RLC电路的稳态特性
- 格式:ppt
- 大小:2.08 MB
- 文档页数:12
rlc串联电路的稳态特性实验报告实验目的:本实验旨在通过实验研究RLC串联电路的稳态特性,探究电感、电阻和电容对电路稳态响应的影响,并验证理论计算结果。
实验原理:RLC串联电路是由电感、电阻和电容依次串联而成。
在交流电源的作用下,电感、电阻和电容分别产生不同的响应,从而影响电路的稳态特性。
实验步骤:1. 将电感、电阻和电容依次串联,组成RLC串联电路。
2. 将交流电源接入电路,调节电源频率为一定值。
3. 使用示波器测量电路中电压和电流的波形。
4. 记录示波器上观察到的电压和电流的振幅、相位差等数据。
5. 改变电源频率,重复步骤3和4,记录不同频率下的数据。
实验结果与分析:通过实验测量得到的电压和电流波形数据,可以得出以下结论:1. 当电源频率接近电感的共振频率时,电感对电路的阻抗最小,电流振幅最大。
这是因为在共振频率下,电感和电容的阻抗相互抵消,电路中的电流得到最大增强。
2. 当电源频率远离电感的共振频率时,电感对电路的阻抗逐渐增加,电流振幅逐渐减小。
这是因为电感对高频信号的阻抗较大,导致电路中的电流减弱。
3. 电容对电路的阻抗与频率成反比关系。
当电源频率较低时,电容对电路的阻抗较大,电流振幅较小。
随着频率的增加,电容的阻抗逐渐减小,电流振幅逐渐增大。
4. 电阻对电路的阻抗不随频率变化。
电阻对电路的阻抗始终保持不变,不影响电流的振幅和相位。
通过实验结果的分析,可以得出以下结论:1. 在RLC串联电路中,电感、电阻和电容对电路的稳态响应有着不同的影响。
2. 电感在共振频率附近对电路的阻抗最小,电流振幅最大。
3. 电容的阻抗与频率成反比关系,频率越高,电容的阻抗越小。
4. 电阻对电路的阻抗不随频率变化,对电流的振幅和相位没有影响。
实验结论:通过对RLC串联电路的稳态特性实验的研究,我们验证了电感、电阻和电容对电路稳态响应的影响。
实验结果表明,电感在共振频率附近对电路的阻抗最小,电流振幅最大;电容的阻抗与频率成反比关系;电阻对电路的阻抗不随频率变化。
RLC 电路的稳态特性研究【实验目的】1、了解RLC 串联电路的相频特性和幅频特性;2、观察和研究RLC 电路的串联谐振现象;3、进一步巩固示波器的使用;4、掌握两种示波器测量相位的方法。
【实验仪器】SS-7802A示波器,TFG1005型函数信号发生器,电路元件等。
【实验原理】一、电路基本知识回顾二、RLC 串联电路的相频特性和幅频特性RLC 串联电路如图1 所示,通过正弦稳态交流电流,运用复数运算法,其电路方程可写成:其中, f = f2-f1 .三、两种用示波器测量相位的方法示波器可以用来测量电压,周期,还可以测量相位差,有两种方法可以测量相位差:1.双踪法比较法双踪法是用双踪示波器在荧光屏上直接比较两个被测电压的波形来测量其相位关系。
测量时,由通道1 和2 分别输入两个频率相同而相位不同的正弦电压信号,波形显示如图3(a)所示。
相应的相位为:2.李萨如图形法测相位将示波器设为X-Y 工作方式,由CH1 和CH2 输入的正弦电压信号分别加在X 和Y 方向。
电子束光点同时在X 和Y 方向上做简谐振动,荧光屏上显示的图形为电子束光点的运动轨迹,该图称为李萨如图,原理如图3(b)所示。
【实验内容和要求】电路参数: L=10mH, C=0.1μF, R=51Ω,R L用万用表测量。
信号源输出电压满足:Upp<4V,按图4 连线,注意共地点。
图4 RLC 电路串连电路1.根据所选L和C 的数值,计算相应的谐振频率f0,并通过实验进行测量,计算相对误差。
2.观察谐振前后电流信号强度的变化,并记录现象。
3.利用比较法或李萨如图方法测量相频特性曲线:频率扫描范围:1500-15000Hz。
测量不少于25个点,在谐振频率附近应该多取几个点。
注意频率偏离谐振频率时相位的符号(大于-正号,小于-负号);绘图时频率取对数坐标,对数轴取为f/ f0,并与理论曲线比较,分析误差产生的原因。
4.测量幅频特性:保持信号源电压U 不变(即CH1电压波的幅值不变,可取U PP=3V), 频率扫描范围:200-5500Hz。
实验报告RLC串联电路的稳态特性物理科学与技术学院吴雨桥2013301020142 13级弘毅班【实验目的】1.观察、分析RLC串联电路中的相频与幅频特性,理解和具体应用此特性。
2.进一步学习用双踪示波器进行测量相位差。
【实验器材】正弦信号发生器、毫伏表、双踪示波器、自感器、电容器、交流电阻箱。
【实验原理】电流、电压的幅度与频率间的关系称为幅频特性;电流和电源电压间、各元件上的电压与电源电压间的相位差与电源的频率关系称为相频特性。
电路的稳态就是该电路在接通正弦交流电源一段时间(一般为电路的时间常数的5至10倍)以后,电路中的电流i和元件上电压(UR,UC,UL)的波形已经发展到与电源电压的波形相同且幅值稳定的状态。
1.RC串联电路的幅频特性和相频特性幅频特性:当ω→ 0时,UR → 0,UC → U; ω增大时,UR增大,UC 减小;ω→∞时,UR → U,UC → 0。
相频特性:ω低时用φR→π/2 ;ω高时φR→0;φC=-[π/2-|φ|];φ随ω增大从-π/2增至0。
等幅频率(截止频率): f ur=uc=1/2 π RC, 是高通滤波器的下界频,低通滤波器的上界频。
2.RL串联电路的幅频特性和相频特性幅频特性:当ω→ 0时,UL → 0,UR → U; ω增大时,UL增大,UR减小;ω→∞时,UL → U,UR → 0。
相频特性:ω从0增大至∞时,φR 从0减小趋于-π/2,φ从0增大趋于π/2,φL从π/2减至0。
等幅频率(截止频率): f ur=uc=R/2 π L。
3.RLC串联电路的相频特性谐振频率:φ =0,UR=U为极大值,f0 = 1/2π√LC ,电路为谐振态。
相频特性:ω<ω0时,φ<0,电容性;ω>ω0时,φ>0,电感性;ω=ω0时,φ=0,纯电阻。
【实验内容】1.测量并做出RC串联电路的幅频、相频曲线(1)接好电路,并将仪器调至安全待测状态,然后接通各仪器的电源进行预热。
RLC电路的稳态特性RLC电路是由电阻、电感和电容构成的串联或并联电路,这种电路具有稳态特性,即在一定的时间内,电路参数不发生变化,电路的电量和电势保持稳定。
在了解RLC电路的稳态特性前,需要先了解一些基本知识。
一、RLC电路基本原理在RLC电路中,电阻、电感和电容是电路的三个基本元件,它们的组合形式可以有不同的连接方式,串联和并联是两种最基本的形式。
在串联形式下,电阻、电感和电容依次排列,电路中的电流大小相等;在并联形式下,电阻、电感和电容并联在一起,电路中的电压大小相等。
在RLC电路中,电阻是电路的负载部分,电感对电路电磁性能的影响较大,电容则对电路频率的变化十分敏感。
电阻、电感和电容的参数对电路的稳态特性也产生着重要的影响。
1、电阻电阻是RLC电路的负载部分,它的大小对整个电路的总电阻产生影响。
当电阻增大时,电路总电阻也会随之增大,电路中的电流会减小,同时电压也会下降。
因此,电阻的增大会导致RLC电路中稳态电量的减少。
2、电感电感对电路电磁性能的影响较大。
如果电感的大小增大,那么电路中自感的作用就会增强,自感会抵消电路中的电流变化,使电路的电流保持稳定。
换句话说,电感的增加可以增加电路的稳定性,使电路中的电流保持稳定,从而保证稳态电量不发生变化。
3、电容电容对电路频率的变化十分敏感。
当电路中的频率变化时,电容的极板间的电势差也会发生变化,从而影响电路中的电流变化。
因此,电容的大小会影响电路频率响应的稳定性。
如果电容的大小较小,那么电容对电路的性能影响较小,而当电容的大小较大时,电容的作用则会增大,电路的响应性能就会更加稳定。
下面是一个以串联RLC电路为例的稳态特性实例。
该电路由电阻R、电感L和电容C组成,接在电源V的两端。
在稳态下,电路中的电流大小将保持不变,同时电路中的电势差也保持不变。
当电路达到稳态后,电压和电流的波形如下图所示。
从图中可以看出,电路中稳态电量的大小和相位角都保持不变。
RLC电路特性的研究电容、电感元件在交流电流中的阻抗是随着电源频率的改变而变化的。
将正弦交流电压加到电阻、电容和电感组成的电路中时, 各元件上的电压及相位会随着变化, 这称作电路的稳态特性: 将一个阶跃电压加到元件组成的电路中时, 电路的状态会由一个平衡态转变到另一个平衡态, 各元件上的电压会出现有规律的变化, 这称为电路的暂态特性。
【实验目的】1. 研究RLC串联电路的幅频特性;2. 通过实验认识RLC串联电路的谐振特性。
【实验仪器】1.FB318型电路实验仪2.双踪示波器【实验原理】一、RLC电路的稳态特性在电路中如果同时存在电感和电容元件, 那么在一定条件下会产生某种特殊状态, 能量会在电容和电感元件中产生交换, 我们称之为谐振现象。
若交流电源US的电压为U, 角频率为ω, 各元件的阻抗分别为则RLC串联电路(图1)的总阻抗为(1)串联电路的电流为(2)式中电流有效值为(3)电流与电压间的位相差为(4)它们都是频率的函数, 随频率的变化关系如图2所示。
)1(CLjRZωω-+=ϕωωjIeCLjRZIUU=-+==••)1(22)1(CLRUZUIωω-+==RCLωωϕ1arctan-=/π-/π(b)I(a)图2CjZLjZRZCLRωω1===电路中各元件电压有效值分别为(5)(6)(7)比较(3)和(5)式可知, UR 随频率变化曲线的形状与图2(a)的I~ω曲线相似, 而UL 和UC 随频率变化关系如图3所示。
(5), (6)和(7)式反映元件R 、L 和C 的幅频特性, 当(8)时, (=0, 即电流与电压同位相, 这种情况称为串联谐振, 此时的角频率称为谐振角频率,并以(0表示, 则有 (9)从图2和图3可见, 当发生谐振时, UR 和I 有极大值, 而UL 和UC 的极大值都不出现在谐振点, 它们极大值ULM 和UCM 对应的角频率分别为(10)(11)(12)式中Q 为谐振回路的品质因数, (为电路特性阻抗, 是一个仅与电路参数有关而与频率无关的量。
rlc电路的稳态特性实验报告实验目的:本实验旨在研究和分析RLC电路的稳态特性,通过实验测量和数据分析,探究电路中电感、电阻和电容对电流和电压的影响,进一步加深对RLC电路的理解。
实验原理:RLC电路是由电阻(R)、电感(L)和电容(C)组成的串联或并联电路。
在稳态条件下,电路中的电流和电压将保持稳定,不随时间变化。
通过测量电路中的电流和电压,可以得到电路的稳态特性。
实验步骤:1. 准备工作:将实验所需的电感、电阻和电容连接好,确保电路连接正确无误。
2. 测量电流:通过连接电流表,测量电路中的电流值。
记录测量结果。
3. 测量电压:通过连接电压表,测量电路中的电压值。
记录测量结果。
4. 改变电感值:调节电感器的数值,改变电感值,重复步骤2和步骤3,记录测量结果。
5. 改变电阻值:调节电阻器的数值,改变电阻值,重复步骤2和步骤3,记录测量结果。
6. 改变电容值:调节电容器的数值,改变电容值,重复步骤2和步骤3,记录测量结果。
实验结果与数据分析:通过实验测量得到的电流和电压数据,可以绘制电流-时间曲线和电压-时间曲线,进一步分析电路的稳态特性。
1. 电感对电路的影响:改变电感值时,观察到电流和电压的变化。
当电感值增大时,电路中的电流和电压呈现出振荡的特性,振荡频率随电感值的增大而减小。
2. 电阻对电路的影响:改变电阻值时,观察到电流和电压的变化。
增大电阻值会导致电路中的电流和电压下降,减小电阻值则会使电路中的电流和电压增大。
3. 电容对电路的影响:改变电容值时,观察到电流和电压的变化。
增大电容值会使电路中的电流和电压下降,减小电容值则会使电路中的电流和电压增大。
通过以上实验结果和数据分析,可以得出以下结论:1. RLC电路的稳态特性取决于电感、电阻和电容的数值。
不同数值的电感、电阻和电容会导致电路中的电流和电压呈现不同的变化规律。
2. 在RLC电路中,电感和电容是能量储存元件,电阻则是能量消耗元件。
电感和电容会使电路中的电流和电压发生振荡,而电阻则会使电流和电压减小。
实验34 RLC 电路的稳态特性教学目标重点与难点实验内容教学方法教学过程设计 一.讨论1.在交流电路中,RLC 串联电路具有什么特性和作用?在交流电路中,电阻值和频率无关,RLC 串联电路的电流与电阻电压是同相位;电容具有“通高频、阻低频”的特性;电感具有“通低频,阻高频”的特性。
RLC 串联电路具有特殊的幅频特性和相频特性,有选频和滤波作用。
2.交流电路中,如何表示电压和电流的大小和相位的变化? 交流电路的电压..和电流..有大小和相位的变化,通常用复数法及其矢量图解法来研究。
RLC 串联电路如图1所示,交流电源电压为S U,则 C L R S U U U U++= RLC 电路的复阻抗⎪⎭⎫ ⎝⎛-+=C L j R Z ωω1 回路电流 )1(+==CωL ωj R U Z U I S S - ,图1 LRC 串联电路•研究交流信号在RLC 串联电路中的幅频特性和相频特性;•巩固交流电路中矢量图解法和复数表示法。
•重点:测量RLC 串联电路的幅频特性。
•难点:测量RLC 串联电路的相频特性。
•测量RLC 串联电路的幅频特性; •测量RLC 串联电路的相频特性;•根据上述测量内容绘制数据表;作I - f 的关系曲线图和ϕ - f 的关系曲线曲线图。
•采用讨论式、提案式教学方法电流大小 22)1(CL R U ZU I SSωω-+==。
矢量图解法如图2所示,总电压S U与电流I 之间的相位(或S U 与电阻电压R U 的相位)为RCL arctg ωωϕ1-=,可见,RLC 串联回路相位ϕ与电源频率f (f πϖ2=)有关。
3.什么是RLC 串联谐振?RLC 串联电路中,当信号的频率f 为谐振频率LCf π210=,即感抗与容抗相等(00ϖϖCL =)时,电路的阻抗有最小值(Z=R ),电流有最大值(RU Z U I SS ==0),电路为纯电阻,这种现象称为RLC ...串联谐振....。
RLC串联电路的稳态特性RLC串联电路的稳态特性实验3-10 RLC串联电路的稳态特性前⾔在交流电或电⼦电路的研究中,常需要通过电阻、电感、电容元件不同组合的电路,⽤来改变输⼊正弦信号和输出正弦信号之间的相位差,或构成放⼤电路、振荡电路、选频电路、滤波电路等,因此,研究RLC 电路及其过程,在物理学、⼯程技术上都很有意义。
本实验着重研究RC、RL和RLC 电路的稳态特性。
【实验⽬的】1、通过观测、分析RLC 串联电路中的相频和幅频特性,以便理解和具体应⽤此特性。
2、进⼀步学习使⽤双踪⽰波器进⾏相位差的测量【仪器⽤具】正弦信号发⽣器、毫伏表、双踪⽰波器、⾃感器、电容器、交流电阻箱【实验原理】⼀、RLC串联电路的幅频特性和相频特性由于电容和电感在交流电路中的容抗和感抗与频率有关,所以,在交流电路中有电感和电容存在时,各元件上的电压和电路中的电流都会随频率的变化⽽发⽣变化,且回路中的总电流和总电压的相位差也和频率有关。
电流、电压的幅度与频率间的关系称为幅频特性;电流和电源电压间、各元件上的电压和电源电压间的相位差与电源的频率关系称为相频特性。
我们研究的是RLC串联电路的稳态特性。
所谓电路的稳态就是该电路在接通正弦交流电源⼀段时间(⼀般为电路的时间常数的5~10倍)以后,电路中的电流和元件上的电压iu、u、u()其波形已经发展到保持与电源电压波形相同且幅值稳定这样的的⼀种稳定RCL状态。
1. RC串联电路的幅频特性和相频特性1~ZRj我们知道,在图3-10-1的电路中,RC总阻抗为: ,,,C21~~,,2Z其中的模为:Z,|Z|,R,, ,,,C,,1,,,,,1~,C,,,Z的辐⾓为:,arctan,,arctan (3-10-1) R,CR,,,,,,,,,,,为U和I之间的相位差,即 ,UI根据交流欧姆定律,电阻上的电压为:U,IR (3-10-2) RIU电容上的电压为: (3-10-3) ,C,C21,,2总电压为: (3-10-4) U,IR,,,,C,,图3-10-2为上述电压、电流(有效值)的⽮量图。
实验9 RLC 电路的稳态特性(补充资料) 【实验内容】——(补充内容)1.RLC 串联电路幅频特性的测定测量幅频特性的电路如图1所示,元件取R=10Ω,C ≈0.010μF 、L ≈10mH ,在九孔万能板上连接测量电路(画出测量电路图)。
示波器CH1通道测量信号源“A ”(或“50Ω”)接口输出的正弦信号电压U S ,用示波器的CH2通道测出频率f 从10KH Z 到20KH Z 变化约11~15个值时电阻R 两端的峰峰电压值U R P-P ;注意:每次调好f 后,要调信号源的“幅度”调节旋钮,使示波器的显示“信号源输出波形”通道的波形峰峰电压为U S P-P =1.00V (保持不变),然后才能测量U R P-P 。
列表记录各f 点对应的测量数据U R P-P 和计算数据I P-P 。
根据谐振频率f 0的实验值f 0实和计算值f 0理,求出谐振频率的相对误差E f 0 。
(必做内容) 在坐标纸上,绘制RLC 回路的幅频特性曲线I —f 图。
在图线上,分别标出谐振频率的实验值f 0实和通频带宽f 1、f'2频率;计算RLC 回路的通频带∆f 0.7 = f'2- f 1 和品质因数Q =f 0实/ ∆f 0.7。
(必做内容)(选做内容)将电阻元件改为R= 51Ω,测量各f 对应的U R P-P 、I P-P 的测量数据。
在上面内容的同一张坐标纸上,另绘制R= 51Ω时的RLC 回路的幅频特性曲线。
2.RLC 串联电路相频特性的测定 (必做内容)取R =10Ω,f 从13KH Z 到19KH Z 变化约11个值,用双踪示波器同时测量U S 与U R 两波形之间的相位差∆t 。
列表记录f 、∆t 的测量数据,求出各测量点的ϕ 。
绘制RLC 回路的相频特性曲线ϕ — f 图。
3.品质因数Q 的测定 (选做加分内容)品质因数Q 的测量电路如图2所示,按图连接电路(画出测量电路图),调节信号源的正弦信号频率为RLC 回路的谐振频率f 0,取信号源输出峰峰电压U S =1.00V ,R =10Ω,测出谐振时电容两端电压U C0,求出RLC 回路的品质因数Q (= U C0/ U S )。
rlc电路的稳态特性实验报告RLC 电路的稳态特性实验报告一、实验目的本次实验旨在深入研究 RLC 电路的稳态特性,通过对电阻(R)、电感(L)和电容(C)在不同组合情况下的电路响应进行测量和分析,理解RLC 电路中电流、电压的变化规律,掌握其频率特性和阻抗特性。
二、实验原理1、 RLC 串联电路在 RLC 串联电路中,总阻抗 Z 为:\Z = R + j\left(\omega L \frac{1}{\omega C}\right)\其中,ω 为角频率,j 为虚数单位。
电流 I 为:\I =\frac{U}{Z}\电压分别为:\U_R = I \times R\\U_L = I \times j\omega L\\U_C = I \times \frac{1}{j\omega C}\2、谐振频率当电路发生谐振时,感抗和容抗相互抵消,此时电路的总阻抗最小,电流最大。
谐振频率ω0 为:\ω_0 =\frac{1}{\sqrt{LC}}\3、品质因数 Q品质因数Q 反映了电路的储能与耗能的比值,对于RLC 串联电路,Q 为:\Q =\frac{\omega_0 L}{R}\三、实验仪器与设备1、函数信号发生器2、示波器3、交流毫伏表4、电阻箱5、电感箱6、电容箱四、实验步骤1、按照电路图连接好 RLC 串联电路,选择合适的电阻、电感和电容值。
2、函数信号发生器设置输出正弦交流信号,频率从低到高逐渐变化,同时用交流毫伏表测量电阻、电感和电容两端的电压,示波器观察电流和电压的波形。
3、记录不同频率下的电压值和电流值,绘制频率特性曲线。
4、改变电阻、电感和电容的值,重复上述实验步骤,观察并分析其对电路稳态特性的影响。
五、实验数据及处理以下是一组实验数据示例(实际数据应根据具体实验测量结果填写):|频率(Hz)|电阻电压(V)|电感电压(V)|电容电压(V)|电流(A)||::|::|::|::|::|| 100 | 25 | 15 | 30 | 05 || 200 | 30 | 20 | 25 | 06 || 300 | 35 | 25 | 20 | 07 || 400 | 40 | 30 | 15 | 08 || 500 | 45 | 35 | 10 | 09 || 600 | 50 | 40 | 05 | 10 |根据上述数据,绘制出电阻、电感和电容的电压频率特性曲线以及电流频率特性曲线。
R 、L 、C 串联电路的稳态特性本实验着重研究RC 和RL 串联电路中的幅-频特性(电压值随频率变化的规律),以及输入信号的相-频特性(相位差随信号频率的变化规律)以及RLC 串联电路的相频特性。
这些特性称为RLC 电路的稳态特性。
【实验目的】1、观测RC 、RL 和RLC 串联电路的幅频特性和相频特性;2、学习用双踪示波器测量两个同频率信号的相位差实验方法。
【实验原理】和直流电路一样,交流串、并联电路中电流和电压遵循同样的规律:串联电路中任何时刻通过各元件电流i 是一样的,而电路两端的总电压等于串联电路中各元件分电压之和;并联电路中各元件两端电压相等,而干路总电流等于各个支路电流之和。
但是因为交流电路中各元件上的电学量之间存在相位差,所以用电表测出的有效值所呈现的并非如同直流电路一样的简单关系。
下面采用矢量图解法来研究:1、RC 串联电路的幅频特性和相频特性:如下图所示:在RC 回路中,以电流矢量为参考矢量,因为电容元件的特性所致,电容元件上的电压的比i C U 位相总落后2π,所以有总电压: 2C 2R U U U +=(1) 我们知道,R 、C 元件的阻抗分别为:R Z R = ,C1Z C ω= (2) 上式中ω代表交流正弦信号的频率。
所以电路总阻抗为:22C 1R Z ⎪⎭⎫ ⎝⎛+=ω (3)总电压与矢量电流之间的位相差ψ为:RCU U R C ωψ1arctan -arctan =-= (4) 本次实验将利用所得结果和(1)式及(4)式比较,并计算百分差。
2、RL 串联电路的幅频特性和相频特性:如下图所示:R U R U c C (图a)在RL 回路中,因为电感上的电流不能突变,电感元件上的电压i 比L U 的位相总超前2π, 做出矢量图为图e,总电压: 2L 2R U U U +=(5) 总阻抗:()22L R Z ω+= (6)总电压与矢量电流之间的位相差ψ为:R L U U R L ωψarctan arctan == (7)本次实验将利用所得结果和(5)式及(7)式比较,并计算百分差。