椭圆、双曲线、抛物线相关知识点的总结-教师版
- 格式:doc
- 大小:350.50 KB
- 文档页数:3
<一>圆的方程(x-a)^2+(y-b)^2=r^2,圆心O(a,b),半径r。
(1)圆的一般式方程:x^2+y^2+Dx+Ey+F=0此方程可用于解决两圆的位置关系:配方化为标准方程:(x+D/2)^2.+(y+E/2)^2=(D^2+E^2-4F)/4其圆心坐标:(-D/2,-E/2)半径为r=√[(D^2+E^2-4F)]/2此方程满足为圆的方程的条件是:D^2+E^2-4F>0若不满足,则不可表示为圆的方程(2)点与圆的位置关系点P(X1,Y1) 与圆(x-a)^2+(y-b) ^2=r^2的位置关系:⑴当(x1-a)^2+(y1-b) ^2>r^2时,则点P在圆外。
⑵当(x1-a)^2+(y1-b) ^2=r^2时,则点P在圆上。
⑶当(x1-a)^2+(y1-b) ^2<r^2时,则点P在圆内。
圆与直线的位置关系判断平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。
利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交。
如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切。
如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离。
2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x 轴),将x^2+y^2+Dx+Ey+F=0化为 (x-a)^2+(y-b) ^2=r^2。
令y=b,求出此时的两个x值x1、x2,并且规定x1<x2,那么:当x=-C/A<x1或x=-C/A>x2时,直线与圆相离;当x1<x=-C/A<x2时,直线与圆相交;半径r,直径d在直角坐标系中,圆的解析式为:(x-a)^2+(y-b)^2=r^2;x^2+y^2+Dx+Ey+F=0=> (x+D/2)^2+(y+E/2)^2=(D^2+E^2-4F)/4=> 圆心坐标为(-D/2,-E/2)其实只要保证X方Y方前系数都是1就可以直接判断出圆心坐标为(-D/2,-E/2)这可以作为一个结论运用的且r=根号(圆心坐标的平方和-F)<二>椭圆的标准方程椭圆的标准方程分两种情况:当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0);当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0);其中a>0,b>0。
圆椭圆双曲线抛物线知识点汇总一、圆椭圆双曲线抛物线的定义1. 圆:圆是平面上到定点距离相等的所有点的集合。
圆由圆心和半径唯一确定。
2. 椭圆:椭圆是平面上到两个定点的距离之和为常数的所有点的集合。
椭圆由两个焦点和两个半轴唯一确定。
3. 双曲线:双曲线是平面上到两个定点的距离之差为常数的所有点的集合。
双曲线由两个焦点和两个实轴唯一确定。
4. 抛物线:抛物线是平面上到定点距离等于到定直线的距离的所有点的集合。
抛物线由焦点和直线唯一确定。
二、圆椭圆双曲线抛物线的方程1. 圆:圆的标准方程为(x-a)² + (y-b)² = r²,其中圆心为(a, b),半径为r。
2. 椭圆:椭圆的标准方程为x²/a² + y²/b² = 1,其中a和b分别为x轴和y轴上的半轴长。
3. 双曲线:双曲线的标准方程为x²/a² - y²/b² = 1或者y²/a² - x²/b² = 1,取决于焦点的位置。
4. 抛物线:抛物线的标准方程为y² = 4ax或者x² = 4ay,取决于抛物线开口的方向。
三、圆椭圆双曲线抛物线的性质1. 圆:圆的直径是圆上任意两点之间的最大距离,且所有直径相等。
2. 椭圆:椭圆的离心率介于0和1之间,离心率越接近0,椭圆越接近于圆。
3. 双曲线:双曲线分为两支,每一支的焦点到定点的距离之差相等。
4. 抛物线:抛物线的焦点在抛物线上方,开口方向取决于系数a的正负号。
四、圆椭圆双曲线抛物线的应用1. 圆:在几何中常常与角度和三角函数结合,用于描述正弦和余弦函数的周期性。
2. 椭圆:在天体力学中用于描述行星轨道的形状,以及通信中的极化椭圆。
3. 双曲线:在光学和电磁学中用于描述折射和反射现象。
4. 抛物线:在物理学中用于描述自由落体运动和抛物线运动。
椭圆双曲线抛物线知识点汇总椭圆、双曲线、抛物线知识点汇总一、椭圆(Ellipse)1. 定义:椭圆是平面上所有到两个固定点(焦点)距离之和为常数的点的集合。
2. 标准方程:\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)其中,\(a\) 是椭圆的长半轴,\(b\) 是短半轴。
3. 性质:- 焦点:椭圆上任意一点到两个焦点的距离之和是一个大于两焦点间距离的常数,即 \(2a\)。
- 椭圆的长轴和短轴互相垂直。
- 椭圆的面积 \(A = \pi a b\)。
4. 焦点性质:- 椭圆上任意一点 \(P\) 与两个焦点 \(F_1\) 和 \(F_2\) 构成的三角形中,\(PF_1 + PF_2 = 2a\)。
5. 椭圆的离心率 \(e\):\(e = \frac{c}{a}\)其中,\(c = \sqrt{a^2 - b^2}\) 是焦点到中心的距离。
二、双曲线(Hyperbola)1. 定义:双曲线是平面上所有到两个固定点(焦点)距离之差为常数的点的集合。
2. 标准方程:\(\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1\) 为右开口双曲线;\(\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1\) 为上开口双曲线。
3. 性质:- 焦点:双曲线上任意一点到两个焦点的距离之差是一个小于两焦点间距离的常数,即 \(2a\)。
- 双曲线的两个分支分别位于中心点的两侧。
- 双曲线的面积无限大。
4. 焦点性质:- 双曲线上任意一点 \(P\) 与两个焦点 \(F_1\) 和 \(F_2\) 构成的三角形中,\(PF_1 - PF_2 = 2a\)。
5. 双曲线的离心率 \(e\):\(e = \frac{c}{a}\)其中,\(c = \sqrt{a^2 + b^2}\) 是焦点到中心的距离,且 \(e > 1\)。
椭圆双曲线抛物线知识点汇总一、椭圆椭圆是平面内到定点 F1、F2 的距离之和等于常数(大于|F1F2|)的动点 P 的轨迹,F1、F2 称为椭圆的焦点,两焦点的距离|F1F2|称为椭圆的焦距。
1、椭圆的标准方程焦点在 x 轴上:\(\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1\)(\(a > b > 0\)),其中\(a\)为长半轴长,\(b\)为短半轴长,\(c\)为半焦距,满足\(c^2 = a^2 b^2\)。
焦点在 y 轴上:\(\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1\)(\(a > b > 0\))。
2、椭圆的性质范围:对于焦点在 x 轴上的椭圆,\(a \leq x \leq a\),\(b\leq y \leq b\);对于焦点在 y 轴上的椭圆,\(b \leq x \leq b\),\(a \leq y \leq a\)。
对称性:椭圆关于 x 轴、y 轴和原点对称。
顶点:焦点在 x 轴上时,顶点坐标为\((\pm a, 0)\),\((0, \pm b)\);焦点在 y 轴上时,顶点坐标为\((0, \pm a)\),\((\pm b, 0)\)。
离心率:椭圆的离心率\(e =\frac{c}{a}\)(\(0 < e <1\)),它反映了椭圆的扁平程度,\(e\)越接近0,椭圆越接近圆;\(e\)越接近 1,椭圆越扁。
3、椭圆的参数方程焦点在 x 轴上:\(\begin{cases}x = a\cos\theta \\ y =b\sin\theta\end{cases}\)(\(\theta\)为参数)焦点在 y 轴上:\(\begin{cases}x = b\cos\theta \\ y =a\sin\theta\end{cases}\)(\(\theta\)为参数)4、椭圆中的焦点三角形设 P 为椭圆上一点,F1、F2 为焦点,\(\angle F1PF2 =\theta\),则三角形 PF1F2 的面积为\(S = b^2\tan\frac{\theta}{2}\)。
高中椭圆双曲线抛物线知识点汇总一、椭圆的定义和基本特性1. 椭圆的定义:椭圆是平面上到两定点F1和F2的距离之和为常数2a (a>0)的点P的轨迹。
2. 椭圆的基本特性:椭圆有两条对称轴,长轴和短轴,焦点到中心的距离为c,满足c²=a²-b²,离心率e的定义为e=c/a。
3. 椭圆的标准方程:椭圆的标准方程为x²/a²+y²/b²=1(a>b>0),中心在原点,长轴与x轴平行。
二、双曲线的定义和基本特性1. 双曲线的定义:双曲线是平面上到两定点F1和F2的距离之差为常数2a的点P的轨迹。
2. 双曲线的基本特性:双曲线有两条对称轴,两个顶点,离心率e的定义为e=c/a。
3. 双曲线的标准方程:双曲线的标准方程为x²/a²-y²/b²=1(a>0,b>0),中心在原点,x²项系数为正。
三、抛物线的定义和基本特性1. 抛物线的定义:抛物线是平面上到定点F与直线l的距离相等的点P 的轨迹。
2. 抛物线的基本特性:抛物线有焦点F和直线l两个重要元素,焦点到顶点的距离为p,离心率e的定义为e=1。
3. 抛物线的标准方程:抛物线的标准方程为y²=2px(p>0),焦点在y轴上。
四、椭圆双曲线抛物线的性质比较1. 焦点、离心率和轴与方程的关系:椭圆的焦点在轴上,双曲线的焦点在中心轴的延长线上,抛物线的焦点在轴上。
2. 直线与曲线的关系:椭圆是对称轴与任意直线的交点个数有限,双曲线是对称轴与任意直线的交点有两个,抛物线是对称轴与任意直线的交点有且仅有一个。
3. 其他性质:椭圆和双曲线是封闭曲线,抛物线是开口向上或者向下的曲线。
五、高中数学中的应用1. 物理中的应用:椭圆、双曲线和抛物线在经典力学、电磁学等物理学科中有着重要的应用,比如行星轨道、抛物线运动等。
椭圆与双曲线的对偶性质--(必背的经典结论)高三数学备课组1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=.6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=.7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan2F PF S b γ∆=.8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c -,2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。
12. 若000(,)P x y 在椭圆22221x y a b+=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b+=+.13. 若000(,)P x y 在椭圆22221x y a b+=内,则过Po 的弦中点的轨迹方程是22002222x x y yx y a b a b+=+.1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y ya b-=. 6. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b-=.7. 双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t2F PF S b co γ∆=.8. 双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c -,2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是双曲线22221x y a b-=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB =。
椭圆、双曲线、抛物线相关知识点总结
一、 椭圆的标准方程及其几何性质
椭圆的定义:我们把平面内与两个定点12F F ,的距离的和等于常数()12F F 大于的点的轨
迹叫做椭圆。
符号语言:()12222MF MF a a c +=>
将定义中的常数记为a 2,则:①.当122a F F >时,点的轨迹是 椭圆
②.当122a F F =时,点的轨迹是 线段 ③.当122a F F <时,点的轨迹 不存在
双曲线的定义:我们把平面内与两个定点12F F ,的距离的差的绝对值等于常数()12F F 小于 的点的轨迹叫做双曲线。
符号语言:()12
-222MF MF a a c =<
将定义中的常数记为a 2,则:①.当122a F F <时,点的轨迹是 双曲线
②.当122a F F =时,点的轨迹是 两条射线 ③.当122a F F >时,点的轨迹 不存在
a b y o a a
抛物线的定义:我们把平面内与一个定点F和一条定直线l(l不经过点F)距离相等的点的轨迹叫做抛物线。
点F叫做抛物线的焦点,直线l叫做抛物线的准线。
椭圆的定义、性质及标准方程1. 椭圆的定义:⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。
这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。
⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<<e e ,则动点M 的轨迹叫做椭圆。
定点F 是椭圆的焦点,定直线l 叫做椭圆的准线,常数e 叫做椭圆的离心率。
说明:①若常数2a 等于2c ,则动点轨迹是线段12F F 。
②若常数2a 小于2c ,则动点轨迹不存在。
2.3. 椭圆上的任一点和焦点连结的线段长称为焦半径。
焦半径公式:椭圆焦点在x 轴上时,设12F F 、分别是椭圆的左、右焦点,()00P x y ,是椭圆上任一点,则10PF a ex =+,20PF a ex =-。
推导过程:由第二定义得11PF e d =(1d 为点P 到左准线的距离), 则211000a PF ed e x ex a a ex c ⎛⎫==+=+=+ ⎪⎝⎭;同理得20PF a ex =-。
简记为:左“+”右“-”。
由此可见,过焦点的弦的弦长是一个仅与它的中点的横坐标有关的数。
22221x y a b +=;若焦点在y 轴上,则为22221y x a b+=。
有时为了运算方便,设),0(122n m m ny mx ≠>=+。
双曲线的定义、方程和性质1. 定义(1)第一定义:平面内到两定点F 1、F 2的距离之差的绝对值等于定长2a (小于|F 1F 2|)的点的轨迹叫双曲线。
说明:①||PF 1|-|PF 2||=2a (2a <|F 1F 2|)是双曲线;若2a=|F 1F 2|,轨迹是以F 1、F 2为端点的射线;2a >|F 1F 2|时无轨迹。
②设M 是双曲线上任意一点,若M 点在双曲线右边一支上,则|MF 1|>|MF 2|,|MF 1|-|MF 2|=2a ;若M 在双曲线的左支上,则|MF 1|<|MF 2|,|MF 1|-|MF 2|=-2a ,故|MF 1|-|MF 2|=±2a ,这是与椭圆不同的地方。
椭圆、双曲线、抛物线相关知识点总结
一、 椭圆的标准方程及其几何性质
椭圆的定义:我们把平面内与两个定点12F F ,的距离的和等于常数()12F F 大于的点的轨 迹叫做椭圆。
符号语言:()12222MF MF a a c +=>
将定义中的常数记为a 2,则:①.当122a F F >时,点的轨迹是 椭圆
②.当122a F F =时,点的轨迹是 线段 ③.当122a F F <时,点的轨迹 不存在
标准方程
122
22=+b
y a x )0(>>b a 122
22=+b
x a y )0(>>b a 图 形
性质
焦点坐标 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F
焦 距 c F F 221= c F F 221= 范 围 a x ≤,b y ≤
b x ≤,a y ≤
对 称 性
关于x 轴、y 轴和原点对称
顶点坐标 )0,(a ±,),0(b ± ),0(a ±,)0,(b ±
轴 长
长轴长=a 2,短轴长=b 2;长半轴长=a ,短半轴长=b
a b c 、、关系 222a b c =+
离 心 率
)10(<<=
e a
c
e
通 径
22b a
焦点位置不确定的椭圆方程可设为:()2
2
10,0,mx ny m n m n +=>>≠
与椭圆12222=+b
y a x 共焦点的椭圆系方程可设为:()22
22
21x y k b a k b k +=>-++
二、 双曲线的标准方程及其几何性质
双曲线的定义:我们把平面内与两个定点12F F ,的距离的差的绝对值等于常数()12F F 小于 的点的轨迹叫做双曲线。
符号语言:()12
-222MF MF a a c =<
将定义中的常数记为a 2,则:①.当122a F F <时,点的轨迹是 双曲线
②.当122a F F =时,点的轨迹是 两条射线 ③.当122a F F >时,点的轨迹 不存在
标准方程
22
22
1x y a b -= (0,0)a b >> 22
22
1y x a b -= (0,0)a b >> 图 形
性质
焦点坐标 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F
焦 距 c F F 221=
c F F 221=
范 围
x a ≥,y R ∈
y a ≥,x R ∈
对 称 性 关于x 轴、y 轴和原点对称
顶点坐标
)0,(a ± ),0(a ±,
实轴、虚轴 实轴长=a 2,虚轴长=b 2;实半轴长=a ,虚半轴长=b
a b c 、、关系 222c a b =+
离 心 率
(e 1)c
e a
=>
渐近线方程 b y x a =±
a y x b
=±
通 径
22b a
焦点位置不确定的双曲线方程可设为:()2
2
10mx ny mn -=>
与双曲线22
221x y a b
-=共焦点的双曲线系方程可设为:()
22
222
21x y b k a a k b k -=-<<-+ y o
a
b
x
x
y o a b
x y
a
o
与双曲线22221x y a
b
-=共渐近线的双曲线系方程可设为:()22
220x y a b
λλ-=≠
三、 抛物线的标准方程及其几何性质
抛物线的定义:我们把平面内与一个定点F 和一条定直线l (l 不经过点F )距离相等 的点的轨迹叫做抛物线。
点F 叫做抛物线的焦点,直线l 叫做抛物线的准线。
直线与抛物线相交于()1122A(x ,y ),B ,x y ,且直线过抛物线的焦点,则过焦点的弦长公式:
122
2(sin p
AB x x p AB αα
=++=
为弦的倾斜角) 直线与椭圆(或与双曲线、抛物线)相交于()1122A(x ,y ),B ,x y ,则椭圆(或双曲线、抛物线)的弦长公式:
12AB x x =-=。