+443)-(-132); (3) 2.25+381-243+1.875; (4)(-3.5)+(-34)+(-43)+(+27)+0.75+(-37).20.(6分)如图,两个圈分别表示负数集和整数集,请你从-1,5,-80%,-7,0,-0.2,72,-10这些数中,选择适当的数填在下面的圈中.21. (6分)矿井下A ,B ,C 三处的标高分别是-37.4m ,-129.8m ,-71.3m ,点A 比点B 高多少米?点B 比C 高多少米?22. (6分)有一块面积为2米2的正方形纸片,第1次剪掉一半,第2次剪掉剩下纸片的一半,如此继续剪下去,第6次后剩下的纸片的面积是多少米2?23. (6分)某果品冷库的温度是-2℃,现有一批水果要在13℃的温度储藏,如果冷库每小时升温3℃,那么几小时后能达到所要求的温度?24. (6分)重庆出租车司机小李,一天下午以江北机场为出发点,在南北走向的公路上营运,如果规定向北为正,向南为负,他这天下午行车里程(单位:千米)如下:+15,-2,+5,-13,+10,-7,-8,+12,+4,-5,+6,若出租车每千米的营业价格为3.5元,这天下午小李的营业额是多少?25. (6分)阅读(1)中的方法,计算(2)中的题.(1)-561+765;解:-561+765=-5+(-61)+7+65=[(-5)+7]+[(-61)+65] =2+64=2+32=232. (2)上述方法叫作拆项法,依照上述方法计算;772+(-783).26. (9分)如图所示,点A ,点B 在数轴上,点C 表示:-3.5,点D 表示:+2.(1)点A ,点B 分别表示什么数?(2)在数轴上表示出点C 和点D ;(3)点A ,点B ,点C ,点D 所表示的数中,哪些是负数?27. (9分)一辆货车从超市出发,向东走3千米到达小李家,继续向东走1.5千米到达小张家,然后又回头向西走9.5千米到达小陈家,最后回到超市.(1)以超市为原点,向东为正,以1个单位长表示1千米,在数轴上表示出上述位置. (2)小陈家距小李家多远?(3)若货车每千米耗油0.5升,这趟路货车共耗油多少升?答案解析1.【答案】D【解析】-3.141 592 6是负分数,故选D.2.【答案】A【解析】由M 为数轴上表示-2的点,将点M 沿数轴向右平移5个单位到点N ,此时点N 所对应的数为3,因此点N 所表示的数为3.3.【答案】C【解析】因为|-0.6|<|+0.7|<|+2.5|<|-3.5|,所以-0.6最接近标准,4.【答案】D【解析】存入的钱数记为正,取出的钱数记为负数,根据题意列出:200+(-125)+100=175(元).故答案为:175.5.【答案】C【解析】18-(-15)=18+15=33℃.6.【答案】A【解析】根据题意列得:88-14-1+9=82(枚),则俄罗斯队实际共获奖牌82枚.7.【答案】C【解析】因为|x |=1,|y |=54,所以x =±1,y =±54, 所以x =1,y =54时,xy =54, x =1,y =-54时,xy =-54,x =-1,y =54时,xy =-54, x =-1,y =-54时,xy =54, 所以xy =±54.8.【答案】B【解析】800÷1200≈0.67,所以打6.7折,最接近7折.9.【答案】C 【解析】根据题意得(21)6=a ,解得a =641. 10.【答案】A【解析】30 000 000=3×107. 11.【答案】4【解析】-1,-21,-4.3是负数. 8,2.5,+7.5是整数.0既不是整数也不是负数,属于非负数有4个.12.【答案】-1或-5【解析】因为数轴上的点A 表示的数是-3,所以把点A 向左移动2个单位长度后,点A 表示的数是-5;把点A 向右移动2个单位长度后,点A 表示的数是-1.13.【答案】①【解析】①|-0.002|=0.002,②|+0.015|=0.015,③|+0.02|=0.02,④|-0.018|=0.018,⑤|-0.008|=0.008,因为|-0.002|=0.002在所检查的零件中绝对值最小,所以它最接近标准长度.14.【答案】13【解析】根据题意可列算式:25+3-15=13(℃).15.【答案】278℃【解析】121-(-157)=278(℃).16.【答案】2【解析】规定飞机上升为正,下降为负,根据题意得:(+3.2)+(-2.4)+(+1.2)=2(千米).17.【答案】96【解析】120×80%=96(元). 18.【答案】6【解析】根据题意有第一次:21=2,第二次:22=4,第三次:23=8,…第n 次:2n ,所以第6次:26=64.19.【答案】解:(1)341-253+543-852=341+543-253-852=9-11=-2; (2)(-331)-(+21)+(+443)-(-132)=-331-21+443+132=-331+132-21+443=-35+417=1231; (3) 2.25+381-243+1.875=2.25+3.125-2.75+1.875=2.25-2.75+(3.125+1.875) =-0.5+5=4.5;(4)(-3.5)+(-34)+(-43)+(+27)+0.75+(-37)=-27-34-43+27+43-37 =-27+27-43+43-34-37=0+0-311=-311. 【解析】(1)利用交换律结合律把同分母分数结合在一起便于计算;(2)先对原式进行去括号和省略“+”的化简,再把同分母结合在一起进行计算较为简便;(3)首先把分数化为小数,再利用凑整原则进行计算(4)首先把小数化成分数,再把互为相反数的相加,同分母的相加,最后把剩下的相加即可20.【答案】【解析】负数分别是-1,-80%,-7,-0.2,-10;整数分别是-1,5,-7,0,-10.21.【答案】解:A 处比B 处高-37.4-(-129.8)=92.4(米),点B 比C 高:-129.8-(-71.3)=-58.5(米).【解析】根据有理数的减法,可得两地的相对高度.22.【答案】解:第1次截去一半,剩下的面积=21×2m 2, 第2次截去一半,剩下的面积=(21)2×2m 2, …第6次截去一半,剩下的面积=(21)6×2=321m 2. 【解析】根据第1次截去一半,剩下的面积=21×2m 2,第2次截去一半,剩下的面积=(21)2×2m 2,依此类推,即可得到6次后剩下的纸片的面积.23.【答案】解:[13-(-2)]÷3=15÷3=5(小时), 答:5小时后能达到所要求的温度.【解析】根据题意列出算式[13-(-2)]÷3,求出即可. 24.【答案】解:|+15|+|-2|+|+5|+|-13|+|+10|+|-7|+|-8|+|+12|+|+4|+|-5|+|+6|=87(千米), 87×3.5=304.5(元).答:这天下午小李的营业额是304.5元.【解析】求出所有行车记录的绝对值的和,再乘以3.5即可.25.【答案】772+(-783)=7+72+(-7)+(-83)=[7+(-7)]+[72+(-83)]=-565.【解析】根据(1)中的拆项方法进行计算即可.26.【答案】解:(1)由数轴可得,点A表示的数是-1,点B表示的数是3;(2)在数轴上表示出点C和点D,如下图所示:(3)点A、B、C、D表示的数分别是:-1、3、-3.5、2,负数是点A、C表示的数.【解析】(1)根据数轴可以得到点A、B表示的数;(2)根据点C表示:-3.5,点D表示:+2,可以在数轴上表示出点C、D;(3)根据A、B、C、D四点表示的数,可以解答本题.27.【答案】解:(1)如下图:点O表示超市,点A表示小李家,点B表示小张家,点C表示小陈家.(2)从图中可看出小陈家距小李家8千米.故小陈家距小李家8千米.(3)0.5×(|+3|+|+1.5|+|-9.5|+|-5|)=0.5×19=9.5(升).故这趟路货车共耗油9.5升.【解析】(1)根据数轴与点的对应关系,可知超市在原点,小李家所在的位置表示的数是+3,小张家所在的位置表示的数是+4.5,小陈家所在的位置表示的数是-5;(2)3-(-5)=8;(3)先算这趟路一共有多少千米,再乘以货车每千米耗油的升数.。
北师大版七年级上册数学《第2章有理数及其运算》单元测试卷一.选择题(共10小题)1.关于0的叙述正确的是()A.是正整数B.是负整数C.是整数D.分数2.比﹣2小的数是()A.0B.1C.﹣3D.﹣13.点A为数轴上表示﹣2的点,将A点沿着数轴向右移动8个单位后,再向左移动4个单位到点B,则点B表示的数为()A.2B.3C.4D.54.已知|a|=5.|b|=2,且a、b异号,则a+b的值为()A.3B.3或﹣3C.±3,±7D.7或﹣75.下列不是具有相反意义的量的是()A.前进5米和后退5米B.进球4个和失球2个C.身高增加2cm和体重减少2kgD.节余50元和超支80元6.若a是最小的正整数,b是最大的负整数,则﹣a+b的值为()A.0B.1C.2D.﹣27.一根木料长10米,第一次锯掉这根木料的,第二次锯掉余下的,两次锯掉的长度()A.第一次锯掉的长B.第二次锯掉的长C.两次锯掉的一样长D.无法确定8.由四舍五入法得到的近似数562.10,下列说法正确的是()A.精确到十分位B.精确到个位C.精确到百分位D.精确到千位9.下列各组数中,互为相反数的是()A.﹣5与﹣(+5)B.﹣8与﹣(﹣8)C.+(﹣8)与﹣(+8)D.8与﹣(﹣8)10.规定一种新的运算“*”:对于任意有理数x,y,满足x*y=x﹣y+xy.如3*2=3﹣2+3×2=7,则1*2=()A.4.B.3C.2D.1二.填空题(共10小题)11.某蓄水池的标准水位记为0m,高于标准水位的高度记为正,低于标准水位的高度记为负.若水面低于标准水位12m,则记作m.12.一个三位数,百位上是最小的合数,十位上是正整数中最小的偶数,个位上的数既不是素数也不是合数,这个数是.13.一电子跳蚤在数轴上从原点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,……,依此规律跳下去,当它跳第7次和第2020次落下时,落点处离原点的距离分别是个单位.14.已知a是﹣[﹣(﹣5)]的相反数,b比最小的正整数大4,c是相反数等于它本身的数,则3a+2b+c的值是.15.若|x﹣5|=4,则x=;若|a﹣b|=b﹣a,则b a.(比较大小)16.a是最大的负整数,b是最小的正整数,c是绝对值最小的数,则a﹣b+c=.17.若a,b,c都是非零有理数,则+++=.18.用四舍五入法,精确到百分位,对2.019取近似数是.19.观察下列运算过程:S=1+3+32+33+…+32016+32017,①①×3,得3S=3+32+33+…+32017+32018,②②﹣①,得2S=32018﹣1,S=.用上面的方法计算:1+5+52+53+…+52017结果是.20.按键顺序为的算式的结果为.三.解答题(共7小题)21.小明用32元钱买了8条毛巾,如果每条毛巾以5元的价格为标准出售,超出的记作正数,不是的记作负数,记录如下:0.5,﹣1,﹣1.5,1,﹣2,﹣1,﹣2,0.当小明卖完毛巾后盈利了还是亏损了?22.如图,数轴的原点为O.点A表示﹣1,点B表示2.(1)数轴是什么图形?(2)数轴原点O右边的部分(色括原点)是什么图形?怎样表示?(3)射线OA上的点表示什么数?端点表示什么数?(4)数轴上表示不小于﹣1且不大于2的部分是什么图形?怎样表示?23.计算:|﹣|+|﹣|+|﹣|+…+|﹣|24.回答问题:四个数相乘,积为负,其中可能有几个因数为负数?25.1972年3月发射的“先驱者10号”是人类发往太阳系外的第一艘人造太空探测器,至2003年2月人们最后一次收到它回到的信号时,它已飞离地球12200000000km.(1)用科学记数法表示这个距离;(2)地球赤道长约4千万米,用科学记数法表示赤道长;“先驱者10号”飞离地球的距离是地球赤道长的多少倍?26.计算:(1)﹣4+5﹣11;(2)﹣40﹣28﹣(﹣19)+(﹣24);(3)(﹣32)÷4×(﹣);(4)(﹣24)×(﹣﹣);(5)(﹣2)2+(﹣3)×2﹣12÷(﹣4);(6)﹣14+(﹣2)÷(﹣)﹣|﹣9|.27.计算(﹣4)÷2,4÷(﹣2),(﹣4)÷(﹣2).联系这类具体数的除法,你认为a、b是有理数(b≠0)时,下列式子是否成立?可以由此总结出什么规律?(1)==﹣;(2)=.参考答案与试题解析一.选择题(共10小题)1.解:0不是正数,也不是负数和分数,但0是整数,故A、B、D错误,C正确.故选:C.2.解:∵0>﹣2,1>﹣2,﹣3<﹣2,﹣1>﹣2,∴所给的数中,比﹣2小的数是﹣3.故选:C.3.解:点A沿着数轴向右移动8个单位后,表示的数是﹣2+8=6,再向左移动4个单位表示的数是6﹣4=2.故选:A.4.解:∵|a|=5,|b|=2,∴a=±5,b=±2,∵a、b异号,∴当a=5时,b=﹣2,此时原式=5﹣2=3,当a=﹣5时,b=2,此时原式=﹣5+2=﹣3,故选:B.5.解:A、前进5米和后退5米,是具有相反意义的量,故本选项不符合题意;B、进球4个和失球2个,是具有相反意义的量,故本选项不符合题意;C、身高增加2cm和体重减少2kg,不是具有相反意义的量,故本选项符合题意;D、节余50元和超支80元,是具有相反意义的量,故本选项不符合题意.故选:C.6.解:∵a是最小的正整数,b是最大的负整数,∴a=1,b=﹣1,∴﹣a+b=﹣1+(﹣1)=﹣2.故选:D.7.解:根据题意得:10×=4(米),(10﹣4)×=4(米),则两次锯掉的一样长.故选:C.8.解:近似数是562.10精确到0.01,即百分位.故选:C.9.解:A、﹣(+5)=﹣5,﹣5与﹣(+5)相等,不是互为相反数,故本选项不符合题意;B、﹣(﹣8)=8,﹣8与﹣(﹣8)是互为相反数,故本选项符合题意;C、+(﹣8)=﹣8,﹣(+8)=﹣8,+(﹣8)与﹣(+8)相等,不是互为相反数,故本选项不符合题意;D、﹣(﹣8)=8,8与﹣(﹣8)相等,不是互为相反数,故本选项不符合题意.故选:B.10.解:∵x*y=x﹣y+xy.∴1*2=1﹣2+1×2=1﹣2+2=1,故选:D.二.填空题(共10小题)11.解:根据题意,水面低于标准水位12m可表示为﹣12m.故答案为:﹣12.12.解:有一个三位数,百位上是最小的合数,即是4,十位上是正整数中最小的偶数,即是2,个位上的数既不是素数也不是合数,即是1,这个三位数是421.故答案为:421.13.解:由题意可得,第1次落点在数轴上对应的数是1,第2次落点在数轴上对应的数是﹣1,第3次落点在数轴上对应的数是2,第4次落点在数轴上对应的数是﹣2,则它跳第7次落点在数轴上对应的数是4,2020÷2=1010,则第2020次落点在数轴上对应的数是﹣1010,即当它跳第7次和第2020次落下时,落点处离原点的距离分别是4个单位长度、1010个单位长度,故答案为:4,1010.14.解:因为a是﹣[﹣(﹣5)]的相反数,所以a=5;因为最小的正整数是1,且b比最小的正整数大4,所以b=5;因为相反数等于它本身的数是0,所以c=0,所以3a+2b+c=3×5+2×5+0=25.故答案为:25.15.解:∵|x﹣5|=4,∴x﹣5=4,或x﹣5=﹣4,解得,x=9,或x=1;∵|a﹣b|=b﹣a,∴a﹣b≤0,∴a≤b,即b≥a.故答案为:9或1;≥.16.解:∵a是最大的负整数,b是最小的正整数,c是绝对值最小的数,∴a=﹣1,b=1,c=0,∴a﹣b+c=﹣1﹣1+0=﹣2.故答案为:﹣2.17.解:当a,b,c同为正数时,原式=1+1+1+1=4;当a,b,c同为负数时,原式=﹣1﹣1﹣1﹣1=﹣4;当a,b,c中两个数为正数,一个为负数时,原式=1+1﹣1﹣1=0;当a,b,c中两个数为负数,一个为正数时,原式=1﹣1﹣1+1=0;综上所述则+++所有可能的值为0或±4.故答案为:0或±4.18.解:2.019≈2.02(精确到百分位).故答案为2.02.19.解:设S=1+5+52+53+ (52017)则5S=5+52+53+ (52018)5S﹣S=52018﹣1,4S=52018﹣1,则S=,故答案为:.20.解:按键顺序为就是求3的4次方,34=81.故答案为:81.三.解答题(共7小题)21.解:0.5﹣1﹣1.5+1﹣2﹣1﹣2+0=﹣6,那么总销售额:5×8﹣6=34(元),成本价:32元,因此共盈利:34﹣32=2(元).故小明卖完毛巾后,盈利了2元.22.解:(1)数轴可以看做规定了原点、正方向、单位长度的直线;(2)是一条射线,表示为射线OB;(3)表示负数,端点表示“0”;(4)是一条线段,表示为线段AB.23.解:|﹣|+|﹣|+|﹣|+…+|﹣|===24.解:四个数相乘,积为负,因此负因数的个数为奇数,可能1或3个因数为负数,答:其中可能有1个因数为负数,或者有3个因数为负数.25.解:(1)12 200 000 000=1.22×1010km;(2)4千万=40 000 000=4×107m,1.22×1010km=1.22×1013m,(1.22×1013)÷(4×107)=3.05×105.答:“先驱者10号”飞离地球的距离是地球赤道长的3.05×105倍.26.解:(1)原式=﹣4﹣11+5=﹣15+5=﹣10;(2)原式=﹣40﹣28+19﹣24=﹣40﹣28﹣24+19=﹣92+19=﹣73;(3)原式=32÷4×=8×=;(4)原式=﹣24×(﹣)﹣24×﹣24×(﹣)=18﹣20+2=0;(5)原式=4﹣6+3=1;(6)原式=﹣1+6﹣9=﹣4.27.解:(1)==﹣,成立;(2)=,成立,两数相除同号得正,异号得负,并把绝对值相除.。
《第2章 有理数及其运算》一、选择题1.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示( )A.支出20元 B.收入20元 C.支出80元 D.收入80元2.下列说法正确的是( )A.分数都是有理数 B.﹣a是负数C.有理数不是正数就是负数 D.绝对值等于本身的数是正数3.﹣5的相反数是( )A.﹣5 B.5 C.﹣ D.4.计算(﹣2)﹣5的结果等于( )A.﹣7 B.﹣3 C.3 D.75.的倒数是( )A.﹣2 B.2 C. D.6.据统计,2015年“十•一”国庆长假期间,衢州市共接待国内外游客约319万人次,与2014年同比增长16.43%,数据319万用科学记数法表示为( )A.3.19×105 B.3.19×106 C.0.319×107 D.319×1067.13世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为( )A.42 B.49 C.76 D.778.有理数a,b在数轴上的位置如图所示,在﹣a,b﹣a,a+b,0中,最大的是( )A.﹣a B.0 C.a+b D.b﹣a二、填空题9.若|x﹣3|+|y+2|=0,则|x|+|y|= .10.计算:﹣6+4= .11.已知有理数﹣1,﹣8,+11,﹣2,请你通过有理数加减混合运算,使运算结果最大,则列式为 . 12.×(﹣6)= ,(﹣5)÷6= .13.定义a★b=a2﹣b,则(0★1)★2016= .14.按照如图所示的操作步骤,若输入x的值为1,则输出的值为 .15.计算1﹣2+3﹣4+5﹣6+…+2015﹣2016的结果是 .16.冰冰家新安装了一台太阳能热水器,一天她测量发现18:00时,太阳能热水器水箱内水的温度是80℃,以后每小时下降4℃,第二天,冰冰早晨起来后测得水箱内水的温度为32℃,请你猜一猜她起床的时间是 .三、解答题(共52分)17.把下列各数填入它所属的集合内:5.2,0,,,+(﹣4),﹣2,﹣(﹣3 ),0.25555…,﹣0.030030003…(1)分数集合:{ …}(2)非负整数集合:{ …}(3)有理数集合:{ …}.18.如(1)计算:﹣3﹣[﹣5﹣(1﹣0.2÷)÷(﹣2)](2)计算:﹣32×(﹣)2+(﹣+)×(﹣24).19.如图,有四张背面相同的纸牌.请你用这四张牌计算“24点”,请列出四个符合要求的不同算式.【可运用加、减、乘、除、乘方(例如数2,6,可列62=36或26=64)运算,可用括号;注意:例如4×(1+2+3)=24与(2+1+3)×4=24只是顺序不同,属同一个算式】.20.有一张厚度为0.1毫米的纸片,对折1次后的厚度是2×0.1毫米.(1)对折2次的厚度是多少毫米?(2)假设这张纸能无限地折叠下去,那么对折20次后相当于每层高度为3米的楼房多少层? 21.一辆货车为一家商场的仓库运货,仓库在记录进出货物时把运进记作正数,运出记作负数下午记录如下(单位:吨):5.5,﹣4.6,﹣5.3,5.4,﹣3.4,4.8,﹣3(1)仓库上午存货物60吨,下午运完货物后存货多少吨?(2)如果货车的运费为每吨10元,那么下午货车共得运费多少元?22.有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下: ﹣3 ﹣2 ﹣1.5 0 1 2.5与标准质量的差值(单位:千克)筐数 1 4 2 3 2 8(1)20筐白菜中,最重的一筐比最轻的一筐多重多少千克?(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?(结果保留整数)《第2章 有理数及其运算》参考答案与试题解析一、选择题1.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示( )A.支出20元 B.收入20元 C.支出80元 D.收入80元【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:根据题意,收入100元记作+100元,则﹣80表示支出80元.故选:C.【点评】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.下列说法正确的是( )A.分数都是有理数 B.﹣a是负数C.有理数不是正数就是负数 D.绝对值等于本身的数是正数【考点】有理数.【分析】根据有理数的概念及分类、绝对值性质判断即可.【解答】解:A、有理数包括整数和分数,故此选项正确;B、当a≤0时,﹣a是非负数,故此选项错误;C、π是正数但不是有理数,故此选项错误;D、绝对值等于本身的数有0和正数,故此选项错误;故选:A.【点评】本题主要考查有理数的有关概念,熟练掌握有理数的概念与分类及相反数、绝对值性质是关键.3.﹣5的相反数是( )A.﹣5 B.5 C.﹣ D.【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:﹣5的相反数是5.故选:B.【点评】本题考查了相反数的意义:只有符号不同的两个数互为相反数,0的相反数是0.4.计算(﹣2)﹣5的结果等于( )A.﹣7 B.﹣3 C.3 D.7【考点】有理数的减法.【分析】根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:(﹣2)﹣5=(﹣2)+(﹣5)=﹣(2+5)=﹣7,故选:A.【点评】本题考查了有理数的减法,减去一个数等于加上这个数的相反数是解题关键.5.的倒数是( )A.﹣2 B.2 C. D.【考点】倒数.【专题】常规题型.【分析】根据倒数的定义求解.【解答】解:﹣的倒数是﹣2.故选:A.【点评】本题主要考查了倒数的定义,解题的关键是熟记定义.6.据统计,2015年“十•一”国庆长假期间,衢州市共接待国内外游客约319万人次,与2014年同比增长16.43%,数据319万用科学记数法表示为( )A.3.19×105 B.3.19×106 C.0.319×107 D.319×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于319万有7位,所以可以确定n=7﹣1=6.【解答】解:319万=3 190 000=3.19×106.故选B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.7.13世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为( )A.42 B.49 C.76 D.77【考点】有理数的乘方.【分析】有理数乘方的定义:求n个相同因数积的运算,叫做乘方.依此即可求解.【解答】解:依题意有,刀鞘数为76.故选:C.【点评】考查了有理数的乘方,关键是根据题意正确列出算式,是基础题型.8.有理数a,b在数轴上的位置如图所示,在﹣a,b﹣a,a+b,0中,最大的是( )A.﹣a B.0 C.a+b D.b﹣a【考点】有理数大小比较;数轴.【分析】根据数轴上的点表示的数:原点左边的数小于零,原点右边的数大于零,可得a、b的大小,根据有理数的运算,可得答案.【解答】解:由数轴可得:﹣1<a<0,1<b<2,∴0<﹣a<1,b﹣a>2,a+b>1,∴0<﹣a<a+b<b﹣a,故选:D.【点评】本题考查了数轴,利用数轴上的点表示的数:原点左边的数小于零,原点右边的数大于零,得出a、b的大小是解题关键.二、填空题9.若|x﹣3|+|y+2|=0,则|x|+|y|= 5 .【考点】非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值,然后代入进行计算即可得解.【解答】解:根据题意得,x﹣3=0,y+2=0,解得x=3,y=﹣2,∴|x|+|y|=|3|+|﹣2|=3+2=5.故答案为:5.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.10.计算:﹣6+4= ﹣2 .【考点】有理数的加法.【分析】利用异号两数相加的计算方法计算即可.【解答】解:﹣6+4=﹣2.故答案为:﹣2.【点评】此题考查有理数的加法,掌握法则并会灵活运用.11.已知有理数﹣1,﹣8,+11,﹣2,请你通过有理数加减混合运算,使运算结果最大,则列式为 +11﹣(﹣1﹣8﹣2) .【考点】有理数的加减混合运算.【专题】计算题.【分析】根据题意列出算式,使运算结果最大即可.【解答】解:根据题意得:+11﹣(﹣1﹣8﹣2),故答案为:+11﹣(﹣1﹣8﹣2).【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.12.(﹣5)×(﹣6)= 30 ,(﹣5)÷6= .【考点】有理数的除法;有理数的乘法.【专题】推理填空题.【分析】根据有理数乘法和除法的法则即可解答本题.【解答】解:(﹣5)×(﹣6)=5×6=30,(﹣5)÷6=﹣5×=﹣.故答案为:30,﹣.【点评】本题考查有理数的乘法和除法,解题的关键是明确有理数乘法和除法的法则.13.定义a★b=a2﹣b,则(0★1)★2016= ﹣2015 .【考点】有理数的混合运算.【专题】新定义;实数.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:原式=(﹣1)★2016=1﹣2016=﹣2015,故答案为:﹣2015【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.14.按照如图所示的操作步骤,若输入x的值为1,则输出的值为 11 .【考点】有理数的混合运算.【专题】图表型.【分析】把x=1代入题中的运算程序中计算即可得出输出结果.【解答】解:把x=1代入运算程序得:(1+3)2﹣5=16﹣5=11.故答案为:11【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.15.计算1﹣2+3﹣4+5﹣6+…+2015﹣2016的结果是 ﹣1008 .【考点】有理数的加减混合运算.【分析】原式两个一组结合后,相加即可得到结果.【解答】解:1﹣2+3﹣4+5﹣6+…+2015﹣2016=﹣1﹣1﹣…﹣1=﹣1×1008=﹣1008.故答案为:﹣1008.【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.16.冰冰家新安装了一台太阳能热水器,一天她测量发现18:00时,太阳能热水器水箱内水的温度是80℃,以后每小时下降4℃,第二天,冰冰早晨起来后测得水箱内水的温度为32℃,请你猜一猜她起床的时间是 6:00 .【考点】有理数的混合运算.【分析】根据题意可以求得冰冰起床时与前一天18:00水箱的温差,从而可以求得冰冰起床的时间. 【解答】解:由题意可得,冰冰起床的时间是:18+(80﹣32)÷4﹣24=18+48÷4﹣24=18+12﹣24=6,即冰冰起床的时间是6:00,故答案为:6:00.【点评】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.三、解答题(共52分)17.把下列各数填入它所属的集合内:5.2,0,,,+(﹣4),﹣2,﹣(﹣3 ),0.25555…,﹣0.030030003…(1)分数集合:{ 5.2,,﹣2,0.25555 …}(2)非负整数集合:{ 0,﹣(﹣3) …}(3)有理数集合:{ 5.2,0,,+(﹣4),﹣2,﹣(﹣3),0.25555 …}.【考点】有理数.【分析】按照有理数的分类填写:有理数.【解答】解:(1)分数集合:{5.2,,﹣2,0.25555…},(2)非负整数集合:{0,﹣(﹣3 )},(3)有理数集合:{5.2,0,,+(﹣4),﹣2,﹣(﹣3 ),0.25555…},故答案为:5.2,,﹣2,0.25555…;0,﹣(﹣3 );5.2,0,,+(﹣4),﹣2,﹣(﹣3 ),0.25555….【点评】本题考查了有理数,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点,注意整数和正数的区别,注意0是整数,但不是正数.18.(1)计算:﹣3﹣[﹣5﹣(1﹣0.2÷)÷(﹣2)](2)计算:﹣32×(﹣)2+(﹣+)×(﹣24).【考点】有理数的混合运算.【专题】计算题.【分析】(1)根据有理数的混合运算的运算方法,求出算式的值是多少即可.(2)应用乘法分配律,求出算式的值是多少即可.【解答】解:(1)﹣3﹣[﹣5﹣(1﹣0.2÷)÷(﹣2)]=﹣3﹣[﹣5﹣÷(﹣2)]=﹣3﹣[﹣5+]=﹣3﹣[﹣4]=1(2)﹣32×(﹣)2+(﹣+)×(﹣24)=﹣9×+×(﹣24)﹣×(﹣24)+×(﹣24)=﹣1﹣18+4﹣9=﹣24【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.19.如图,有四张背面相同的纸牌.请你用这四张牌计算“24点”,请列出四个符合要求的不同算式.【可运用加、减、乘、除、乘方(例如数2,6,可列62=36或26=64)运算,可用括号;注意:例如4×(1+2+3)=24与(2+1+3)×4=24只是顺序不同,属同一个算式】.【考点】有理数的混合运算.【专题】计算题;图表型.【分析】根据“24点”游戏规则,由3,4,5,2四个数字列出算式,使其结果为24即可.【解答】解:根据题意得:①2×(3+4+5)=24;②4×(3+5﹣2)=24;③52+3﹣4=24;④42+3+5=24;⑤24+3+5=24;⑥25÷4×3=24(任取四个即可).【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.有一张厚度为0.1毫米的纸片,对折1次后的厚度是2×0.1毫米.(1)对折2次的厚度是多少毫米?(2)假设这张纸能无限地折叠下去,那么对折20次后相当于每层高度为3米的楼房多少层?【考点】有理数的乘方.【专题】计算题;实数.【分析】(1)根据对折规律确定出对折2次的厚度即可;(2)利用对折规律确定出楼层即可.【解答】解:(1)根据题意得:2×2×0.1=0.4毫米,则对折2次的厚度是0.4毫米;(2)对折20次的厚度为220×0.1=104857.6毫米≈104.9m,104.9÷3≈35层,则对折20次后相当于每层高度为3米的楼房35层.【点评】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.21.一辆货车为一家商场的仓库运货,仓库在记录进出货物时把运进记作正数,运出记作负数下午记录如下(单位:吨):5.5,﹣4.6,﹣5.3,5.4,﹣3.4,4.8,﹣3(1)仓库上午存货物60吨,下午运完货物后存货多少吨?(2)如果货车的运费为每吨10元,那么下午货车共得运费多少元?【考点】有理数的混合运算;正数和负数.【专题】计算题.【分析】(1)将各数据相加即可得到结果;(2)将各数据的绝对值相加得到结果,乘以10即可得到最后结果.【解答】解:(1)60+5.5﹣4.6﹣5.3+5.4﹣3.4+4.8﹣3=65.5﹣4.6﹣5.3+5.4﹣3.4+4.8﹣3=59.4(吨),则下午运完货物后存货59.4吨;(2)(5.5+4.6+5.3+5.4+3.4+4.8+3)×10=32×10=320(元),则下午货车共得运费320元.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,然后利用各种运算法则计算,有时可以利用运算律来简化运算.22.有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下: 与标准质量的差﹣3 ﹣2 ﹣1.5 0 1 2.5值(单位:千克)筐数 1 4 2 3 2 8(1)20筐白菜中,最重的一筐比最轻的一筐多重多少千克?(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?(结果保留整数)【考点】有理数的加法.【专题】应用题;图表型.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:(1)最重的一筐超过2.5千克,最轻的差3千克,求差即可2.5﹣(﹣3)=5.5(千克),故最重的一筐比最轻的一筐多重5.5千克;(2)列式1×(﹣3)+4×(﹣2)+2×(﹣1.5)+3×0+1×2+8×2.5=﹣3﹣8﹣3+2+20=8(千克), 故20筐白菜总计超过8千克;(3)用(2)的结果列式计算2.6×(25×20+8)=1320.8≈1320(元),故这20筐白菜可卖1320(元).【点评】此题的关键是读懂题意,列式计算,注意计算结果是去尾法.。
1北师大版七上数学第二章《有理数及其运算》单元测试题时间45分钟,满分100分 学号 姓名一、填空题(每小题4分,共32分) 1.如果a,b 都是有理数(a ·b ≠0),那么bbaa +=________. 2.观察下列算式:31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…… 用你所发现的规律写出32004的末位数字是_______.3.如果|x|=|y|,那么x 与y 的关系是________;如果-|x|=|-x|那么x=_______.4.有一种"二十四点"的游戏,其游戏规则是这样的:任取四个1至13之间的自然数,将这四个数(每个数用且只用一次)进行加减乘除四则运算,使其结果等于24.例如1,2,3,4可作运算:(1+2+3)×4=24.(注意上述运算与4×(1+2+3)应视作相同方法的运算)现有四个有理数3,4,-6,10.运用上述规则写出三种不同方法的运算式,使其结果等于24,运算式如下:(1) ,(2) ,(3)___________.另有四个数3,-5,7,-13,可通过运算式(4) 使其结果等于24.5.在太阳系九大行星中,离太阳最近的水星由于没有大气,白天在阳光的直接照射下,表面温度高达4270C ,夜晚则低至-1700C ,则水星表面昼夜的温差为____________. 6.要比较两个数a,b 的大小,有时可以通过比较a-b 与0的大小来解决.请你探索解决:(1)如果a-b >0,则a__b;(2)如果a-b=0,则a__b;(3)如果a-b <0,则a__b. 7.若a >0,b <0,则a-b_____0. 8.观察下列各等式,并回答问题:211211-=⨯;3121321-=⨯;4131431-=⨯;5141541-=⨯;… ⑴填空:)1(1+n n = (n 是正整数)⑵计算:211⨯+321⨯+431⨯+541⨯+…+201920181⨯= .2二、选择题(每小题5分,共30分)1.离太阳最远的冥王星和海王星是非常寒冷的世界。
七上有理数及其运算单元综合测试(北师大版含解析)
七上有理数及其运算单元综合测试(北师大版含解析)(45分钟 100分)
一、选择题(每小题4分,共28分)
1(3和 c-3和- D 和13
2( ,0,2四个数中,最大的数是( )
A-2B- c 0D2
3(1B1c-5D5
4计算-1 ×(- +1 - )的结果是( )
A- B0c1D
5(5),-(-5)2,-|-5|,(-5)3中负数有( )
A0个B1个c2个D3个
7a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,-a,b,-b,a+b,a-b按照从小到大的顺序排列,正确的是( ) Aa-b -b a -a a+b b
B-b a-b a -a b a+b
ca-b a -b a+b -a b
D-b a a-b -a b a+b
二、填空题(每小题5分,共25分)
8(1成立,你写出的x的值是
9(300元,+1b2,则(1*2)*(-3)=
12晓华学习爱钻研,一天他突然产生了这样的想法,若存在这样一个数,i2=-1,则x2=-1可变为x=±i,晓华还发现i具有如下性质i1=i;i2 =-1;
i3=i2 i=-1 i=-i;
i4=i2 i2=(-1)×(-1)=1;
i5=i4 i=1×i=i;
i6=i5 i=i i=i2=-1;。
北师大版七年级数学上册《有理数及其运算》单元测试卷一、选择题1、在数轴上,到表示﹣1的点的距离等于6的点表示的数是()A.5 B.﹣7 C.7或﹣5 D.5或﹣72、用科学记数法表示5 700 000,正确的是( )A.5.7×106B.57×105 C.570×104D.0.57×1073、如图所示,下列判断正确的是()A.B.C.D.4、如图,四个有理数在数轴上的对应点M,P,N,Q,若点M,P表示的有理数互为相反数,则图中表示绝对值最大的数的点是()A.点M B.点N C.点P D.点Q5、的倒数是()A.B.C.4 D.-46、如图,数轴上的A、B两点所表示的数分别是a、b,且|a|>|b|,那么下列结论中不正确的是()A.ab<0 B.a+b<0C.a-b<0 D.a2b<07、若两个有理数的和与它们的积都是正数,则这两个数( )A.都是正数B.是符号相同的非零数C.都是负数D.都是非负数8、下列计算正确的是()A.-34=81 B.-(-6)2=36 C.(-)3=D.-=-9、一个数的平方是4,这个数的立方是()A.8 B.-8 C.8或-8 D.4或-410、在(-1)10,-23,(-3)2这三个数中,最大的数比最小的数大()A.17 B.12 C.18 D.1二、填空题11、-5的倒数是____,相反数是_____.12、=__________,=__________,=________.13、若(x-7)2+|y-4|=0,则(x-y)2的值为______.14、有理数的倒数是________.15、不大于4的非负整数有______;不小于-3的负整数有_______。
16、在数轴上,离原点距离等于3的数是_________________ 。
17、在数轴上,把表示3的点沿着数轴向负方向移动5个单位,则与此位置相对应的数是___________。
有理数及其运算单元测试卷(满分100分,时间60分)一、选择题( 30分,每个小题3分 ) 1.下面说法正确的有( )① π的相反数是14.3-;①符号相反的数互为相反数;① ()8.3--的相反数是8.3; ① 一个数和它的相反数不可能相等;①正数与负数互为相反数. A .0个B .1个C .2个D .3个2.下面计算正确的是( ) A .()2222--=B .()22363⎛⎫--= ⎪⎝⎭C .()4433-=-D .()220.10.1-=3.如图,在数轴上有a 、b 两个有理数,则下列结论中,不正确的是( ) A .0<+b a B .0<-b aC .0a b ⋅<D .03>⎪⎭⎫⎝⎛-b a4.下列各组算式中,其值最小的是( )A .()232--- B .()()32-⨯- C .()()232-⨯- D .()()232-÷-5.比较大小的式子中,错误的是( )A .()()()()3838+⨯-<+⨯-B .313.0->- C .32)2()3(-<- D .100001.0-> 6.下列代数式中,值一定是正数的是( )A .2xB .1+-xC .()22+-x D .12+-x7.绝对值大于或等于1,而小于4的所有的正整数的和是( )A .8B .7C .6D .5 8.下列说法中正确的个数是( ) ①有理数a 的倒数是a 1;①两个有理数相减,差为正,则被减数大于减数; ①符号相反的两个数是相反数;①任意两个有理数的和一定大于其中的一个加数. A .1 B .2 C .3 D .4 9.如果0a b +>,且0ab <,那么( ) A .0,0a b >> B .0,0a b << C .a 、b 异号 D .a 、b 异号且负数的绝对值较小10.任意整数a ,它的平方2a 的个位数字不可能出现在( )中.A .3,4,9,0B .2,3,7,8C .4,5,6,7D .1,5,6,9 二、填空题( 每空3分,共24分 ) 11.31-的倒数是________;321的相反数是_________. 12.截止到2020年6月1日为止,北京市已建成34个地下蓄水设施,蓄水能力达到140 0003m ,将140 000用科学记数法表示为 .13.把)11()9()10()8(--+--+-写成省略加号的和式是_________________. 14.所有绝对值小于4的整数的积是____________,和是 .15.将一根长1米的木棒,第一次截去一半,第二次截去剩下的一半,如此截下去,截至第五次,剩下的木棒长是________米.16.小明学了计算机运算法则后,编制了一个如下图的程序,当他任意输入一个有理数以后,计算机会计算出这个有理数的结果,请把各次结果填入表 内:三、解答题(18题 4分,19题16分,其余每题10分)18.计算:(1))4(2)3(623-⨯+-⨯- (2)61)3161(1⨯-÷(3)51)2(423⨯-÷- (4)75.04.34353.075.053.1⨯-⨯+⨯-19.某检修小组1乘一辆汽车沿公路检修线路,约定向东为正.某天从A地出发到收工时,行走记录为(单位:千米):+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6.另一小组2也从A地出发,在南北向修,约定向北为正,行走记录为:-17,+9,-2,+8,+6,+9,-5,-1,+4,-7,-8.(1)分别计算收工时,1,2两组在A地的哪一边,距A地多远?(2)若每千米汽车耗油a升,求出发到收工各耗油多少升?20.请先阅读下列一组内容,然后解答问题:因为:11111111111 1,,12223233434910910 =-=-=-⋯=-⨯⨯⨯⨯所以:1111 122334910+++⋯+⨯⨯⨯⨯1111112334910⎛⎫⎛⎫⎛⎫=+-+-+⋯+- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭1111112334910=-+-+⋯+- 1911010=-= 问题: 计算: ①111112233420042005+++⋯+⨯⨯⨯⨯; ① 11111335574951+++⋯+⨯⨯⨯⨯答案一、1. A ; 2. D ; 3. B ; 4. A ; 5. C ; 6. C ; 7. C ; 8. A ; 9. D ; 10. B 二、11. -3、-132; 12. 5104.1⨯ ; 13. -8-10-9+11; 14. 0、0; 15. 321 ; 16. -23、-49、-101 三、17. 正数集合:{ 15,0.81,722,171,3.14,π …},18.(1)解:原式=81823-+=33,(2)解:原式=61611⨯-÷)(=6161⨯-⨯)(=1-,(3)解:原式=51464⨯÷-=5116⨯-=516-, (4)解:原式=434.353.053.1⨯-+-)(=)434.4⨯-=-3.3. 19.(1)根据题意得:3965412231015215=+-++--+-+-+, ∴1组在A 地的东边,距A 地39千米,根据题意得:4874159682917---+--+++-+-=, ∴2组在A 地的南边,距A 地4千米; (2)根据题意得:()a 65412231015215++-+++++-+-+++-+++-++a 65=(升)答:出发到收工1小组耗油65a 升, 根据题意得:()874159682917-+-+++-+-+++++++-+++-a a 76=(升), 答:出发到收工2小组耗油76a 升. 20.①111112233420042005+++⋯+⨯⨯⨯⨯ 2005120041...41313121211-++-+-+-= 200511-= 20052004=② 11111335574951+++⋯+⨯⨯⨯⨯21511491 (71)515131311⨯⎪⎭⎫ ⎝⎛-++-+-+-=215111⨯⎪⎭⎫ ⎝⎛-=215150⨯=5125=。
北师大版七年级数学上册《第二章有理数及其运算》单元测试卷-带答案学校班级姓名考号一、选择题1.下列各式中相等的是()A.和B.与C.和D.和2.如果一个数的绝对值等于它本身,那么这个数是()A.正数B.负数C.非正数D.非负数3.在数轴上,把表示的点移动2个单位长度后所得到的对应点表示的数为()A.0 B.C.0或D.无法确定4.我国倡导的“一带一路”建设促进了我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为4400000000人,这个数用科学记数法表示为()A.B.C.D.5.杨梅开始采摘啦!每筐杨梅以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图,则这4筐杨梅的总质量是()A.19.7千克B.19.9千克C.20.1千克D.20.3千克6.若,则下列大小关系中正确的是()A.b>a>c B.b>c>a C.a>b>c D.c>a>b7.对于不同的两个数a,b规定如下运算:,则的值为()A.8 B.C.D.8.如图,数轴上的数a的绝对值是数b的绝对值的3倍,则此数轴的原点是()A.点A B.点A或点B C.点C D.点C或点D二、填空题9.用“>”或“<”填空:10.年国庆假日期间,民众出游热情高涨,文旅市场火爆.有消息显示,9月日至月6日太原市主要景区、公园、夜间文化等共接待市民游客万人次,收入万元.万用科学记数法表示为.11.当我们把珠穆朗玛峰的海拔记为米,马里亚纳海沟海拔记为米,那么,珠穆朗玛峰比马里亚纳海沟高米12.计算的结果是.13.如图,将一刻度尺放在数轴上(数轴的单位长度是),刻度尺上“”和“”分别对应数轴上的3和0,那么刻度尺上“”对应数轴上的数为.三、计算题14.计算:(1)(2)15.画出数轴,在数轴上表示下列各数,并用“>”把它们连接起来.,﹣2,0,, |-3| 和16.一条东西走向的商业街上,依次有书店(记为A)、冷饮店(记为B)、鞋店(记为C),冷饮店位于鞋店西边50m处,鞋店位于书店东边60m处,王平先去书店,然后沿着这条街向东走了30m至D处,接着向西走50m到达E处.(1)以A为原点、向东为正方向画数轴,在数轴上表示出上述A,B,C,D,E的位置;(2)若在这条街上建一家超市,使超市与鞋店C分居E点两侧,且到E点的距离相等,问超市在冷饮店的什么方向?距离多远?17高度变化上升下降上升下降上升记作(1)求此时飞机比起飞点高了多少千米?(2)若飞机平均上升千米需消耗升燃油,平均下降千米需消耗升燃油,那么这架飞机在这个特技动作表演过程中,一共消耗多少升燃油?18.为了加强校园周边治安综合治理,警察巡逻车在学校旁边的一条东西方向的公路上执行治安巡逻,如果规定向东为正,向西为负,从出发点开始所走的路程(单位:千米)为:+2,-3,+2,+1,-2,-1,-2(1)此时,这辆巡逻车司机如何向警务处描述他现在的位置?(2)已知每千米耗油0.25升,如果警务处命令其巡逻车马上返回出发点,这次巡逻共耗油多少升?参考答案:1.D2.D3.C4.C5.C6.A7.A8.D9.<10.11.1988212.13.14.(1)解:=36(2)解:15.解:.16.(1)解:以A为原点,向东为正方向,画数轴如图所示图中的A,B,C,D,E即为所求作;(2)解:鞋店C到E的距离为:60﹣(﹣20)=80m超市在数轴上所表示的数为:﹣20﹣80=﹣100m超市到冷饮店的距离为10﹣(﹣100)=110m答:超市在冷饮店的西边110 m的地方.17.(1)解:千米.答:此时飞机比起飞点高了千米(2)解:升.答:一共消耗升燃油.18.(1)解:根据题意得:+2+(-3)+(+2)+(+1)+(-2)+(-1)+(-2)=-3 所以此时巡边车在出发地的西边3km处(2)解:依题意得:=0.25 16=4(升).答:共耗油4升。
北师大版七年级数学上册《第二章有理数及其运算》单元测试卷-附答案学校:___________姓名:___________班级:___________考号:___________一、单选题1.若海平面以上500米,记作+500米,则海平面以下100米可记作( )A .100米B .-100米C .500米D .-500米2.已知x y ,为有理数,如果规定一种运算“*”,*1x y xy =+则()()2*5*3-的值是( )A .30-B .29-C .33-D .32-3.下列各组数中,互为相反数的是( )A .3与13-B .()2--与2C .25-与()25-D .7与7-4.据有关部门统计,2018 年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为( )A .1.442 × 107B .0.1442 × 107C .1.442 × 108D .1442 × 1045.下列说法:①若a b =﹣1,则a 、b 互为相反数;①若a+b <0,且b a>0,则|a+2b|=﹣a ﹣2b ;①一个数的立方是它本身,则这个数为0或1;①若﹣1<a <0,则a 2>﹣1a;①若a+b+c <0,ab >0,c >0,则|﹣a|=﹣a ,其中正确的个数是( )A .2个B .3个C .4个D .5个 6.平面展开图按虚线折叠成正方体后,相对两个面上的数互为相反数,则x 、y 的值为( )A .2,3B .-2,-3C .-1,-3D .-1,-27.下列各组数中,运算结果相等的是( )A .22()3与223 B .﹣22与(﹣2)2C .﹣(﹣5)3与(﹣5)3D .﹣(﹣1)2015与(﹣1)2016 8.下列说法中正确的是( )A .两个有理数,绝对值大的反而小B .两个有理数的和为正数,则至少有一个加数为正数C .三个负数相乘,积为正数D .1的倒数是1,0的倒数是09.第十四届中国(合肥)国际园林博览会在合肥骆岗中央公园举办,该公园占地面积12.7平方公里,是世界最大的城市中央公园.2023年中秋、国庆八天假期,接待总游客突破225万人,创造了历史记录.其中225万用科学记数法表示为( )A .62.2510⨯B .72.2510⨯C .52.2510⨯D .422510⨯10.下列说法正确的是( )A .如果0x =,那么x 一定是0B .如果3x =,那么x 一定是3C .3和8之间有4个正数D .1-和0之间没有负数了11.用四舍五入法按要求把2.05446取近似值,其中错误的是 ( )A .2.1(精确到0.1)B .2.05(精确到百分位)C .2.05(保留2个有效数字)D .2.054(精确到0.001)12.比1小2的数是( )A .2B .﹣2C .﹣1D .﹣2二、填空题13.2023年全国普通高校毕业生规模预计达到1158万人,数11580000用科学记数法表示为 . 14.79-的绝对值是 .15.已知|x+2|=1,则x=16.在247⎛⎫- ⎪⎝⎭中,底数是 ,指数是 ,乘方的结果为 . 17.下列7个数:47-,1.01001001与4333,0,-π,-6.9,0.12,其中分数有 个.三、解答题18.已知算式“()1825--⨯-”.(1)聪聪将数字“5”抄错了,所得结果为24-,则聪聪把“5”错写成了______;(2)慧慧不小心把运算符号“×”错看成了“+”,求慧慧的计算结果比原题的正确结果大多少?19.画出数轴,在数轴上表示下列各数,并用“<”连接:﹣22,2,﹣1.5,0,|﹣3|和132.20.科技改变生活,当前网络销售日益盛行,许多农商采用网上销售的方式进行营销,实现脱贫致富.小王把自家种的苹果放到网上销售,计划每天销售100千克,但实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是小王第一周苹果的销售情况: 星期一 二 三 四 五 六 日 苹果销售超过或不足计划量情况(单位:千克) 4+ 6- 4- 10+ 8- 12+ 6+(1)小王第一周实际销售苹果超过或不足多少千克?实际销售苹果的总量是多少千克?(2)若小王按7元/千克进行苹果销售,成本为3元/千克,且平均运费为1元/千克,则小王第一周销售苹果的利润一共多少元?21.出租车司机小张某天下午的运营是在一条东西走向的大道上.如果规定向东为正,他这天下午的行程记录如下:(单位:千米)+15,-3,+14,-11,+10,-18,+14(1)将最后一名乘客送到目的地时,小张离下午出车点的距离是多少?(2)若汽车的耗油量为0.06升/千米,油价为7.5元/升,这天下午共需支付多少油钱?22.小车司机李师傅某天下午的营运全是在东西走向的振兴路上进行的,如果规定向东为正,向西为负,+-+-+--++-+他这天下午行车里程(单位:千米)如下:14,3,7,3,11,4,3,11,6,7,9(1)李师傅这天最后到达目的地时,在下午出车点的什么位置?(2)李师傅这天下午共行车多少千米?(3)若李师傅的车平均行驶每千米耗油0.1升,则这天下午李师傅用了多少升油?23.如图,在平面直角坐标系中,点A 、B 的坐标分别为(),0A a ,(),0B b 且a 、b 满足240a b +-=,现同时将点A 、B 分别向右平移2个单位,再向上平移3个单位,得到点A 、B 的对应点C 、D ,连接AC 、BD 、CD .(1)请直接写出以下各点的坐标:A (____,____);B (____,____);C (____,____);D (____,____);(2)若点M 在x 轴上,且三角形ACM 的面积是平行四边形ABDC 面积的13,求M 点的坐标; (3)点Q 在线段CD 上,点P 是线段BD 上的一个动点,连接PQ 、PQ ,当点P 在线段BD 上移动时(不与点D 、B 重合),请找出AOP ∠、OPQ ∠和PQC ∠的数量关系,并证明你的结论.24.两百年前,德国数学家哥德巴赫发现:任何一个不小于6的偶数都可以写成两个奇素数(既是奇数又是素数)之和,简称:“1+1 ”.如633=+,1257=+等等.众多数学家用很多偶数进行检验,都说明是正确的,但至今仍无法从理论上加以证明,也没找到一个反例.这就是世界上著名的哥德巴赫猜想.你能检验一下这个伟大的猜想吗?请把偶数42写成两个奇素数之和.42= + ,或者42= + . 你是否有更大的发现:把42写成4个奇素数之和?42= + + + .参考答案1.B2.D3.C4.A5.B6.C7.D8.B9.A10.A11.C12.C13.71.15810⨯14.7915.-1或-316. - 472 1649 17.5/五18.(1)6(2)慧慧的计算结果比原题的正确结果大1119.212 1.502332-<-<<<-< 20.(1)超过14千克,实际销售苹果的总量为714千克;(2)利润一共为2142元.21.(1)将最后一名乘客送到目的地时,小张在下午出车点东边,距出发点的距离是21千米(2)这天下午共需支付油费38.25元22.(1)在下午出车点的东边38千米(2)78千米;(3)7.8升23.(1)2- ;0 ;4;0;0;3;6;3(2)()6,0-或()2,0(3)360PQC AOP OPQ +∠+∠=︒∠24.5,37;11,31;5,5,13,19。
北师大版七年级数学上册第二章《有理数及其运算》检测试卷(全卷满分100,时间90分钟)一、单选题(每小题2分,共20分) 1.若有理数a ,a+2b ,b 在数轴上对应点如图所示,则下列运算结果是正数的是( ) A .a+b B .a - b C .1.5a+b D .0.5a+1.5b2.下列各式:①-(-5),②-|-2|,③-(-2)2,④-52,计算结果为负数的个数有( ) A .4个 B .3个 C .2个 D .1个3.下列说法中正确的选项是( )A .温度由﹣3℃上升 3℃后达到﹣6℃B .零减去一个数得这个数的相反数C .3π既是分数,又是有理数 D .20.12 既不是整数,也不是分数,所以它不是有理数 4.把数3120000用科学记数法表示为( )A .3.12×105B .3.12×106C .31.2×105D .0.312×1075.下列各式中一定成立的是( )A .221(1)-=-B .331(1)=-C .221(1)=--D .33(1)(1)-=- 6.数轴上如果点A 表示的数2,将点A 向左移动6个单位长度后表示的数是( ) A .6 B .-4 C .-6 D .-87.如图,数轴的单位长度为1,如果P ,R 表示的数互为相反数,那么图中的4个点中,哪一个点表示的数的平方值最大( )A .PB .RC .QD .T8.下列说法不正确的是( )A .0既不是正数,也不是负数B .一个有理数不是整数就是分数C .1是绝对值是最小的有理数D .0的绝对值是09.下列有理数-2,(-1)2,0,|-5|,其中负数的个数有( )A .1个B .2个C .3个D .4个10.下列说法中,正确的是( )A .一个数的相反数是负数B .0没有相反数C .只有一个数的相反数等于它本身D .表示相反数的两个点,可以在原点的同一侧二、填空题(每小题4分,共32分) 1.已知a 、b 互为相反数,m 、n 互为倒数,则28a b mn +-+的值是 . 2.你吃过拉面吗?如图把一个面团拉开,然后对折,再拉开再对折,如此往复下去折5次, 会拉出 根面条.3.如图,将一刻度尺放在数轴上(数轴的单位长度是1cm ),刻度尺上“1cm ”和“9cm ”分别对应数轴上的5-和x ,那么x 的值为 .4.已知a 、b 互为相反数,c 是绝对值最小的数,d 是负整数中最大的数,则a+b+c+d= . 5.“腊味香肠”是居民冬季特别是春节餐桌上必不可少的传统美食,每年入冬以后,便进入灌香肠的好时节.老李、老陈、老杨三人约定每人拿出相同数目的钱共同去灌制香肠.香肠灌制完成后,老李、老陈分别比老杨多分了8、13斤香肠,最后结算时,老李需付给老杨30元,则老陈应付给老杨 元.6.34--的倒数是 ,24-()的相反数是 . 7.纸上画有一条数轴,将纸对折后,表示5的点与表示2-的点恰好重合,则此时与表示 3.5-的重合的点所表示的数是 .8.北京与纽约的时差为-13h (负号表示同一时刻纽约时间比北京时间晚),如果现在是北京时间16:00,那么纽约时间是 .三、解答题(每小题8分,共48分)1.如图,周长为2个单位长度的圆片上的一点A 与数轴上的原点O 重合,圆片沿数轴来回无滑动地滚动.(1)把圆片沿数轴向左滚动一周,点A到达数轴上点B的位置,则点B表示的数为__________.(2)圆片在数轴上向右滚动的周数记为正数,向左滚动的周数记为负数,依次滚动情况记录如下表:第1次第2次第3次第4次第5次第6次滚动周数+3 -1 -2 +4 -3 a①第6次滚动a周后,点A距离原点4个单位长度,请求出a的值;②当圆片结束第6次滚动时,点A一共滚动了多少个单位长度?2.计算:(1)﹣10﹣(﹣18)+(﹣4)(2)(﹣54)÷(﹣3)+83×(﹣92)(3)(513638-+)×(﹣24)(4)(﹣12)3+[﹣8﹣(﹣3)×2]÷43.甲、乙二人在操场的400米跑道上练习竞走,两人同时出发,出发时乙在前,甲在后,出发后8分钟甲、乙第一次相遇,出发后的24分钟时甲、乙第二次相遇.假设两人的速度保持不变,你知道出发时乙在甲前多少米吗?4.计算:(1)﹣7﹣11+4+(﹣2)(2)3×(—4)+(—28)÷7(3)111135 532114⎛⎫⨯-⨯÷⎪⎝⎭参考答案一、单选题(每小题2分,共20分)1.D 2.B 3.B 4.B 5.C6.B 7.D 8.C 9.A 10.C二、填空题(每小题4分,共32分)三、解答题(每小题8分,共48分)- 5 -。
2023-2024学年北师大版七年级数学上册《第二章有理数及其运算》单元检测卷及答案学校:___________班级:___________姓名:___________考号:___________一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1. 大润发超市有三种袋装大米质量分别为10±0.1kg,10±0.2kg,10±0.3kg各十袋,从中抽取两袋,则它们质量相差最大为( )A. 0.3kgB. 0.4kgC. 0.5kgD. 0.6kg2. 舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为( )A. 4.995×1011B. 49.95×1010C. 0.4995×1011D. 4.995×10103. 符号“!”表示一种运算,并且1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1计算:2024!的2023!结果是( )A. 4094552B. 4092529C. 2023D. 20244. 计算(−2)2024+(−2)2023的结果是( )A. 2B. −2C. −22023D. 220235. 点O,A,B,C在数轴上的位置如图所示,O为原点AC=1,OA=OB.若点C所表示的数为a,则点B所表示的数为( )A. −(a+1)B. −(a−1)C. a+1D. a−16. 若|x|=−x,则x一定是( )A. 负数B. 正数C. 非负数D. 非正数7. 把−(−3)−4+(−5)写成省略括号的代数和的形式,正确的是( )A. 3−4−5B. −3−4−5C. 3−4+5D. −3−4+58. 下列说法正确的是( )A. 有理数分为正有理数和负有理数B. 符号相反的两个数叫做互为相反数C. 0没有倒数,也没有相反数D. 绝对值等于本身的数是正数和零9. 对于有理数a、b,如果ab<0,a+b<0.则下列各式成立的是A. a<0,b<0B. a>0,b<0且|b|<aC. a<0,b>0且|a|<bD. a>0,b<0且|b|>a10. 有理数a ,b 在数轴上对应的点的位置如图所示,对于下列四个结论:①b −a >0 ②|a|<|b| ③a +b >0 ④ab>0其中正确的是( )A. ①②③④B. ①②③C. ①③④D. ②③④11. 如图,乐乐将−3,−2,−1,0,1,2,3,4,5分别填入九个空格内,使每行、每列、每条对角线上的三个数之和相等,若a ,b ,c 分别表示其中的一个数,则a −b +c 的值为( )A. −1B. 0C. 1D. 312. 运用加法运算律计算(+613)+(−18)+(+423)+(−6.8)+18+(−3.2),最简便的是( ) A. [(+613)+(+423)+18]+[(−18)+(−6.8)+(−3.2)] B. [(+613)+(−6.8)+(+423)]+[(−18)+18+(−3.2)] C. [(+613)+(−18)]+[(+423)+(−6.8)]+[18+(−3.2)] D. [(+613)+(+423)]+[(−18)+18]+[(−3.2)+(−6.8)]二、填空题(本大题共8小题,共24.0分)13. 草莓开始采摘啦!每筐草莓以5千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图所示,则这4筐草莓的总质量是______ 千克.14. 我们把股票上涨记为“+”,下跌记为“−”,现在知道某种股票周一收盘价为11.20元,从周二到周五的涨跌情况为:+3.20,+0.75,−2.15,+1.39这周该股票的最高收盘价是______ 元.15. 点A 表示数轴上的一个点,将点A 向右移动7个单位长度,再向左移动4个单位长度,终点恰好是原点,则点A 表示的数是 .16. 绝对值小于2023的所有整数和为______ .17. 如果|m|=4,|n|=2且|m +n|=−m −n ,则m −n 的值是______ .18. 伴随“互联网+”时代的来临,预计到2025年,我国各类网络互助平台的实际参与人数将达到450000000,将数据450000000用科学记数法表示为______.19. 若a、b互为相反数,c、d互为倒数,m+1的绝对值为5,则|m|−cd+(a+b)m的值为______ .20. 小明与小刚规定了一种新运算“∗”:若a,b是有理数,则a∗b=3a−2b.小明计算出2∗5=−4,请帮小刚计算2∗(−5)=.三、解答题(本大题共5小题,共60.0分。
第二章有理数及其运算单元综合测试一.选择题1.下列说法中,正确的为()A.一个数不是正数就是负数B.0是最小的数C.正数都比0大D.﹣a是负数2.如图,A,B,C,D是数轴上的四个点,其中最适合表示数π的点是()A.点A B.点B C.点C D.点D3.下列说法正确的是()A.若两个数的绝对值相等,则这两个数必相等B.若两数不相等,则这两数的绝对值一定不相等C.若两数相等,则这两数的绝对值相等D.两数比较大小,绝对值大的数大4.若x=|﹣2|,|y|=3,则x﹣y的值为()A.﹣1B.5C.﹣1或5D.±1或±55.将式子﹣(+)﹣(﹣5)+(﹣)﹣(﹣6)+(﹣10)写成省略加号的形式,正确的是()A.﹣+5﹣+6﹣10B.﹣﹣5﹣+6﹣10C.﹣5﹣+6﹣10D.+5﹣+6﹣106.下列计算:①;②;③(﹣0.2)3=0.008;④﹣32=9;⑤.其中正确的是()A.1个B.2个C.3个D.4个7.如果|a+2|+(b﹣1)2=0,那么(a+b)2019的值等于()A.1B.﹣2019C.﹣1D.20198.2020年是“双11”的第12个年头,受前期疫情影响消费习惯发生大幅改变以及直播电商的快速发展,今年双11人们消费热情空前高涨.阿里巴巴数据显示,在11日0分26秒,天猫双11达到58.3万笔/秒的订单创建新峰值.把58.3万这个数据用科学记数法表示为()A.583×103元B.5.83×106元C.5.83×105元D.0.583×106元9.下列变形正确的是()A.B.C.D.10.设,利用等式(n≥3),则与A最接近的正整数是()A.18B.20C.24D.25二.填空题11.若上升15米记作+15米,那么下降2米记作米.12.点A表示数轴上的一个点,将点A向右移动5个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是.13.数轴上有点A和点B,点A到原点的距离为m,点B到原点的距离为n,且点B在点A 的左边,若m<n,则点A与点B的距离等于.14.比较大小:﹣﹣;﹣(﹣0.3)|﹣|.(填“<”,“=”,“>”)15.如图,化简代数式|b﹣a|﹣|a﹣1|+|b+2|的结果是.16.把(﹣3)﹣(+4)﹣(﹣6)+(﹣7)+(+2)写成省略加号和的形式为.17.以下四个数:﹣22、(﹣1)3、﹣(+5).(﹣)2其中正数有个.18.若a、b互为相反数,c、d互为倒数,那么(a+b)2+|﹣cd|=.19.在长为20米、宽为15米的长方形地面上修筑一条宽度为2米的道路(图中阴影部分),余下部分作为耕地,则耕地面积为平方米.20.有一种“二十四点”游戏,其游戏规则是:任取四个1~13之间的自然数,将这四个数(每个数用且只用﹣次)进行加减乘除四则运算,使其结果等于24.例如1,2,3,4可作运算:(1+2+3)×4=24(注意上述运算与4×(1+2+3)应视作相同方法的运算).现有四个有理数3,4,6,10,运用上述规则写出三种不同方法的运算式,使其结果等于24,运算式如下:①,②.③.另有四个数1,3,5,13,可通过运算式使其结果等于24.三.解答题21.某检修小组从A地出发,在东西走向的马路上检修线路.如果规定向东行驶为正,向西行驶为负,一天中7次行驶的情况记录如下(单位:千米):第一次第二次第三次第四次第五次第六次第七次﹣4+7﹣9+8+6﹣5﹣2(1)这一天检修小组行驶的路程是多少?(2)求收工时距A地多远?在A地的正东方向还是正西方向?说明理由.22.计算:(1)(﹣3)+40+(﹣32)+(﹣8);(2)(﹣)÷(﹣)×(﹣);(3)(﹣24)×()+(﹣2)3;(4)﹣(﹣3)2+(﹣5)3÷(﹣2)2﹣18×|﹣(﹣)2|;(5)﹣12019﹣[﹣3×(2÷3)2﹣÷22].23.若非零数a、b互为相反数,c、d互为倒数,|m|=3,求(cd)2016+(a+b)2017+()2018+m的值.24.解答下列各题.(1)已知a、b互为倒数,c、d互为相反数,|x|=|﹣2|,求2x2﹣(ab﹣3c﹣3d)+|ab+3|的值.(2)已知当x=﹣3时,代数式ax3+bx+1的值为8,求当x=3时,代数式ax3+bx+1的值.25.规定运算△为:若a>b,则a△b=a+b;若a<b,则a△b=a×b;若a=b,则a△b=a﹣b+1.(1)计算6△(﹣4)的值;(2)计算[(﹣2)△3]+(4△4)+(7△5)的值.26.已知有理数a,b,c在数轴上的位置如图,且|a|=|b|.(1)求﹣﹣+的值.(2)化简|a﹣c|﹣2|2a﹣b|﹣.参考答案一.选择题1.解:A、0既不是正数也不是负数,故本选项不合题意;B、负数比0小,故本选项不合题意;C、正数都比0大,说法正确,故本选项符合题意;D、当a≤0时,﹣a是非负数,故本选项不合题意;故选:C.2.解:因为无理数π大于3,在数轴上表示大于3的点为点D;故选:D.3.解:A、若两个数的绝对值相等,则这两个数相等或互为相反数,故本选项不合题意;B、若两数不相等,则这两数的绝对值一定不相等,说法错误,互为相反数的两个数的绝对值相等,故本选项不合题意;C、若两数相等,则这两数的绝对值相等,说法正确,故本选项符合题意;D、两数比较大小,绝对值大的数大,说法错误,如0与﹣1,0的绝对值小于﹣1的绝对值,0>﹣1,故本选项不合题意.故选:C.4.解:∵x=|﹣2|,|y|=3,∴x=2,y=±3,当x=2,y=3时,x﹣y=2﹣3=﹣1;当x=2,y=﹣3时,x﹣y=2﹣(﹣3)=5,综上所述,x﹣y的值为﹣1或5.故选:C.5.解:﹣(+)﹣(﹣5)+(﹣)﹣(﹣6)+(﹣10)=﹣+5﹣+6﹣10.故选:A.6.解:①,正确;②()2=,故本选项不正确;③(﹣0.2)3=﹣0.008,故本选项不正确;④﹣32=﹣9,故本选项不正确;⑤﹣(﹣)2=﹣,故本选项不正确;其中正确的是①;故选:A.7.解:根据题意得,a+2=0,b﹣1=0,解得a=﹣2,b=1,∴(a+b)2019=(﹣2+1)2019=﹣1.故选:C.8.解:58.3万=583000=5.83×105.故选:C.9.解:A、乘除混合运算,从左到右依次计算,故A选项错误;B、除法没有分配律,故B选项错误;C、根据乘方定义,故C选项错误;D、多个数相乘,从左到右依次计算,故正确;故选:D.10.解:利用等式(n≥3),代入原式得:=48×(++…+﹣)=12×(1﹣++…+)=12×[(1++…+)﹣(+…+)]=12×(1+)而12×(1+)≈25故选:D.二.填空题11.解:若上升15米记作+15米,那么下降2米记作﹣2米.故答案为:﹣2.12.解:0+4﹣5=﹣1.故点A表示的数是﹣1.故答案为:﹣1.13.解:∵点A到原点的距离为m,点B到原点的距离为n,且点B在点A的左边,m<n,∴﹣n<0<m或﹣n<﹣m<0,当﹣n<0<m时,点A与点B的距离为m﹣(﹣n)=m+n,当﹣n<﹣m<0时,点A与点B的距离为﹣m﹣(﹣n)=﹣m+n,故答案为:m+n或﹣m+n.14.解:∵||=,|﹣|=,,∴;∵﹣(﹣0.3)=0.3,||=,∴﹣(﹣0.3)<|﹣|.故答案为:<;<.15.解:由有理数a、b、c在数轴上的位置,可得,﹣1<b<0,1<a<2,所以有b﹣a<0,a﹣1>0,b+2>0,因此|b﹣a|﹣|a﹣1|+|b+2|=a﹣b﹣(a﹣1)+(b+2)=a﹣b﹣a+1+b+2=3,故答案为:3.16.解:(﹣3)﹣(+4)﹣(﹣6)+(﹣7)+(+2)=﹣3﹣4+6﹣7+2.故答案为:﹣3﹣4+6﹣7+2.17.解:﹣22=﹣4,(﹣1)3=﹣1,﹣(+5)=﹣5,(﹣)2=,所以四个数中正数有1个.故答案为1.18.解:∵a、b互为相反数,c、d互为倒数,∴a+b=0,cd=1,∴原式=02+1=1.故答案为:1.19.解:根据题意可得,耕地面积为20×15﹣2×(20+15﹣2)=234平方米.答:耕地面积为234平方米.20.解:①(10﹣4)×3+6=6×3+6=18+6=24;②3×(4﹣6+10)=3×8=24;③3×6﹣4+10=18﹣4+10=24.(13﹣5)×3×1=8×3×1=24.故答案为:(10﹣4)×3+6=24;3×(4﹣6+10)=24;3×6﹣4+10=24;(13﹣5)×3×1.三.解答题21.解:(1)这一天检修小组行驶的路程为:4+7+9+8+6+5+2=41(千米),所以这一天检修小组行驶的路程为41千米;(2)﹣4+7﹣9+8+6﹣5﹣2=+1,故收工时在A的东面,距A地1千米.22.解:(1)原式=(﹣3﹣32﹣8)+40=(﹣43)+40=﹣3;(2)原式=﹣××=﹣;(3)原式=﹣24×﹣24×(﹣)﹣24×﹣8=﹣3+8﹣6﹣8=﹣9;(4)原式=﹣9﹣125×﹣18×=﹣9﹣20﹣2=﹣31;(5)原式=﹣1﹣(﹣﹣)=﹣1+=.23.解:根据题意得:a+b=0,=﹣1,cd=1,m=3或﹣3,当m=3时,原式=1+0+1+3=5;当m=﹣3时,原式=1+0+1﹣3=﹣1.24.解:(1)∵a、b互为倒数,c、d互为相反数,|x|=|﹣2|,∴ab=1,c+d=0,x2=4,∴2x2﹣(ab﹣3c﹣3d)+|ab+3|=2x2﹣[ab﹣3(c+d)]+|ab+3|=2×4﹣(1﹣3×0)+|1+3|=8﹣(1﹣0)+4=8﹣1+4=7+4=11;(2)∵当x=﹣3时,代数式ax3+bx+1的值为8,∴a×(﹣3)3+b×(﹣3)+1=8,∴﹣27a﹣3b=7,∴27a+3b=﹣7,当x=3时,ax3+bx+1=a×33+3b+1=27a+3b+1,=﹣7+1=﹣6.25.解:(1)由题意可得,6△(﹣4)=6+(﹣4)=2;(2)由题意可得,[(﹣2)△3]+(4△4)+(7△5)=(﹣2)×3+(4﹣4+1)+(7+5)=(﹣6)+1+12=(﹣5)+12=7.26.解:(1)由数轴可知:a<c<0<b,∴abc>0,则原式=﹣﹣+=﹣1﹣1+1+1=0;(2)∵a<c<0<b,且|a|=|b|>|c|,∴a﹣c<0,2a﹣b<0,a﹣c﹣b<0,则原式=c﹣a+2(2a﹣b)+=a﹣b+c.。
第2章 有理数及其运算(单元培优卷 北师大版)考试时间:120分钟,满分:120分一、选择题:共10题,每题3分,共30分。
1.有理数2−的相反数是( ) A .2B .12C .2−D .12−2.13与14的和的倒数是( )A .7B .517C .17D .1433.32−的绝对值是( )A .23−B .32−C .23D .324.下列说法正确的个数为( ) ①有理数与无理数的差都是有理数; ②无限小数都是无理数; ③无理数都是无限小数;④两个无理数的和不一定是无理数; ⑤无理数分为正无理数、零、负无理数. A .2个B .3个C .4个D .5个5.亚洲、欧洲、非洲和南美洲的最低海拔如下表:大洲 亚洲欧洲 非洲南美洲最低海拔/m415− 28−156− 40−其中最低海拔最小的大洲是( ) A .亚洲B .欧洲C .非洲D .南美洲6.数轴上的点M 和点N 分别表示3−与4,如果把点N 向左移动6个单位长度,那么点N 现在表示的数比点M 表示的数( ) A .大2B .大1C .小2D .小17.如果把一个人先向东走5m 记作5m +,那么接下来这个人又走了6m −,此时他距离出发点有多远?下面选项中正确的是( ) A .6m −B .1m −C .1mD .6m8.在0.65,58,35,916这四个数中,最大的是()A .0.65B .58C .35D .9169.物理是上帝的游戏,而数学是上帝的游戏规则.不管多大或多小的数,都得靠数学来表示呢!来自2024年综合运输春运工作专班的数据显示,2月10日~17日(农历正月初一至初八),全社会跨区域人员流动量累计22.93亿人次.客流量大已成为2024年春运的最显著特征,铁路、公路、民航等客运频频刷新纪录.用科学记数法表示22.93亿,正确的是( ). A .822.9310×B .922.9310×C .82.29310×D .92.29310×10.一个天平配有重量分别为1,5,25,125,625克的砝码各5个,则为了准确称出重量为2024克的某物品(砝码只能放一侧),所需砝码数量的值为( )A .11B .12C .13D .14二、填空题:共6题,每题3分,共18分。
《第2章有理数及其运算》一、选择题1.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A.支出20元B.收入20元C.支出80元D.收入80元2.下列说法正确的是()A.分数都是有理数B.﹣a是负数C.有理数不是正数就是负数D.绝对值等于本身的数是正数3.﹣5的相反数是()A.﹣5 B.5 C.﹣D.4.计算(﹣2)﹣5的结果等于()A.﹣7 B.﹣3 C.3 D.75.的倒数是()A.﹣2 B.2 C.D.6.据统计,2015年“十•一”国庆长假期间,衢州市共接待国内外游客约319万人次,与2014年同比增长16.43%,数据319万用科学记数法表示为()A.3.19×105 B.3.19×106 C.0.319×107D.319×1067.13世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为()A.42 B.49 C.76D.778.有理数a,b在数轴上的位置如图所示,在﹣a,b﹣a,a+b,0中,最大的是()A.﹣a B.0 C.a+b D.b﹣a二、填空题9.若|x﹣3|+|y+2|=0,则|x|+|y|= .10.计算:﹣6+4= .11.已知有理数﹣1,﹣8,+11,﹣2,请你通过有理数加减混合运算,使运算结果最大,则列式为.12.×(﹣6)= ,(﹣5)÷6= .13.定义a★b=a2﹣b,则(0★1)★2016= .14.按照如图所示的操作步骤,若输入x的值为1,则输出的值为.15.计算1﹣2+3﹣4+5﹣6+…+2015﹣2016的结果是.16.冰冰家新安装了一台太阳能热水器,一天她测量发现18:00时,太阳能热水器水箱内水的温度是80℃,以后每小时下降4℃,第二天,冰冰早晨起来后测得水箱内水的温度为32℃,请你猜一猜她起床的时间是.三、解答题(共52分)17.把下列各数填入它所属的集合内:5.2,0,,,+(﹣4),﹣2,﹣(﹣3 ),0.25555…,﹣0.030030003…(1)分数集合:{ …}(2)非负整数集合:{ …} (3)有理数集合:{ …}.18.如(1)计算:﹣3﹣[﹣5﹣(1﹣0.2÷)÷(﹣2)](2)计算:﹣32×(﹣)2+(﹣+)×(﹣24).19.如图,有四张背面相同的纸牌.请你用这四张牌计算“24点”,请列出四个符合要求的不同算式.【可运用加、减、乘、除、乘方(例如数2,6,可列62=36或26=64)运算,可用括号;注意:例如4×(1+2+3)=24与(2+1+3)×4=24只是顺序不同,属同一个算式】.20.有一张厚度为0.1毫米的纸片,对折1次后的厚度是2×0.1毫米.(1)对折2次的厚度是多少毫米?(2)假设这张纸能无限地折叠下去,那么对折20次后相当于每层高度为3米的楼房多少层?21.一辆货车为一家商场的仓库运货,仓库在记录进出货物时把运进记作正数,运出记作负数下午记录如下(单位:吨):5.5,﹣4.6,﹣5.3,5.4,﹣3.4,4.8,﹣3(1)仓库上午存货物60吨,下午运完货物后存货多少吨?(2)如果货车的运费为每吨10元,那么下午货车共得运费多少元?22.有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:与标准质量的差值(单位:千克)﹣3 ﹣2 ﹣1.5 0 1 2.5筐数 1 4 2 3 2 8(1)20筐白菜中,最重的一筐比最轻的一筐多重多少千克?(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?(结果保留整数)《第2章有理数及其运算》参考答案与试题解析一、选择题1.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A.支出20元B.收入20元C.支出80元D.收入80元【考点】正数和负数.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:根据题意,收入100元记作+100元,则﹣80表示支出80元.故选:C.【点评】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.下列说法正确的是()A.分数都是有理数B.﹣a是负数C.有理数不是正数就是负数D.绝对值等于本身的数是正数【考点】有理数.【分析】根据有理数的概念及分类、绝对值性质判断即可.【解答】解:A、有理数包括整数和分数,故此选项正确;B、当a≤0时,﹣a是非负数,故此选项错误;C、π是正数但不是有理数,故此选项错误;D、绝对值等于本身的数有0和正数,故此选项错误;故选:A.【点评】本题主要考查有理数的有关概念,熟练掌握有理数的概念与分类及相反数、绝对值性质是关键.3.﹣5的相反数是()A.﹣5 B.5 C.﹣D.【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:﹣5的相反数是5.故选:B.【点评】本题考查了相反数的意义:只有符号不同的两个数互为相反数,0的相反数是0.4.计算(﹣2)﹣5的结果等于()A.﹣7 B.﹣3 C.3 D.7【考点】有理数的减法.【分析】根据减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:(﹣2)﹣5=(﹣2)+(﹣5)=﹣(2+5)=﹣7,故选:A.【点评】本题考查了有理数的减法,减去一个数等于加上这个数的相反数是解题关键.5.的倒数是()A.﹣2 B.2 C.D.【考点】倒数.【专题】常规题型.【分析】根据倒数的定义求解.【解答】解:﹣的倒数是﹣2.故选:A.【点评】本题主要考查了倒数的定义,解题的关键是熟记定义.6.据统计,2015年“十•一”国庆长假期间,衢州市共接待国内外游客约319万人次,与2014年同比增长16.43%,数据319万用科学记数法表示为()A.3.19×105 B.3.19×106 C.0.319×107D.319×106【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于319万有7位,所以可以确定n=7﹣1=6.【解答】解:319万=3 190 000=3.19×106.故选B.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.7.13世纪数学家斐波那契的《计算书》中有这样一个问题:“在罗马有7位老妇人,每人赶着7头毛驴,每头驴驮着7只口袋,每只口袋里装着7个面包,每个面包附有7把餐刀,每把餐刀有7只刀鞘”,则刀鞘数为()A.42 B.49 C.76D.77【考点】有理数的乘方.【分析】有理数乘方的定义:求n个相同因数积的运算,叫做乘方.依此即可求解.【解答】解:依题意有,刀鞘数为76.故选:C.【点评】考查了有理数的乘方,关键是根据题意正确列出算式,是基础题型.8.有理数a,b在数轴上的位置如图所示,在﹣a,b﹣a,a+b,0中,最大的是()A.﹣a B.0 C.a+b D.b﹣a【考点】有理数大小比较;数轴.【分析】根据数轴上的点表示的数:原点左边的数小于零,原点右边的数大于零,可得a、b的大小,根据有理数的运算,可得答案.【解答】解:由数轴可得:﹣1<a<0,1<b<2,∴0<﹣a<1,b﹣a>2,a+b>1,∴0<﹣a<a+b<b﹣a,故选:D.【点评】本题考查了数轴,利用数轴上的点表示的数:原点左边的数小于零,原点右边的数大于零,得出a、b的大小是解题关键.二、填空题9.若|x﹣3|+|y+2|=0,则|x|+|y|= 5 .【考点】非负数的性质:绝对值.【分析】根据非负数的性质列式求出x、y的值,然后代入进行计算即可得解.【解答】解:根据题意得,x﹣3=0,y+2=0,解得x=3,y=﹣2,∴|x|+|y|=|3|+|﹣2|=3+2=5.故答案为:5.【点评】本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.10.计算:﹣6+4= ﹣2 .【考点】有理数的加法.【分析】利用异号两数相加的计算方法计算即可.【解答】解:﹣6+4=﹣2.故答案为:﹣2.【点评】此题考查有理数的加法,掌握法则并会灵活运用.11.已知有理数﹣1,﹣8,+11,﹣2,请你通过有理数加减混合运算,使运算结果最大,则列式为+11﹣(﹣1﹣8﹣2).【考点】有理数的加减混合运算.【专题】计算题.【分析】根据题意列出算式,使运算结果最大即可.【解答】解:根据题意得:+11﹣(﹣1﹣8﹣2),故答案为:+11﹣(﹣1﹣8﹣2).【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.12.(﹣5)×(﹣6)= 30 ,(﹣5)÷6= .【考点】有理数的除法;有理数的乘法.【专题】推理填空题.【分析】根据有理数乘法和除法的法则即可解答本题.【解答】解:(﹣5)×(﹣6)=5×6=30,(﹣5)÷6=﹣5×=﹣.故答案为:30,﹣.【点评】本题考查有理数的乘法和除法,解题的关键是明确有理数乘法和除法的法则.13.定义a★b=a2﹣b,则(0★1)★2016= ﹣2015 .【考点】有理数的混合运算.【专题】新定义;实数.【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:原式=(﹣1)★2016=1﹣2016=﹣2015,故答案为:﹣2015【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.14.按照如图所示的操作步骤,若输入x的值为1,则输出的值为11 .【考点】有理数的混合运算.【专题】图表型.【分析】把x=1代入题中的运算程序中计算即可得出输出结果.【解答】解:把x=1代入运算程序得:(1+3)2﹣5=16﹣5=11.故答案为:11【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.15.计算1﹣2+3﹣4+5﹣6+…+2015﹣2016的结果是﹣1008 .【考点】有理数的加减混合运算.【分析】原式两个一组结合后,相加即可得到结果.【解答】解:1﹣2+3﹣4+5﹣6+…+2015﹣2016=﹣1﹣1﹣…﹣1=﹣1×1008=﹣1008.故答案为:﹣1008.【点评】此题考查了有理数的加减混合运算,熟练掌握运算法则是解本题的关键.16.冰冰家新安装了一台太阳能热水器,一天她测量发现18:00时,太阳能热水器水箱内水的温度是80℃,以后每小时下降4℃,第二天,冰冰早晨起来后测得水箱内水的温度为32℃,请你猜一猜她起床的时间是6:00 .【考点】有理数的混合运算.【分析】根据题意可以求得冰冰起床时与前一天18:00水箱的温差,从而可以求得冰冰起床的时间.【解答】解:由题意可得,冰冰起床的时间是:18+(80﹣32)÷4﹣24=18+48÷4﹣24=18+12﹣24=6,即冰冰起床的时间是6:00,故答案为:6:00.【点评】本题考查有理数的混合运算,解题的关键是明确有理数混合运算的计算方法.三、解答题(共52分)17.把下列各数填入它所属的集合内:5.2,0,,,+(﹣4),﹣2,﹣(﹣3 ),0.25555…,﹣0.030030003…(1)分数集合:{ 5.2,,﹣2,0.25555 …}(2)非负整数集合:{ 0,﹣(﹣3)…}(3)有理数集合:{ 5.2,0,,+(﹣4),﹣2,﹣(﹣3),0.25555 …}.【考点】有理数.【分析】按照有理数的分类填写:有理数.【解答】解:(1)分数集合:{5.2,,﹣2,0.25555…},(2)非负整数集合:{0,﹣(﹣3 )},(3)有理数集合:{5.2,0,,+(﹣4),﹣2,﹣(﹣3 ),0.25555…},故答案为:5.2,,﹣2,0.25555…;0,﹣(﹣3 );5.2,0,,+(﹣4),﹣2,﹣(﹣3 ),0.25555….【点评】本题考查了有理数,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点,注意整数和正数的区别,注意0是整数,但不是正数.18.(1)计算:﹣3﹣[﹣5﹣(1﹣0.2÷)÷(﹣2)](2)计算:﹣32×(﹣)2+(﹣+)×(﹣24).【考点】有理数的混合运算.【专题】计算题.【分析】(1)根据有理数的混合运算的运算方法,求出算式的值是多少即可.(2)应用乘法分配律,求出算式的值是多少即可.【解答】解:(1)﹣3﹣[﹣5﹣(1﹣0.2÷)÷(﹣2)]=﹣3﹣[﹣5﹣÷(﹣2)]=﹣3﹣[﹣5+]=﹣3﹣[﹣4]=1(2)﹣32×(﹣)2+(﹣+)×(﹣24)=﹣9×+×(﹣24)﹣×(﹣24)+×(﹣24)=﹣1﹣18+4﹣9=﹣24【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.19.如图,有四张背面相同的纸牌.请你用这四张牌计算“24点”,请列出四个符合要求的不同算式.【可运用加、减、乘、除、乘方(例如数2,6,可列62=36或26=64)运算,可用括号;注意:例如4×(1+2+3)=24与(2+1+3)×4=24只是顺序不同,属同一个算式】.【考点】有理数的混合运算.【专题】计算题;图表型.【分析】根据“24点”游戏规则,由3,4,5,2四个数字列出算式,使其结果为24即可.【解答】解:根据题意得:①2×(3+4+5)=24;②4×(3+5﹣2)=24;③52+3﹣4=24;④42+3+5=24;⑤24+3+5=24;⑥25÷4×3=24(任取四个即可).【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.有一张厚度为0.1毫米的纸片,对折1次后的厚度是2×0.1毫米.(1)对折2次的厚度是多少毫米?(2)假设这张纸能无限地折叠下去,那么对折20次后相当于每层高度为3米的楼房多少层?【考点】有理数的乘方.【专题】计算题;实数.【分析】(1)根据对折规律确定出对折2次的厚度即可;(2)利用对折规律确定出楼层即可.【解答】解:(1)根据题意得:2×2×0.1=0.4毫米,则对折2次的厚度是0.4毫米;(2)对折20次的厚度为220×0.1=104857.6毫米≈104.9m,104.9÷3≈35层,则对折20次后相当于每层高度为3米的楼房35层.【点评】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.21.一辆货车为一家商场的仓库运货,仓库在记录进出货物时把运进记作正数,运出记作负数下午记录如下(单位:吨):5.5,﹣4.6,﹣5.3,5.4,﹣3.4,4.8,﹣3(1)仓库上午存货物60吨,下午运完货物后存货多少吨?(2)如果货车的运费为每吨10元,那么下午货车共得运费多少元?【考点】有理数的混合运算;正数和负数.【专题】计算题.【分析】(1)将各数据相加即可得到结果;(2)将各数据的绝对值相加得到结果,乘以10即可得到最后结果.【解答】解:(1)60+5.5﹣4.6﹣5.3+5.4﹣3.4+4.8﹣3=65.5﹣4.6﹣5.3+5.4﹣3.4+4.8﹣3=59.4(吨),则下午运完货物后存货59.4吨;(2)(5.5+4.6+5.3+5.4+3.4+4.8+3)×10=32×10=320(元),则下午货车共得运费320元.【点评】此题考查了有理数的混合运算,有理数的混合运算首先弄清运算顺序,先乘方,再乘除,最后算加减,有括号先算括号里边的,然后利用各种运算法则计算,有时可以利用运算律来简化运算.22.有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:﹣3 ﹣2 ﹣1.5 0 1 2.5与标准质量的差值(单位:千克)筐数 1 4 2 3 2 8(1)20筐白菜中,最重的一筐比最轻的一筐多重多少千克?(2)与标准重量比较,20筐白菜总计超过或不足多少千克?(3)若白菜每千克售价2.6元,则出售这20筐白菜可卖多少元?(结果保留整数)【考点】有理数的加法.【专题】应用题;图表型.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:(1)最重的一筐超过2.5千克,最轻的差3千克,求差即可2.5﹣(﹣3)=5.5(千克),故最重的一筐比最轻的一筐多重5.5千克;(2)列式1×(﹣3)+4×(﹣2)+2×(﹣1.5)+3×0+1×2+8×2.5=﹣3﹣8﹣3+2+20=8(千克),故20筐白菜总计超过8千克;(3)用(2)的结果列式计算2.6×(25×20+8)=1320.8≈1320(元),故这20筐白菜可卖1320(元).【点评】此题的关键是读懂题意,列式计算,注意计算结果是去尾法.。