几何概型公开课
- 格式:ppt
- 大小:761.50 KB
- 文档页数:17
公开课几何概型教案一、教学目标1. 让学生理解几何概型的概念,掌握几何概型的特征。
2. 培养学生运用几何概型解决问题的能力。
3. 提高学生对数学的兴趣,培养学生的创新思维。
二、教学内容1. 几何概型的定义及特征2. 几何概型的分类3. 几何概型的应用三、教学重点与难点1. 重点:几何概型的概念、特征及分类。
2. 难点:几何概型的应用。
四、教学方法1. 采用问题驱动法,引导学生主动探究几何概型的特征。
2. 利用案例分析法,让学生通过实例理解几何概型的应用。
3. 采用小组讨论法,培养学生合作解决问题的能力。
五、教学过程1. 导入:通过生活中的实例,引导学生思考几何概型的概念。
2. 新课导入:讲解几何概型的定义、特征及分类。
3. 案例分析:分析具体实例,让学生理解几何概型的应用。
4. 课堂练习:设计相关练习题,让学生巩固所学知识。
5. 小组讨论:分组讨论几何概型在实际问题中的应用。
6. 总结与反思:回顾本节课所学内容,让学生分享自己的收获。
7. 作业布置:布置课后练习,巩固所学知识。
六、教学评估1. 课堂提问:通过提问了解学生对几何概型的理解和掌握程度。
2. 练习题:检查学生完成练习题的情况,评估学生对几何概型的应用能力。
3. 小组讨论:观察学生在小组讨论中的表现,评估学生的合作能力和解决问题的能力。
七、教学拓展1. 引导学生思考几何概型在实际生活中的应用,提高学生的实际问题解决能力。
2. 鼓励学生参加数学竞赛或研究项目,提升学生的创新能力。
八、教学资源1. 教学PPT:提供清晰的课件,帮助学生理解几何概型的概念和应用。
2. 练习题库:提供丰富的练习题,帮助学生巩固所学知识。
3. 案例资料:提供相关案例资料,方便学生分析和学习几何概型的应用。
九、教学反馈1. 课堂反馈:课后及时与学生沟通,了解学生在课堂上的学习情况,为后续教学提供参考。
2. 作业反馈:批改学生作业,及时给予反馈,指出学生的错误,帮助学生巩固知识。
公开课几何概型教案一、教学目标1. 让学生理解几何概型的概念,掌握其基本性质和判定方法。
2. 培养学生运用几何概型解决实际问题的能力。
3. 提高学生对概率论的兴趣,培养学生的逻辑思维和抽象思维能力。
二、教学内容1. 几何概型的定义和基本性质2. 几何概型的判定方法3. 几何概型在实际问题中的应用三、教学重点与难点1. 教学重点:几何概型的定义、基本性质和判定方法。
2. 教学难点:几何概型的判定方法及其在实际问题中的应用。
四、教学方法与手段1. 教学方法:讲解法、案例分析法、讨论法。
2. 教学手段:黑板、PPT、教学案例。
五、教学过程1. 导入新课:通过一个简单的实例,引导学生思考几何概型的概念。
2. 讲解几何概型的定义和基本性质:结合实例,讲解几何概型的概念,引导学生理解其基本性质。
3. 讲解几何概型的判定方法:引导学生掌握几何概型的判定方法,并通过实例进行分析。
4. 应用案例分析:让学生运用几何概型解决实际问题,巩固所学知识。
5. 课堂小结:总结本节课的主要内容,强调几何概型在实际问题中的应用。
6. 课后作业:布置相关练习题,巩固所学知识。
六、教学拓展1. 对比几何概型和古典概型的区别和联系,让学生更好地理解两种概率模型。
2. 引入更复杂的多维几何概型,让学生了解几何概型的推广形式。
七、课堂互动1. 提问环节:在学习过程中,鼓励学生提问,及时解答学生心中的疑问。
2. 小组讨论:在学习几何概型的判定方法时,让学生分小组进行讨论,分享各自的解题思路。
八、教学评价1. 课后作业:通过布置相关练习题,检验学生对几何概型的理解和掌握程度。
2. 课堂表现:观察学生在课堂上的参与程度、提问和回答问题的表现,评价学生的学习效果。
九、教学反思1. 反思教学内容:根据学生的反馈,调整和优化教学内容,使其更符合学生的学习需求。
2. 反思教学方法:根据学生的参与情况和学习效果,调整教学方法,提高教学效果。
十、教学资源1. 教学PPT:制作精美的PPT,辅助讲解和展示几何概型的相关知识和案例。
几何概型一、教学目标:1、知识与技能:(1)正确理解几何概型的概念;(2)掌握几何概型的概率公式:(3)会根据古典概型与几何概型的区别与联系来判别某种概型是古典概型还是几何概型;2、过程与方法:(1)发现法教学,通过师生共同探究,体会数学知识的形成,学会应用数学知识来解决问题,体会数学知识与现实世界的联系,培养逻辑推理能力;(2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯。
3、情感态度与价值观:本节课的主要特点是随机试验多,学习时养成勤学严谨的学习习惯。
二、重点与难点:1、几何概型的概念、公式及应用;2、几何概率模型中基本事件的确定,几何“度量”的选择;将实际问题转化为几何概型.三、教学过程复习回顾同学们,咱们前面学习了古典概型,现在回顾一下古典概型的特点及求概率的公式?特点:(1)试验中所有可能出现的基本事件只有有限个(有限性);(2)每个基本事件出现的可能性相等(等可能性).(一)问题引入(1)若x的取值是区间[1,4]中的整数,任取一个x的值,求“取得值不小于2”的概率。
(古典概型)(2)若x的取值是区间[1,4]中的实数,任取一个x的值,求“取得值不小于2”的概率。
(几何概型)自主探究试验1、取一根长度为3米的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不小于1米的概率有多大?试验2、取一个长为2a的正方形及其内切圆,随机向正方形内丢一粒豆子,那么豆子落入圆内的概率有多大?试验3、一只蜜蜂在一个棱长为60cm的正方体笼子里飞,那么蜜蜂距笼边大于10cm的概率有多大?试验1试验2试验3提炼概括一个基本事件取到线段AB上某一点豆子落在正方形(2a×2a)内某一点取正方体笼子内某一点在对应的整个图形上取一点(随机地)所有基本事件形成的集合线段AB(除两端外)正方形(24a)面正方体笼子(棱长60)体积对应的所有点形成一个可度量的区域D随机事件A对应的集合线段CD 内切圆(2aπ)面正方体笼子内小正方体(棱长40)体积区域D内的某个指定区域d随机事件A发生的概率()P A=圆的面积正方形的面积2244aaππ==33408()6027P A()AP A构成事件的区域全部结果构成的区域1、几何概型的概念:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.古典概型几何概型所有的试验结果有限个(n个)无限个每个试验结果的发生等可能等可能概率的计算P(A)=m/n?3、几何概型的概率计算公式:(三)解决问题,提升能力1.取一个长为2a的正方形及其内切圆,随机向正方形内丢一粒豆子,求豆子落入圆心的概率。
§3.3.1 几何概型(二)学习目标(1)正确理解几何概型的概念; (2)掌握几何概型的概率公式: P()A A =构成事件的区域 d 的长度(面积、角度或体积)试验的全部结果所构成的区域 D 的长度(面积、角度或体积);(3)会把相应的几何概型问题“角度”化、“面积”化、“体积”化. 重点难点重点: 几何概型的概念及应用.难点: 对几何概型的理解,将问题“角度”化、“面积”化、“体积”化. 学法指导处理几何概型的主要思路是问题“长度”化、 “面积”化、“角度”化或“体积”化.知识链接几何概型的概率公式及其应用.问题探究【典型例题】 测量面积一般的对于两个平面区域d ,D ,且d D ⊂,点P 落在区域D 内每一点上都是等可能的,当D 是个平面图形,记“点P 落在区域d 内” 为事件A ,且事件A 发生的概率只与d 的面积有关时,一般有P().A =d 的面积D 的面积例1 在1万平方千米的海域中有40平方千米的大陆架储藏着石油,假设在海域中任意一点钻探,钻到油层面的概率是多少?分析:石油在1万平方千米的海域大陆架的分布可以看作是等可能的,而40平方千米可看作构成事件的区域面积,由几何概型公式可以求得概率。
练习:如图1是一个边长为1米的正方形木板,上面画着一个边界不规则的地图和板上被雨点打上的痕迹,则这个地图的面积为______平方米.分析:雨点落在地图上的概率问题是几何 概型,用面积比计算. 雨点打在地图和板上 是随机的,地图上有 9个雨点痕迹,板上 其他位置有18个雨点痕迹,由此计算雨点落在地图上的概率,反过来推导地图面积.例2假设你家订了一份报纸,送报人可能在早上6:30~7:30之间把报纸送到你家,你父亲离开家去上班的时间在早上7:00~8:00之间,如果把“你父亲在离开家之前能得到报纸”称为事件A ,那么事件A 是哪种类型的事件?分析:送报人到达的时刻与父亲离开家的时刻是相互独立且是等可能的,所以应该引入两个变量来求解.设送报人到达的时间为x(6.5≤x ≤7.5),父亲离开家的时刻为y (7≤y ≤8)事件A 对应于不等关系“y ≥x ”.怎样建立x 与y 之间的关系才能解决这一不等关系呢?自然我们就想到建立二维平面直角坐标系,将x 与y 之间的关系向点(x, y )转化,用点来解决(参看课本p138图3.3-2)。