解析几何尤承业前四章部分习题答案
- 格式:pdf
- 大小:22.94 MB
- 文档页数:25
高考数学解析几何专题练习及答案解析版-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN高考数学解析几何专题练习解析版82页1.一个顶点的坐标()2,0,焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 141322=+y x2.已知双曲线的方程为22221(0,0)x y a b a b-=>>,过左焦点F 1的直线交双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3B .32+C . 31+D . 323.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点,且△OAB (O 为坐标原点)的面积为,则m 6+ m 4的值为( )A .1B . 2C .3D .44.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有 ( )(A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65,2(π B .)6,2(π C .)611,2(π D .)67,2(π7.曲线的参数方程为⎩⎨⎧-=+=12322t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( )A . 54B .45C .254D .4259. 圆06422=+-+y x y x 的圆心坐标和半径分别为( ) A.)3,2(-、13 B.)3,2(-、13 C.)3,2(--、13 D.)3,2(-、1310.椭圆12222=+by x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )A.1222=+y x B. 13222=+y x C.12222=+y x D.13222=+y x 11.过双曲线的右焦点F 作实轴所在直线的垂线,交双曲线于A ,B 两点,设双曲线的左顶点M ,若MAB ∆是直角三角形,则此双曲线的离心率e 的值为 ( )A .32 B .2 C .2 D .312.已知)0(12222>>=+b a b y a x ,N M ,是椭圆上关于原点对称的两点,P 是椭圆上任意一点且直线PN PM ,的斜率分别为21,k k ,021≠k k ,则21k k +的最小值为1,则椭圆的离心率为( ). (A)22 (B) 42 (C) 23 (D)43 13.设P 为双曲线11222=-y x 上的一点,F 1、F 2是该双曲线的两个焦点,若2:3:21=PF PF ,则△PF 1F 2的面积为( ) A .36B .12C .123D .2414.如果过点()m P ,2-和()4,m Q 的直线的斜率等于1,那么m 的值为( ) A .4B .1C .1或3D .1或415.已知动点(,)P x y 在椭圆2212516x y +=上,若A 点坐标为(3,0),||1AM =,且0PM AM ⋅=则||PM 的最小值是( )A .2B .3C .2D .316.直线l 与抛物线交于A,B 两点;线段AB 中点为,则直线l 的方程为 A 、 B 、、 C 、D 、17.已知椭圆2222:1(0)x y C a b a b +=>>F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k =( )(A )1 (B (C (D )218.圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为( )A.内切B.相交C.外切D.相离19.已知点P 在定圆O 的圆内或圆周上,动圆C 过点P 与定圆O 相切,则动圆C 的圆心轨迹可能是( ) (A)圆或椭圆或双曲线 (B)两条射线或圆或抛物线 (C)两条射线或圆或椭圆 (D)椭圆或双曲线或抛物线20.若直线l :y =kx 与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( ) A .[6π,3π) B .(6π,2π) C .(3π,2π) D .[6π,2π] 21.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为(1,1)M -,则直线l 的斜率为( )A .23B .32 C .32- D . 23-22.已知点()()0,0,1,1O A -,若F 为双曲线221x y -=的右焦点,P 是该双曲线上且在第一象限的动点,则OA FP ⋅的取值范围为( )A .)1,1 B .C .(D .)+∞23.若b a ,满足12=+b a ,则直线03=++b y ax 过定点( ).A ⎪⎭⎫ ⎝⎛-21,61 B .⎪⎭⎫ ⎝⎛-61,21 C .⎪⎭⎫ ⎝⎛61,21 .D ⎪⎭⎫ ⎝⎛-21,6124.双曲线1922=-y x 的实轴长为 ( ) A. 4 B. 3 C. 2 D. 125.已知F 1 、F 2分别是双曲线1by a x 2222=-(a>0,b>0)的左、右焦点,P 为双曲线上的一点,若︒=∠9021PF F ,且21PF F ∆的三边长成等差数列,则双曲线的离心率是( )A .2B . 3C . 4D . 526.过A(1,1)、B(0,-1)两点的直线方程是( ) A.B.C. D.y=x27.抛物线x y 122=上与焦点的距离等于6的点横坐标是( ) A .1 B .2 C.3 D.428.已知圆22:260C x y x y +-+=,则圆心P 及半径r 分别为 ( ) A 、圆心()1,3P ,半径10r =; B 、圆心()1,3P ,半径10r =;C 、圆心()1,3P -,半径10r =;D 、圆心()1,3P -,半径10r = 29.F 1、F 2是双曲线C :x 2-22y b=1的两个焦点,P 是C 上一点,且△F 1PF 2是等腰直角三角形,则双曲线C 的离心率为 A .12 B .22C .32D .3230.圆01222=--+x y x 关于直线032=+-y x 对称的圆的方程是( )A.21)2()3(22=-++y x B.21)2()3(22=++-y x C.2)2()3(22=-++y xD.2)2()3(22=++-y x31.如图,轴截面为边长为34等边三角形的圆锥,过底面圆周上任一点作一平面α,且α与底面所成二面角为6π,已知α与圆锥侧面交线的曲线为椭圆,则此椭圆的离心率为( )(A )43 (B )23 (C )33 (D ) 22 32.已知直线(2)(0)y k x k =+>与抛物线C :28y x =相交于A.B 两点,F 为C的焦点,若2FA FB=,则k =( )A. 13B. 2C. 23D. 2233.已知椭圆23)0(1:2222的离心率为>>=+b a by a x C ,过右焦点F 且斜率为)0(>k k 的直线与B A C ,相交于两点,若3=,则=k ( ) A. 1 B .2 C . 3 D .234.已知抛物线2:2(0)C y px p =>的准线为l ,过(1,0)M 且斜率为3的直线与l 相交于点A ,与C 的一个交点为B .若AM MB =,则P 的值为( )(A )1 (B )2 (C )3 (D )435.若动圆与圆(x -2)2+y 2=1外切,又与直线x +1=0相切,则动圆圆心的轨迹方程是 ( )A.y 2=8xB.y 2=-8xC.y 2=4xD.y 2=-4x36.若R k ∈,则方程12322=+++k y k x 表示焦点在x 轴上的双曲线的充要条件是( )A .23-<<-kB .3-<kC .3-<k 或2->kD .2->k37.点(-1,2)关于直线y =x -1的对称点的坐标是 (A )(3,2) (B )(-3,-2) (C )(-3,2)(D )(3,-2)38.设圆422=+y x 的一条切线与x 轴、y 轴分别交于点B A 、, 则AB 的最小值为( )A 、4B 、24C 、6D 、839.圆220x y ax by +++=与直线220(0)ax by a b +=+≠的位置关系是 ( )A .直线与圆相交但不过圆心.B . 相切.C .直线与圆相交且过圆心.D . 相离40.椭圆的长轴为A1A2,B 为短轴的一个端点,若∠A1BA2=120°,则椭圆的离心率为A .36B .21C .33D .2341.已知圆C 与圆(x -1)2+y 2=1关于直线y =-x 对称,则圆C 的方程为( )A .(x +1)2+y 2=1B .x 2+y 2=1C .x 2+(y +1)2=1D .x 2+(y -1)2=142.已知直线l 经过坐标原点,且与圆22430x y x +-+=相切,切点在第四象限,则直线l 的方程为( )A.3y x = B .3y x = C .33y x =D .3y x =43.当曲线214y x =+-与直线240kx y k --+=有两个相异的交点时,实数k 的取值范围是 ( ) A .5(0,)12 B .13(,]34 C .53(,]124 D .5(,)12+∞44.已知F 1、F 2分别是双曲线22221x y a b-=的左、右焦点,P 为双曲线右支上的任意一点且212||8||PF a PF =,则双曲线离心率的取值范围是( )A. (1,2]B. [2 +∞)C. (1,3]D. [3,+∞)45.已知P 是圆22(3)(3)1x y -+-=上或圆内的任意一点,O 为坐标原点,1(,0)2OA =,则OA OP ⋅的最小值为( )A .12B .32C .1D .246.已知0AB >且0BC <,则直线0Ax By C ++=一定不经过( ) (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 47.[2012·课标全国卷]等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=43,则C 的实轴长为( ) A.2 B.22 C.4 D.8 48.双曲线具有光学性质:“从双曲线的一个焦点发出的光线经过双曲线反射后,反射光线的反向延长线都汇聚到双曲线的另一个焦点。
解析几何习题答案一、选择题1. 解析当|PA|-|PB|=|AB|时,点P的轨迹是一条射线,故甲⇒/ 乙,而乙⇒甲,故选B.2. 解析设双曲线方程为 1 3x+y 1 3x-y=λ将点(6 ,3)代入求出λ即可.答案C.3. 解析设对称点为(x′,y′),则 y′-b x′-a × -1 =-1,x′+a 2+y′+b 2 +1=0,解得:x′=-b-1,y′=-a-1. 答案 B4. 解析设直线的斜率为k,则直线方程为y-2=k(x-1),直线在x轴上的截距为1-2 k ,令-3<1-2 k <3,解不等式可得.也可以利用数形结合.答案 D5. 解析若a2=9,b2=4+k,则c= 5-k,由c a=4 5即5-k3=45,得k=-19 25;若a2=4+k,b2=9,则c= k-5,由ca=4 5,即k-54+k=4 5,解得k=21.答案 C6. 解析由椭圆的定义知:|BA|+|BF|=|CA| +|CF|=2 a,∴周长为4a=43( F是椭圆的另外一个焦点).答案 C7. 解析圆心的坐标是(3,0),圆的半径是2,双曲线的渐近线方程是bx±ay=0,根据已知得3ba2+b2=2,即3b3=2 ,解得b=2,则a 2 =5,故所求的双曲线方程是x2 5-y24=1.答案 A8. 解析设双曲线方程为x2 a2-y2 b2=1(a>0,b>0),F(c,0),B(0,b),则kBF=-b c ,双曲线的渐近线方程为y=±bax,∴-bc·ba=-1,即b2=ac,c2-a2=ac,∴e2 -e -1=0,解得e=1±5 2. 又e>1,∴e=5+1 2 . 答案 D9. 解析由直线过点(2,b),因为x=2时,y2=x2-1 =3,所以y=±3,所以b∈[ -3,3]. 答案B10. 解析由抛物线的定义知,点P到该抛物线的距离等于点P到其焦点的距离,因此点P 到点(0,2)的距离与点P到该抛物线准线的距离之和即为点P 到点(0,2)的距离与点P到焦点的距离之和,显然,当P、F、(0,2)三点共线时,距离之和取得最小值,最小值等于 0-122+2-0 2 =172 . 答案 A11. 解析在椭圆中,m+n2 =(a +c)+( a-c)2 =a,而a 2=b2+c2 ,所以短轴端点(0,±b)与F 的距离为a.12. 解析 |AF|a2c-y1=ca,即| AF|=5-45y 1,|CF| a2c -y2=c a,即|CF|=5-45y2,| BF|=8+499=11 3. 由题意知2|BF|=|AF|+|CF|,所以5-45y1+5-45y2=223,所以y1+y2=10 3 .[答案] B 二、填空题13.解析由渐近线方程y=3 2 x,且b=3,得a=2,由双曲线的定义,得|PF2|-|PF1|=4,又- 5 - |PF1|=3,∴|PF2|=7. 答案 714.解析直线l2变为:3x-2y+3 2 =0,由平行线间的距离公式得:d = -5 -3 232+22 =13 2 .15.解析设另一个焦点为F ,如图所示,∵|AB|=|AC|=1,△ABC为直角三角形,∴1+1+2=4a,则a=2+2 4 ,设|FA| =x,∴ x+1=2 a,1-x+2=2a,∴x =2 2,∴1 + 22 2=4c2,∴c=64,e=ca=6-3. 答案 6-3.16. 解析设P( x0,y0),M(x,y),由中点坐标公式可得x0=2x,y0=2y,代入双曲线方程得(2x)24-(2y) 21 =1,即x2-4y2=1.[答案 x2-4y2=1 三、解答题(本大题共6个小题,解答应写出文字说明、证明过程或演算步骤)17. 解设A(a, 0),B(0 ,b),(a>0,b>0) ,则直线l的方程为xa+y b =1,∵l过点P(3,2),∴3a+2 b =1. ∴1=3a+2b≥2 6ab ,即ab≥24. ∴S△ABO=12ab≥12.当且仅当3a=2 b ,即a=6,b=4. △ABO的面积最小,最小值为12. 此时直线l的方程为:x6+y 4 =1. 即2x+3y-12=0.18. 解 (1)联立 4x2+y2=1 y =x+m,得5x2+2mx +m2-1=0. 因为直线与椭圆有公共点.所以Δ=4m2-20(m2-1)≥0,解得-52≤m≤5 2 . (2)设直线与椭圆交于A(x1,y 1),B(x2,y2 ),由(1)知,5x2+2mx+m2 -1=0,由韦达定理,得x1+x2=-2m 5,x1x2=1 5 (m 2-1).所以|AB|=(x1-x2)2+(y1-y2)2 =2(x1-x2)2 =2[(x1+x2)2-4x1x2] =2[4m2 25-45(m2 -1)] =25 10-8m2,所以当m=0时,|AB|最大,此时直线方程为y=x.19. 解设A(x1,y1),B(x2,y2),M(x0,y0).- 6 - 则 x21a 2+y2 1 b 2=1,①x22a 2 +y 22b 2 =1,②①-②得:y2-y1x2-x 1=-b2a2x1+x2 y1+y 2. ∴kAB=-b2a 2×x0y 0=-1 2.③又kOM=y0x 0=1 2 ,④由③④得a2=4b2. 由 y=-1 2 x+2,x24b 2+y2 b 2=1得:x2-4x+8-2b2=0,∴x1+x2=4,x1·x2=8-2b2 . ∴|AB| =1+k2|x1-x2| =5 2x1+x22-4x1x2 =5216-32+8b2 =528b2-16 =25. 解得:b2=4. 故所求椭圆方程为:x216+y2 4 =1.20. 解析以MN 所在直线为x轴,MN的中垂线为y轴建立直角坐标系,设P(x0,y0),M(-c,0),N(c,0)(y0>0,c>0),如图所示,则有 y0x0+c=1 2 ,y0x0 -c=2,12×2c ×y0 =1,解得 x0=53 6 ,y0 =2 3 3 ,c=32,设双曲线的方程为x2a2-y234 -a2 =1,将P(536,233)代入,可得a2=5 12,所以所求双曲线的方程为x2512-y 213 =1.21. (1)解∵F(1,0),∴直线L的方程为y=x-1,设A(x1,y1),B(x2,y2),由 y =x-1,y2=4x 得x2 -6x+1=0 ,∴x 1+x2=6 ,x1x2=1. ∴|AB|=x2-x12+y2-y12 =2·x1+x22-4x1x2 =2·36-4=8. - 7 - (2)证明设直线L的方程为x=ky+1,由 x=ky+1,y2=4x 得y2-4ky-4=0. ∴y1+y2=4k,y1y2=-4, OA→=(x1,y1),OB→=(x2,y2).∵OA→·OB→=x1x2+y1y2 =(ky1+1)(ky2+1)+y1y2 =k2y1y2+k(y1+y2)+1+y1y2 =-4k2+4k2 +1-4=-3. ∴OA→·OB→是一个定值.。
高考数学解析几何专题练习解析版82页1.一个顶点的坐标()2,0,焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 141322=+y x2.已知双曲线的方程为22221(0,0)x y a b a b-=>>,过左焦点F 1的直线交双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3B .32+C . 31+D . 323.已知过抛物线y 2 =2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点,且△OAB (O 为坐标原点)的面积为,则m 6+ m 4的值为( ) A .1B . 2C .3D .44.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有 ( )(A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65,2(π B .)6,2(π C .)611,2(π D .)67,2(π7.曲线的参数方程为⎩⎨⎧-=+=12322t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( ) A .54 B .45C .254 D .4259. 圆06422=+-+y x y x 的圆心坐标和半径分别为( )A.)3,2(-、13B.)3,2(-、13C.)3,2(--、13D.)3,2(-、1310.椭圆12222=+b y x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )A.1222=+y x B. 13222=+y x C.12222=+y x D.13222=+y x 11.过双曲线的右焦点F 作实轴所在直线的垂线,交双曲线于A ,B 两点,设双曲线的左顶点M ,若MAB ∆是直角三角形,则此双曲线的离心率e 的值为 ( )A .32B .2C .2D .312.已知)0(12222>>=+b a by ax ,N M ,是椭圆上关于原点对称的两点,P 是椭圆上任意一点且直线PN PM ,的斜率分别为21,k k ,021≠k k ,则21k k +的最小值为1,则椭圆的离心率为( ). (A)22 (B) 42 (C) 23 (D)43 13.设P 为双曲线11222=-y x 上的一点,F 1、F 2是该双曲线的两个焦点,若2:3:21=PF PF ,则△PF 1F 2的面积为( )A .36B .12C .123D .2414.如果过点()m P ,2-和()4,m Q 的直线的斜率等于1,那么m 的值为( ) A .4B .1C .1或3D .1或415.已知动点(,)P x y 在椭圆2212516x y +=上,若A 点坐标为(3,0),||1AM =u u u u r ,且0PM AM ⋅=u u u u r u u u u r则||PM u u u u r 的最小值是( )A .2B .3C .2D .3 16.直线l 与抛物线交于A,B 两点;线段AB 中点为,则直线l 的方程为A 、B 、、C 、D 、17.已知椭圆2222:1(0)x y C a b a b+=>>3过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =u u u r u u u r,则k =( )(A )1 (B 2 (C 3(D )218.圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为( )A.内切B.相交C.外切D.相离 19.已知点P 在定圆O 的圆内或圆周上,动圆C 过点P 与定圆O 相切,则动圆C 的圆心轨迹可能是( )(A)圆或椭圆或双曲线 (B)两条射线或圆或抛物线 (C)两条射线或圆或椭圆 (D)椭圆或双曲线或抛物线20.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( ) A .[6π,3π) B .(6π,2π) C .(3π,2π) D .[6π,2π] 21.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为(1,1)M -,则直线l 的斜率为( )A .23B .32 C .32- D . 23- 22.已知点()()0,0,1,1O A -,若F 为双曲线221x y -=的右焦点,P 是该双曲线上且在第一象限的动点,则OA FP uu r uu r⋅的取值范围为( )A .()21,1- B .()21,2- C .()1,2 D .()2,+∞23.若b a ,满足12=+b a ,则直线03=++b y ax 过定点( ).A ⎪⎭⎫ ⎝⎛-21,61 B .⎪⎭⎫ ⎝⎛-61,21 C .⎪⎭⎫ ⎝⎛61,21 .D ⎪⎭⎫ ⎝⎛-21,6124.双曲线1922=-y x 的实轴长为 ( ) A. 4 B. 3 C. 2 D. 125.已知F 1 、F 2分别是双曲线1by a x 2222=-(a>0,b>0)的左、右焦点,P 为双曲线上的一点,若︒=∠9021PF F ,且21PF F ∆的三边长成等差数列,则双曲线的离心率是( )A .2B . 3C . 4D . 526.过A(1,1)、B(0,-1)两点的直线方程是( )A.B.C.D.y=x27.抛物线x y 122=上与焦点的距离等于6的点横坐标是( )A .1B .2 C.3 D.428.已知圆22:260C x y x y +-+=,则圆心P 及半径r 分别为 ( ) A 、圆心()1,3P ,半径10r =; B 、圆心()1,3P ,半径10r =;C 、圆心()1,3P -,半径10r =;D 、圆心()1,3P -,半径10r =。
分析几何答案尤承业【篇一:数学专业参考书整理推荐】>从数学分析开始讲起:数学分析是数学系最重要的一门课,经常一个点就会引申出今后的一门课,并且是今后数学系大部分课程的基础。
也是初学时比较难的一门课,这里的难主要是对数学分析思想和方法的不适应,其实随着课程的深入会一点点容易起来。
当大四考研复习再看时会感觉轻松许多。
数学系的数学分析讲三个学期共计15学分270学时。
将《数学分析》中较难的一部分删去再加上常微分方程的一些最简单的内容就是中国非数学专业的《高等数学》,或者叫数学一的高数部分数学分析书:初学从中选一本教材,一本参考书就基本够了。
我强烈推荐11,推荐1,2,7,8。
另外建议看一下当不了教材的16,20。
中国人自己写的:1《数学分析》陈传璋,金福临,朱学炎,欧阳光中著(新版作者顺序颠倒)应该是来自辛钦的《数学分析简明教程》,是数学系用的时间最长,用的最多的书,大部分学校考研分析的指定教材。
我大一用第二版,现在出了第三版,但是里面仍有一些印刷错误,不过克可以一眼看出来。
网络上可以找到课后习题的参考答案,不过建议自己做。
不少经济类工科类学校也用这一本书。
里面个别地方讲的比较难懂,而且比其他书少了一俩个知识点,比如好像没有讲斯托尔滋(stolz)定理,实数的定义也不清楚。
不过仍然不失为一本好书。
能广泛被使用一定有它自己的一些优势。
2《数学分析》华东师范大学数学系著师范类使用最多的书,课后习题编排的不错,也是考研用的比较多的一本书。
课本最后讲了一些流形上的微积分。
虽然是师范类的书,难度比上一本有一些降低,不过还是值得一看的。
3《数学分析》陈纪修等著以上三本是考研用的最多的三本书。
4《数学分析》李成章,黄玉民是南开大学一个系列里的数学分析分册,这套教材里的各本都经常被用到,总体还是不错的,是为教学改革后课时数减少后的数学系各门课编写的教材。
5《数学分析讲义》刘玉链我的数学分析老师推荐的一本书,不过我没有看,最近应该出了新版,貌似是第五?版,最初是一本函授教材,写的应该比较详细易懂。
高考数学解析几何专题练习解析版82页1.一个顶点的坐标2,0,焦距的一半为3的椭圆的标准方程是()A.19422yxB.14922yxC.113422yxD.141322yx2.已知双曲线的方程为22221(0,0)x y a b ab,过左焦点F 1作斜率为3的直线交双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( )A .3B .32C .31D .323.已知过抛物线y 2=2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点,且△OAB (O 为坐标原点)的面积为22,则m 6+ m 4的值为()A .1B . 2C .3D .44.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为A .30oB.45oC.60oD.120o5.已知曲线C 的极坐标方程ρ=22cos ,给定两点P(0,π/2),Q (-2,π),则有 ( )(A)P 在曲线C 上,Q 不在曲线C 上(B)P 、Q 都不在曲线C 上(C)P 不在曲线C 上,Q 在曲线C 上(D)P 、Q 都在曲线C 上6.点M 的直角坐标为)1,3(化为极坐标为()A .)65,2( B.)6,2( C .)611,2( D.)67,2(7.曲线的参数方程为12322tyt x (t 是参数),则曲线是()A 、线段B 、直线C 、圆D 、射线8.点(2,1)到直线3x-4y+2=0的距离是()A .54B .45C .254D .4259.圆06422y x yx的圆心坐标和半径分别为()A.)3,2(、13B.)3,2(、13 C.)3,2(、13 D.)3,2(、1310.椭圆12222by x的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN,则该椭圆离心率取得最小值时的椭圆方程为( )A.1222yxB.13222yxC.12222yxD.13222yx11.过双曲线的右焦点F 作实轴所在直线的垂线,交双曲线于A ,B 两点,设双曲线的左顶点M ,若MAB 是直角三角形,则此双曲线的离心率e 的值为()A .32B .2C .2D .312.已知)0(12222baby ax ,N M ,是椭圆上关于原点对称的两点,P 是椭圆上任意一点且直线PN PM ,的斜率分别为21,k k ,021k k ,则21k k 的最小值为1,则椭圆的离心率为( ).(A)22 (B) 42 (C)23 (D)4313.设P 为双曲线11222yx上的一点,F 1、F 2是该双曲线的两个焦点,若2:3:21PF PF ,则△PF 1F 2的面积为()A .36B .12C .123D .2414.如果过点m P,2和4,m Q 的直线的斜率等于1,那么m 的值为( )A .4B .1C .1或3D .1或415.已知动点(,)P x y 在椭圆2212516xy 上,若A 点坐标为(3,0),||1AM ,且0PM AM 则||PM 的最小值是()A .2 B.3 C.2 D.316.直线l 与抛物线交于A,B 两点;线段AB 中点为,则直线l 的方程为A 、B 、、C 、D、17.已知椭圆2222:1(0)x y C a b ab>>的离心率为32,过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AFFB ,则k()(A )1(B )2(C )3(D )218.圆22(2)4x y与圆22(2)(1)9x y 的位置关系为( )A.内切B.相交C.外切D.相离19.已知点P 在定圆O 的圆内或圆周上,动圆C 过点P 与定圆O 相切,则动圆C 的圆心轨迹可能是()(A)圆或椭圆或双曲线(B)两条射线或圆或抛物线(C)两条射线或圆或椭圆(D)椭圆或双曲线或抛物线20.若直线l :y =kx -3与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是()A .[6,3) B.(6,2) C.(3,2) D.[6,2]21.直线l 与两直线1y 和70x y 分别交于,A B 两点,若线段AB 的中点为(1,1)M ,则直线l 的斜率为()A .23B .32 C .32D .2322.已知点0,0,1,1O A,若F 为双曲线221xy的右焦点,P 是该双曲线上且在第一象限的动点,则OA FP uu r uu r的取值范围为()A .21,1 B.21,2 C.1,2 D .2,23.若b a,满足12b a ,则直线03b yax过定点().A 21,61B .61,21C .61,21.D 21,6124.双曲线1922yx 的实轴长为 ( )A.4 B. 3 C. 2 D. 125.已知F 1、F 2分别是双曲线1by ax 2222(a>0,b>0)的左、右焦点,P 为双曲线上的一点,若9021PF F ,且21PF F 的三边长成等差数列,则双曲线的离心率是()A .2B.3C. 4D. 526.过A(1,1)、B(0,-1)两点的直线方程是()A.B.C. D.y=x 27.抛物线x y 122上与焦点的距离等于6的点横坐标是()A .1B.2C.3D.428.已知圆22:260C xyx y,则圆心P 及半径r 分别为()A 、圆心1,3P ,半径10r ;B 、圆心1,3P ,半径10r ;C 、圆心1,3P ,半径10r;D 、圆心1,3P ,半径10r。
解析几何(尤承业)前四章部分习题答案第一章:平面几何基础1.证明:若两条直线的斜率相等,则它们平行。
证明:设直线l1的斜率为k1,直线l2的斜率为k2。
若k1=k2,则有k1x+b1=k2x+b2,即(k1-k2)x=b2-b1。
由于k1-k2=0,所以方程化简为0x=b2-b1。
由于任何实数乘以0都等于0,所以此方程有解,即二者平行。
2.已知直线l1的斜率为k1,直线l2经过点A(a,b)且与l1垂直,求直线l2的方程。
解:由直线l1的斜率为k1,可知l1的斜率为k1的直线上任意一点(x1,y1)与原点(0,0)的斜率为k1,即有y1/x1=k1,即y1=k1x1。
由于直线l2经过点A(a,b)且与l1垂直,所以直线l2的斜率为-1/k1。
设直线l2的方程为y=-1/k1 x + c,代入点A(a,b)可得b=-1/k1*a+c,即c=b+a/k1。
所以直线l2的方程为y=-1/k1 x + b+a/k1。
3.已知直线l1过点A(a,b)和点B(c,d),求直线l1的方程。
解:由于直线l1过点A(a,b)和点B(c,d),所以直线l1的斜率为直线AB的斜率。
设直线l1的方程为y=kx+m,代入点A(a,b)和点B(c,d)可得方程组: b=ka+m d=kc+m将第一个方程乘以k,得到bk=ka^2+km,再用第二个方程减去这个等式,可得d-b = kc-ka^2+km-km,即d-b=k(c-a)。
所以直线l1的方程为y=(d-b)/(c-a)x + (ad-bc)/(c-a)。
第二章:直线与圆1.已知直线l的方程为y=ax+b,圆C的圆心为O(h,k),半径为r,求直线l与圆C的交点坐标。
解:设直线l与圆C的交点为点P(x,y),代入直线l的方程可得y=ax+b。
将这个方程代入圆C的方程(x-h)^2+(y-k)^2=r^2中,得到(x-h)^2+(ax+b-k)^2=r^2。
展开后整理得到一个二次方程,即x^2+(a^2+1)x-2ah+(b-k)^2-r^2=0。
解析几何答案尤承业解析几何答案尤承业【篇一:数学专业参考书整理推荐】>从数学分析开始讲起:数学分析是数学系最重要的一门课,经常一个点就会引申出今后的一门课,并且是今后数学系大部分课程的基础。
也是初学时比较难的一门课,这里的难主要是对数学分析思想和方法的不适应,其实随着课程的深入会一点点容易起来。
当大四考研复习再看时会感觉轻松许多。
数学系的数学分析讲三个学期共计15学分270学时。
将《数学分析》中较难的一部分删去再加上常微分方程的一些最简单的内容就是中国非数学专业的《高等数学》,或者叫数学一的高数部分数学分析书:初学从中选一本教材,一本参考书就基本够了。
我强烈推荐11,推荐1,2,7,8。
另外建议看一下当不了教材的16,20。
中国人自己写的:1《数学分析》陈传璋,金福临,朱学炎,欧阳光中著(新版作者顺序颠倒)应该是来自辛钦的《数学分析简明教程》,是数学系用的时间最长,用的最多的书,大部分学校考研分析的指定教材。
我大一用第二版,现在出了第三版,但是里面仍有一些印刷错误,不过克可以一眼看出来。
网络上可以找到课后习题的参考答案,不过建议自己做。
不少经济类工科类学校也用这一本书。
里面个别地方讲的比较难懂,而且比其他书少了一俩个知识点,比如好像没有讲斯托尔滋(stolz)定理,实数的定义也不清楚。
不过仍然不失为一本好书。
能广泛被使用一定有它自己的一些优势。
2《数学分析》华东师范大学数学系著师范类使用最多的书,课后习题编排的不错,也是考研用的比较多的一本书。
课本最后讲了一些流形上的微积分。
虽然是师范类的书,难度比上一本有一些降低,不过还是值得一看的。
3《数学分析》陈纪修等著以上三本是考研用的最多的三本书。
4《数学分析》李成章,黄玉民是南开大学一个系列里的数学分析分册,这套教材里的各本都经常被用到,总体还是不错的,是为教学改革后课时数减少后的数学系各门课编写的教材。
5《数学分析讲义》刘玉链我的数学分析老师推荐的一本书,不过我没有看,最近应该出了新版,貌似是第五?版,最初是一本函授教材,写的应该比较详细易懂。
高考数学解析几何专题练习解析版82页1.一个顶点的坐标()2,0,焦距的一半为3的椭圆的标准方程是( ) A. 19422=+y x B. 14922=+y x C. 113422=+y x D. 141322=+y x2.已知双曲线的方程为22221(0,0)x y a b a b-=>>,过左焦点F 1的直线交双曲线的右支于点P ,且y 轴平分线段F 1P ,则双曲线的离心率是( ) A . 3B .32+C . 31+D . 323.已知过抛物线y 2=2px (p>0)的焦点F 的直线x -my+m=0与抛物线交于A ,B 两点,且△OAB(O 为坐标原点)的面积为,则m 6+ m 4的值为( )A .1B . 2C .3D .44.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o5.已知曲线C 的极坐标方程ρ=2θ2cos ,给定两点P(0,π/2),Q (-2,π),则有 ( )(A)P 在曲线C 上,Q 不在曲线C 上 (B)P 、Q 都不在曲线C 上 (C)P 不在曲线C 上,Q 在曲线C 上 (D)P 、Q 都在曲线C 上 6.点M 的直角坐标为)1,3(--化为极坐标为( ) A .)65,2(π B .)6,2(π C .)611,2(π D .)67,2(π7.曲线的参数方程为⎩⎨⎧-=+=12322t y t x (t 是参数),则曲线是( ) A 、线段 B 、直线 C 、圆 D 、射线 8.点(2,1)到直线3x-4y+2=0的距离是( ) A .54 B .45C .254 D .4259. 圆06422=+-+y x y x 的圆心坐标和半径分别为( )A.)3,2(-、13B.)3,2(-、13C.)3,2(--、13D.)3,2(-、1310.椭圆12222=+b y x 的焦点为21,F F ,两条准线与x 轴的交点分别为M 、N ,若212F F MN ≤,则该椭圆离心率取得最小值时的椭圆方程为 ( )A.1222=+y x B. 13222=+y x C.12222=+y x D.13222=+y x 11.过双曲线的右焦点F 作实轴所在直线的垂线,交双曲线于A ,B 两点,设双曲线的左顶点M ,若MAB ∆是直角三角形,则此双曲线的离心率e 的值为 ( )A .32B .2C .2D .312.已知)0(12222>>=+b a b y a x ,N M ,是椭圆上关于原点对称的两点,P 是椭圆上任意一点且直线PN PM ,的斜率分别为21,k k ,021≠k k ,则21k k +的最小值为1,则椭圆的离心率为( ). (A)22 (B) 42 (C) 23 (D)43 13.设P 为双曲线11222=-y x 上的一点,F 1、F 2是该双曲线的两个焦点,若2:3:21=PF PF ,则△PF 1F 2的面积为( )A .36B .12C .123D .2414.如果过点()m P ,2-和()4,m Q 的直线的斜率等于1,那么m 的值为( ) A .4B .1C .1或3D .1或415.已知动点(,)P x y 在椭圆2212516x y +=上,若A 点坐标为(3,0),||1AM =,且0PM AM ⋅=则||PM 的最小值是( )A .2B .3C .2D .3 16.直线l 与抛物线交于A,B 两点;线段AB 中点为,则直线l 的方程为A 、B 、、C 、D 、17.已知椭圆2222:1(0)x y C a b a b+=>>3过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =,则k =( )(A )1 (B (C (D )2 18.圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为( )A.内切B.相交C.外切D.相离 19.已知点P 在定圆O 的圆内或圆周上,动圆C 过点P 与定圆O 相切,则动圆C 的圆心轨迹可能是( )(A)圆或椭圆或双曲线 (B)两条射线或圆或抛物线 (C)两条射线或圆或椭圆 (D)椭圆或双曲线或抛物线20.若直线l :y =kx 与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾斜角的取值范围是( ) A .[6π,3π) B .(6π,2π) C .(3π,2π) D .[6π,2π] 21.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为(1,1)M -,则直线l 的斜率为( )A .23B .32 C .32- D . 23- 22.已知点()()0,0,1,1O A -,若F 为双曲线221x y -=的右焦点,P 是该双曲线上且在第一象限的动点,则OA FP ⋅的取值范围为( )A .)1,1 B .C .(D .)+∞23.若b a ,满足12=+b a ,则直线03=++b y ax 过定点( ).A ⎪⎭⎫ ⎝⎛-21,61 B .⎪⎭⎫ ⎝⎛-61,21 C .⎪⎭⎫ ⎝⎛61,21 .D ⎪⎭⎫ ⎝⎛-21,6124.双曲线1922=-y x 的实轴长为 ( ) A. 4 B. 3 C. 2 D. 125.已知F 1 、F 2分别是双曲线1by a x 2222=-(a>0,b>0)的左、右焦点,P 为双曲线上的一点,若︒=∠9021PF F ,且21PF F ∆的三边长成等差数列,则双曲线的离心率是( )A .2B . 3C . 4D . 526.过A(1,1)、B(0,-1)两点的直线方程是( )A.B.C.D.y=x27.抛物线x y 122=上与焦点的距离等于6的点横坐标是( )A .1B .2 C.3 D.428.已知圆22:260C x y x y +-+=,则圆心P 及半径r 分别为 ( ) A 、圆心()1,3P ,半径10r =; B 、圆心()1,3P ,半径10r =;C 、圆心()1,3P -,半径10r =;D 、圆心()1,3P -,半径10r =。
解析几何第四章习题及解答第4章二次曲线和二次曲面习题 1.在直角坐标系xOy中,以直线l:4x?3y?12?0为新坐标系的x?轴,取通过A(1,?3)且垂直于l的直线为y?轴,写出点的坐标变换公式,并且求直线l1:3x?2y?5?在新坐标系中的方程。
0解:直线l:4x?3y?12?0的方向是(3,4),与它垂直的方向是?(?4,3),新坐标系的x?轴的坐标向量取为(3443,),y?轴坐标向量取为(?,),与直线5555l:4x?3y?12?0垂直且的直线方程可设为3x?4y?c?0,于过点A(1,?3),得到直线方程是3x?4y?9?0,两直线的交点(?3,0)是新坐标原点,所以点的坐标变换公式:?3?x??5y??4??5?4?5??x? 3?. ?3??y??0?5??直线l1:3x?2y?5?0在新坐标系中的方程:l1:3(35x??45y??3)?2(45x??35y?)?5?0,化简有l1:x??18y??20?0. 2.作直角坐标变换,已知点A(6,?5),B(1,?4)的新坐标分别为(1,?3),(0,2),求点的坐标变换公式。
解:设同定向的点的坐标变换公式是:?x??cosy??sin??sin???x? a?. cosyb?它的向量的坐标变换公式是:?u??cosv??sin??sin???u? . cosv??题意知向量AB?(?5,1)变为A?B??(?1,5),于是有??5??cos1??sin??sin????1? 125得到于是点的坐标变换公.sin??,cos??.1313cos5?式是:?5?x??13y??12??13?12?1 3??xa?,.将点B(1??5??y??b?13??4及)它的像点(0,2)代入得到?37??a??13??,所以点的坐标变换公式是:b??62????13???5?x??13y 121312?135?13?37x?13. ? y??62????13???设反定向的点的坐标变换公式是:?xcosy??sin?sinx?a. cosy??b?它的向量的坐标变换公式是:?ucosv??sin?sinco su??. ?v题意知向量AB?(?5,1)变为A?B??(?1,5),于是有??5cos??1sin?sincos 1?于是点的坐标变换公式s?0.??.得到sin1,co??5?是:?x??0y???1?1??x???a???? .将点B(1?,0??yb?及它的像点(0,2)代入得到4?a??3,所以点的坐标变换公式是:b?4x??0y???1?1??x???3? . 0y?4?3.设新旧坐标系都是右手直角坐标系,点的坐标变换公式为?22x??y??5,?x?22(1)??22x??y??3 ;?y22?xy?3, (2)??y?x?2.?其中,(x,y)与(x?,y?)分别表示同一点的旧坐标与新坐标,求新坐标系的原点的旧坐标,并且求坐标轴旋转的角?。
椭圆专题练习1.【2017浙江,2】椭圆22194x y+=的离心率是A.3B.3C.23D.592.【2017课标3,理10】已知椭圆C:22221x ya b+=,(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线20bx ay ab-+=相切,则C的离心率为A B C D.1 33.【2016高考浙江理数】已知椭圆C1:22xm+y2=1(m>1)与双曲线C2:22xn–y2=1(n>0)的焦点重合,e1,e2分别为C1,C2的离心率,则()A.m>n且e1e2>1 B.m>n且e1e2<1 C.m<n且e1e2>1 D.m<n且e1e2<14.【2016高考新课标3理数】已知O为坐标原点,F是椭圆C:22221(0)x ya ba b+=>>的左焦点,,A B分别为C的左,右顶点.P为C上一点,且PF x⊥轴.过点A的直线与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为()(A)13(B)12(C)23(D)345.【2015高考新课标1,理14】一个圆经过椭圆221164x y+=的三个顶点,且圆心在x轴的正半轴上,则该圆的标准方程为.6.【2016高考江苏卷】如图,在平面直角坐标系xOy 中,F 是椭圆22221()x y a b a b+=>>0的右焦点,直线2by =与椭圆交于,B C 两点,且90BFC ∠=o ,则该椭圆的离心率是. 7.【2017课标1,理20】已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,2),P 4(1,2)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.8.【2017课标II ,理】设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足NP =u u u r u u u r。