当前位置:文档之家› 过电压产生的危害及防止措施

过电压产生的危害及防止措施

过电压产生的危害及防止措施
过电压产生的危害及防止措施

编号:

中国农业大学现代远程教育

毕业论文(设计)

论文题目:过电压产生的危害及防止措施

学生

指导教师

专业

层次

批次

学号

学习中心

工作单位

年月

中国农业大学网络教育学院制

目录

摘要 (3)

前言 (4)

1过电压的基本概念 (4)

1.1过电压的定义 (4)

1.2过电压的分类 (4)

2过电压的危害 (5)

2.1雷击过电压的危害 (5)

2.2操作过电压的危害 (6)

2.3暂态过电压 (7)

3过电压的防止措施 (8)

3.1变电站倒闸操作 (8)

3.1.1切断空载线路过电压 (8)

3.1.2切断空载变压器的过电压 (9)

3.1.3电弧接地过电压 (10)

3.1.4铁磁谐振过电压 (11)

3.1.5电磁式电压互感器饱和过电压 (11)

3.2雷电 (12)

4过电压保护设备及其保护原理、作用 (13)

4.1避雷器 (13)

4.2避雷针 (14)

4.3避雷线 (14)

4.4放电间隙 (15)

结束语 (15)

参考文献 (15)

电力系统过电压是危害电力系统安全运行的主要因素之一,过电压一旦发生,往往造成电气设备损坏和大面积停电事故。过电压来自两个方面,一种是遭受雷击产生的外部过电压,另一种是操作和事故时引起的内部过电压,主要是操作过电压。过电压的数值与电力网和结构、系统容量及参数、中性点接地方式、断路器性能等有关。通常采用避雷器、避雷针、避雷线等方法限制外部过电压。而对于内部过电压,针对操作中产生过电压的形式可采取不同的控制措施,如对于谐振过电压,可采用并联电阻或改变系统运行参数的方法加以限制,对于电弧接地过电压,则产用将系统中性点直接接地的方法等,以达到保证设备安全、系统安全、人员安全的目的。

关键词:过电压危害防止限制

本系统拥有近二十座110kV、35 kV微机综合自动化变电站,吸收xxx、xxx、xxx三个大型发电厂及若干小电厂的电能向xx区供电,并通过重庆xxx变电站同国网相联,是一个具有较高综合自动化水平的大中型电网。但设备多,接线复杂,且各变电站的设备型号不一,如果发生过电压必将引起电网绝缘溥弱环节击穿,引发严重的电气事故。因此,必须,采取防护措施。本系统采用性能优良的避雷器、选用灭弧能力强的高压为路器,提高断路器动作的同期性,在断路器断口加装并联电阻、使电网中性点直接接地运行等方法对过电压加以限制。

1过电压的基本概念

电力系统中的各种设备在运行过程中,除了受到长期的工作电压的作用(要求它能长期耐受、不损坏、也不会迅速老化)外,还会受到比工作电压高得多的过电压的短时作用。

1.1过电压的定义

电力系统正常运行时,电气设备的绝缘处于电网的额定电压下,但是,由于雷电、操作、故障或参数配合不当等原因,会使电力系统中某些部分的电压突然升高,成倍地超过其额定电压,此种电压升高的即称为过电压。

1.2过电压的分类

过电压总体上可以分为外部过电压(又称为大气过电压)和内部过电压。

大气过电压是由直击雷引起的,特点是持续时间短暂,冲击性强,与雷电活动强度直接相关,而与设备电压等级无关。它根据雷击的位置不同分为直击雷过电压、感应雷过电压侵入波过电压。

直击雷过电压。是雷电放电进,直接击在输电线路、杆塔或建筑物。大量雷电流通过被击中物体,经被击中物体的阻抗接地,在阻抗上产生电压降,使被击点出现很高的电位。损坏电气设备或送电线路的绝缘。变电站和送电线路通常采用避雷针、避雷线作为直击雷保护。

感应雷过电压。雷雨季节空工出现雷云进,雷云带有电荷,对地及地面上的一些导电物体都会有静电感应,地面和附近输电线路都会感应出异种电荷,当雷云对地面或其他物体放

电时,雷云的电荷迅速流动地中,输电线上的感应电荷不再受束缚而迅速流动,电荷的迅速流动产生感应雷电波,其电压也很高,其幅值可达500~600Kv,它对电气设备绝缘的破坏性很大。这种情况下产生的就是感应雷过电压,感应过电压对35 kV以下的送电线路和电气设备威胁很大,常因感应雷而引起事故。根据多年运行经验,变电所避雷针遭受直击雷时,附近三相母线将产生感应过电压,使35 kV的绝缘子和10 kV的绝缘子闪络引起事故的情况偶有发生,特别是配电系统由于感应过电压引起的事故是较多的,因此,对感应过电压的危害也应引起足够的重视。

内部过电压是由于操作(合闸、拉闸)、事故、(接地、断线等)或其他原因,引起电力系统的状态发生突然变化,出现从一种稳定状态转谈为另一种稳定状态的过程,在这个过程中可能产生对系统有威胁的过电压。这些过电压是系统内部电磁能的振荡和积聚所引起的,所以叫内部过电压。内部过电压可分为操作过电压和谐振过电压。操作过电压出现在系统操作或故障情况下。谐振过电压是由于电力网中的电容元件和电感元件(特别是带铁芯的电感元件)参数的不利组合谐振而产生的。其中操作过电压还可细分为切除空载线路引起的过电压、空载线路合闸引起过电压、系统解列过电压以及电弧接地过压物切除空载变压器的过电压。谐振过电压也可进一步细分为工频过电压(由长线电容效应、不对称接地故障、甩负荷引起)和谐振过电压(包括线性谐振、铁磁谐振和参数谐振)等。

内部过电压其幅值可达3~4倍相电压,常常会造成电气设备的损坏,引起事故。因此必须采取相应的措施限制内部过电压的幅值,以保证电力系统安全运行。

2过电压的危害

2.1雷击过电压的危害

雷击过电压引起暂态高电压或过电压常常通过网络线路藕合或转移到网络设备上,造成设备损坏。对于中性点不接地的分级绝缘变压器,当雷电波从线路侵入变电站到达变压器中性点、系统单相接地、非全相运行、特别是变压器励磁电感与线路电容谐振时,会产生较高的雷电过电压或工频过电压,对分级绝缘变压器中性构成威胁,甚至使绝缘损坏。

特别地,雷电放电所产生的雷电流高达数十、甚至数百千安,它将引起巨大的电磁效应、机械效应和热效应。从电力工程的角度来看,最值得我们注意的有两个方面:首先,雷电放电在电国系统中引起很高的雷电过电压(亦称为大气过电压),它是造成电力系统绝缘故障

和停电事故的主要原因之一;其次雷电放电所产生的巨大电流,有可能使被击物体炸毁、燃烧、使导体熔断或通过电动力引起机械损坏。

雷击过电压又分为纵向过电和横向过电压

1)纵向过电压的:在平衡线路某点出现的对地过电压称为纵向过电压。地电位上升起电压,可看作是从地系统侵入的纵向过电压。

2)横向过电压:在平衡电路线与线之间,或不平衡线路的线与地之间出现的过电压称为横向过电压。连接对称平衡传输线路的设备由于线路中的两线分别对地的纵向过电压不平衡,或因纵向防护元件动作时间的差异,都会导致横向过电压的产生。连接同轴电缆系统的电子设备,纵向过电压即为横向过电压。

本系统具有较高的自动化水平,多数变电站为微机综合自动化变电站。电子元件越来越多地取代了老式的电磁元件。过电压对电子元件的损坏已不容忽视。纵向冲击对平衡电路中设备元件的损坏有:损坏跨接在线与地之间的元部件或其绝缘介质,击穿在线路和设备间起阻抗匹配作用的变压器匝间、层间或线对地绝缘等。横向冲击则同信息一样,可在电路中传输,损坏内部电路的电容、电感、及耐冲击能力差的固体元件。设备中元部件遭受雷击损坏的程度,取决于不同的绝缘水平及受冲击的强度。对具有自行恢复能力的绝缘,击穿只是暂时的,一旦冲击消失,绝缘很快得到恢复,有些非自行恢复的绝缘介质,如果击穿后只流过很小的电流,常不会立即中断设备的运行,但随时间的推移,元部件受潮,其绝缘逐渐下降,电路特性变坏,最后将使电路中断。

有的设备元件如晶体管的集电极与发射极与基极,若发生反向击穿,就出现了永久性损坏。对易受能量损坏的元器件,受损坏程度主要取决于流过其上的电流及持续时间。

2.2操作过电压的危害

电力系统改变设备的运行状态、系统运行方式以及事故处理均是通过倒闸操作实现的,而其本质是通过跳合开关(断路器)来达到目的。倒闸操作是变电运行工作中不可或缺的重要组成部份。随着电力系统物迅速发展,真空断路器在我国已经大批量地生产和使用,本站35 kV及10 kV均采用真空断路器,真空断路器具有运行可靠性高、维护量少、操作方便等特点,但在运行操作过程中,过电压对其损害较大。

1)截流过电压:由于真空断路器具有良发的灭弧性能,当开断小电流时,电弧在过零前熄灭,由于电流被突然切断,其滞留于电机等电感绕组中的能量必然向绕组中的杂散电容

充电,转变为电场能量。对于电机和变压器,特别是空载或容量较小时,则相当于一个大的电感,且回路电容量较小,因此会产生高的过电压,特别是开断空载变压器时更危险。从理论上讲可以产生很高的过电压,但由于触头和回路中有一定的电阻,产生损耗以及发生击穿,对过电压值有相当的抑制作用。但这种抑制作用是有限的,不能消除在切断小电流时出现的过电压。因此特别对感应负载在采用真空断路器作为操作元件时;应加装过电压保护设备。

2)多次重燃过电压。多次重燃过电压是由于弧隙发生多次重燃,电源多次向电机电源充电而产生的。在真空断路器切断电流的过程中,触头的一侧为工频电源,另一侧为LC回路充放电的振荡电源,如果触头间的开距不够大,两个电压叠加后就会使弧隙之间发生击穿,断路器的恢复电压就会升高。如时触头开距不够大,就会发生第二次重燃,再灭弧,再重燃,以至发生多次重燃现象。多次的充放电振荡,使触头间的恢复电压逐渐升高,负载端的电压也不断升高,致使产生多次重燃过电压,损坏电气设备。

3)三相开断过电压。三相开断过电压是由于断路器首先开断相弧隙产生重燃时,流过该相绵弧隙的高频电流引起其余两相弧隙中的工频电流迅速过零,致使末开断相随之被切断,在其他两相弧隙中产生类似较大水平的截流现象,从而产生更高的操作过电压,产生的过压加在相与相之间的绝缘上。在开断中,小容量电机或轻负荷情下容易出现三相开断过电压。对母线支撑件,套管以及所连接的二次设备产生影响。

2.3暂态过电压

分为工频过电压和谐振过电压。其中谐振过电压在正常运行操作中出现频繁,其危害性较大,过电压一旦发生,往往造成电气设备损坏和大面积停电事故。许多运行经验表明,中、低压电网中过电压事故大多数都是谐振现象引起的。由于谐振过电压的作用时间较长,在选择保护措施方面造成困难,为了尽可能地防止谐振过电压,在设计、操作电网时,应先事先进行必要的估算和安排,避免形成严重的串联谐振回路。或采取适当的防止谐振的措施。谐振过电压轻者令电压互感器和熔断器熔断、匝间短路或爆炸,重者发生避雷器爆炸、母线短路、厂用电失电等严重威胁电力系统和电气设备运行安全的事故。

3过电压的防止措施

3.1变电站倒闸操作

变电站是电力系统的重要组成部分,倒闸操作是变电运行工作的主要内容,分别针对变电站内部产生过电压的五种原因提出限制过电压措施及方法,能指导运行人员正确理解控制措施的原理和正确进行倒闸操作,以达到限制过电压的目的。

3.1.1切断空载线路过电压

切断空载线路是常见的倒闸操作,一条供电线路两端开关,其分闸时间总是存在着一定的差异(一般约为0。01~0。5秒),所以无论是正常操作或故障操作,都有可能出现切除空载线路的情况,实践证明,在使用断路器的灭弧能力不够强,以至电弧在触头间重燃时,切断空载空载线路过电压就比较多,电弧在触头间重燃是产生这种过电压的根本原因,过电压会使线路绝缘闪络或击穿。在切除电容器组时也会发生类似的过电压。切断一条不太长空载线路,可用图一的等值电路来代替。其中L是线路电感和电源漏感,C是线路对地电容。空载线路属于容性负荷,空载线路电流过零时,空载线路的电压恰好为最大值。当断路器切断空载线路时,断路器触头的分离可能在电源相位角为任何数值时发生,如是此时的电流不为零,触头之间就会产生电弧,线路就没有被切断。通常交流电弧要在电流过零时,加上断路器灭弧室的作用才能熄。在断开空载线路时,由于断路器触头间的电弧可能出现反复重燃,从而使线路上产生较高的过电压,这种过电压有可能引起供电系统内部的绝缘薄弱点闪络造成绝缘薄弱部位击穿,甚至使断路器的触头烧毁。

图一

限制过电压措施:

(1)提高断路器的灭弧性能,特别是切断小电流的性能,可以减少甚至消除电弧重燃的可能性,从而降低或根本上消除空载线路过电压。(2)采用带并联电阻的开关,如图二所示。

图二

断路器断开线路时,是逐级开断的。主断口1先分,并联电阻自动并在主断口旁。由于电阻R连接在电源与线路之间,线路上电荷经电阴R向电源泄放,泄放电流经R的压降即主断口的恢复电压。如果R取得足够小,就可减少主断口的恢复电压,减少重燃的可能性。在主断口开断后过一断时间(约1——2个工频周波),辅助断口2也分开,最后切断空载线路。即使在分闸时电弧重燃,由于并联电阻R的阻尼作用,过电压也不会大。当合闸时,先合2,使电源与空载线路先经过R接通,减少了1上的电位差,然后再合1,就会使合闸过电压降低。当采用并联电阻后,在最不利的时刻发生重燃,过电压实际只有2。28倍。

3.1.2切断空载变压器的过电压

断路器能在变压器有载,甚至二次侧短路的情况下切断电路,而不产生过电压,但在切断空载变压器的情况下,却可有出现过电压,这是因为切断有载变压器时,断路器强迫运行中变压器一次绕组中的电流中断时,由于磁场的变化,使二次绕组中感生很大的,阻挠磁场改变的电流,所以它的磁场能量变化得到了平衡,因此,不会发生过电压的现象。但是,切断变压器的空载电流则不同,由于二次绕组中没有感应很大的、阻挠磁场改变的电流,使为数不大的变压器的空载电流被迫立即下降到零,于是在变压器的激磁电感上,一次将感生很

高的电压,引起母线和线路上绝缘薄弱部分出现事故。根据国内运行统计资料,在中性点接地系统一般不超过三倍相电压;在中性点不接地(或经消弧线圈接地)系统一般不超过四倍相电压。

限制过电压措施:(1)切断空载变压器过电压,频率高,持续时间短,能量小,限制容易。因此,可使用带并联电阻的开关(因为并联电阻能够使变压器磁场能量得以释放),或用防护大气过电压的避雷器来限制。为此目的而装设的避雷器,冬季不宜退出运行。(2)将被切空载变压器带有一段电缆或架空线,这就等于加大了开关中流过的电容电流,会使变压器的特性阻抗减小,故在截流值一定时,过电压将降低。

3.1.3电弧接地过电压

在中性点不接地系统中,当发生一相接地故障时,常出现电弧,由于系统中存在线路电容和电压互感器电感,极有可能引起线路某一部分振荡,当电流经振荡点或工频零点时,电弧可能暂时熄灭,之后当事故相上电压升高后,电弧则可能重燃,这种断断续续的、熄灭和重燃交替进行的对地放电,将造成在正常相及事故相上出现过电压,使系统内的绝缘薄弱部分有可能遭受击穿放电。单相接地故障在系统中出现的机会较多,因而引起这种过电压的可能性是很大的,故应对其危害有足够重视。

限制过电压措施:(1)为消除电弧接地过电压,可以将中性点直接接地。这样,电荷可以通过接地点放掉,从而消除这种过电压。在发生单相接地故障时,形成很大的单相短路电流,使回路跳闸,切除故障后再恢复供电。目前110Kv以上电网大都采用中性点直接接地的运行方式。在采用了中性点直接接地的电网中,各种形式的操作过电压均比中性点绝缘的电网低。但如在电压较低,电网中采用中性点直接接地的运行方式时,则会招致事故频繁、操作次数多,故采用中性点绝缘运行方式,当电容电流超过5A时,电弧不易熄灭,易采用中性点经消弧线圈接地的运行方式。(2)采用消弧线圈消除电弧接地过电压。消弧线圈是一个具有铁芯的可调电感线圈,装设在变压器或发电机的中性点,当发生单相接地故障时,可形成一个与接地电容电流大小接近相等的而方向相反的电感电流,这个滞后电压90°的电感电流与超前90°的电容电流相互补偿,最后使流经接地处的电流变得很小以至于等于零,降低故障相上的恢复电压,减少重燃电弧的可能性,从而消除了接地处的电弧以及由它所产生的危害。

3.1.4铁磁谐振过电压

由于电力系统存在一些电感元件,形成了非线性电路,当满足谐振条件时,(操作、故障所致),会引起过电压,它是一种稳态现象,其持续时间较长,可以直到进行新的操作使谐振条件被破坏而终止。因此,这类过电压,往往会造成严重后果。故必须在操作前与设计时先进行必要的考虑,或采取一定措施来防止其发生或限制其存在的时间,以免形成谐振回路。图三给出最简单的R 、C 和有关电感L 的电路。

假设在正常运行条件下,开始电路运行在感性工作状态,感抗大于容抗,电路不具备谐振的条件。但是,当铁芯电感两端的电压有所升高时,电感线圈中出现涌流就可能使铁芯饱和,其电感将随之减少,当感抗等于容抗时,即达到串联谐振条件,在电感、电容两端形成过电压。当电力系统中发生断线故障或不对称开断故障时,线路末端又接有空载(或轻载)的中性点不接地的变压器,将及易形成串联谐振,发生过电压。发生这种过电压,常引起避雷器爆炸、烧坏电压互感器和绝缘子,或使接于该变压器的小功率电动机反转。为防止此类事故,不使用分相操作的断路器及熔断器,并避免变压器空载或轻载(负荷在额定容量20%以下)运行。

3.1.5电磁式电压互感器饱和过电压

在中性点绝缘的系统中,母线上只带电压互感器而不带线路(或很短线路)的情况下,可能发生一些异常现象。例如在2005年4月26日,本站因上级变电站事故停电,在恢复送电时,35Kv 线路上只带电压互感器,发现电压互感器指示的相电压,有两相对地电压同时升高,

L

图 三

并且电压表指针摆动严重,接地报警器发出接地报警,电压互感器的熔断器熔断。长时间这种情况能引起绝缘闪络或避雷器爆炸,这是由于电压互感器饱和而产生的过电压现象。当电网中发生冲击扰动时,使一相或两相电压瞬时升高,由于电压互感器的激磁抗是非线性的,可能使两相励磁电流突增而使其饱和,相应的它们的电感值也减小。这样,由于三相对地负载不平衡,故使电网中性点出现位移电压,假设参数配合使感抗与容抗相等,便产生了串联谐振现象,使中性点位移电压急剧上升,此电压叠加于三相电源上,通常是使两相对地电压升高,一相对地电压降低。这种过电压在线路发生短路、断路器突然将此线路切除,或利用断路器向母线充电时,均能激发。而且持续时间长,直到操作断路器改变了系统工作状态,所以不能用避雷器限制它。消除它的有效措施有:在互感器三角绕组开口端接入一个电阻R,使谐振不能产生,R的值35Kv以下电网中一般在10~100 欧姆的范围内。此外,选用激磁性能较好的电磁式电压互感器或电容式电压互感器;特殊情况下,可采用临时倒闸措施,如投入事先规定好的某些线路与设备或电容器,以增加对地电容,使谐振不能发生。

3.2 雷电

雷电是大自然中最宏伟壮观的气体放电现象,其放电时引起的过电压和短路电流,均对电力系统的安全运行构成巨大威胁。

电力系统外部过电压的形式主要有直击雷过电压、感应雷过电压和侵入雷电波过电压,它是造成电力系统绝缘故障和停电事故、及设备损坏的主要原因之一。为了防止直击雷对变电站设备的侵害,变电站装有避雷针或避雷线和避雷器带等来保护被保护对象,但常用的量避雷针。为了防止进行波的侵害,按照相应的等级装设阀型避雷器、磁吹避雷器和氧化锌避雷器和与此相配合的进线保护段,即架空地线、管型避雷器中火桦间隙,在中性点不直接接地系统装设消弧线圈可减少线路雷击跳闸次数。通常采用保护间隙或避雷器等防雷保护设备与被保护设备并联连接,保护电气设备免遭入侵雷电波损坏。为了防止感应过电压,旋转电机还装设有保护电容器。同时为了可靠地防雷,所有以上设备都必须装设可靠的接装置。防雷设备的功能是引雷、泄流、限幅,均压。

4过电压保护设备及其保护原理、作用

4.1避雷器

避雷器:广泛使用在电气设备及线路中,避免雷电和操作过电压下发生闪络或击穿,按结构可分为管型避雷器(包括一般管型和新型)、阀型避雷器(包括普通阀型和磁吹型)和氧化锌避雷器。其保护原理是在过电压超过一定幅值时动作,给雷电流提供一个低阻抗的通路,使其泄放到大地,从而限制了电压的升高,保障了线路设备的安全。

管型避雷器。它有两个间隙,一个装在产气管内,叫内部间隙;一个装在管外,叫外部间隙。内部间隙又叫灭弧间隙,由装有管外的棒形电极和管口的环形电极组成。成雷电波的作用下,内、外部间隙击穿放电。间隙放电后,在工频电压作用下,工频短路电流(工频续流)继续通过间隙,其高温电弧使产气管内壁产生大量气体,压力很高,气体由放气孔急骤放出,电弧受到纵向吹动而熄灭。其熄弧能力与工频续流大小以及所采用的管子材料、内径和内间隙大小有关。因此使用时必须核算安装在各种运行情况下短路电流的最大值和最小值,其熄弧电流上、下限应分别大于和小于短路电流的最大值和最小值。

阀型避雷器。它由放电间隙和阀片(非线性电阻)两个基本元件串联组成,全部装在密封的瓷套内,瓷套上端用引线与电网导线(或母线)相连,下端经引线接地。在电力系统正常工作时,间隙将电阻阀片与工作母线隔离,避免由母线的工作电压在电阻阀片中产生的电流使阀片烧坏。当系统中出现过电压且其幅值超过间隙放电电压时,间隙隙击穿,冲击电流通过阀片流入大地。由于阀片的非线性特性,在阀片上的压降(称为残压)将得到限制,使其低于被保护设备的冲击耐压,电气设备就得到了保护护。当过电压消失,间隙中由于工作电压产生的工频电弧电流(称为工频续流)仍将继续流过避雷器,此续流受阀片电阻的非线性特性所限制,较冲击电流为小,使间隙能在工频续流第一次经过零值时将电弧熄灭。此后,依靠间隙的绝缘强度能够耐受电网恢复电压的作用而不发生重燃。这样,避雷器从间隙击穿到工频续流的切断不超过半个工频周期的时间,继电保护来不及动作,电力系统已经恢复正常。

金属氧化锌避雷器。是一种新型保护设备,其内部元件由中间穿孔的环形氧化锌电阻片构成,穿孔中穿有一根有机绝缘棒,两端用螺栓紧固而成,内部元件装入瓷套内,上、下两端一个压紧弹簧压紧。瓷套两端法兰各有一压务释放出来,以防瓷套爆炸和损坏其他其他设备。避雷器根据电压高低可用若干元件组成,顶部装有均压环,底部装有绝缘基础,用来安

装避雷器的动作记录器和动作电流幅值记录装置。其最大特点是其压敏电阻片(阀片)构成,不用串联间隙。它具有理想的非线性伏安特性,其非线性系数很小(α=0。05),已接近理想的阀体(α=0)。它在工频电压值可呈现极高的电阻值,使工频续流很小,不再需要火花间隙来熄灭工频续流。压敏电阻的通流容量很大,因此这种避雷器的体积很小。本站避雷器均选用此种类型。

选择避雷器的原则:1)母线上接有主变压器者,母线上应为电站避雷器;2)架空线路或电缆线路用避雷器均为配电避雷器;3)无主变变压器的配电母线上,一般可装配避雷器。

避雷器应以最短的接地线与变电所的主接地网相连接。(包括通过电缆金属外皮连接)。还应在其附近装设集中接地装置。3~10Kv配电所,当无所用变压器时,可仅在每路架空进线上装设阀型避雷器。

4.2避雷针

避雷针:主要用于防止直击雷对变电设备的侵害。避雷针之所以能防雷,是因为雷云先导发展的初始阶段,因其离地面较高,其发展方向会受一些偶然因素的影响,而不固定。但当它离地面达到一定高度时,地面上高耸的避雷针因静电感应聚集了雷云先导性的大量电荷,使雷电场畸变,因而将雷云放电的通路由原来可能向其他物体发展的方向,吸引到避雷器本身,通过上下引线和接地装置将雷电波放入大地,有效地防止了直地击雷。避雷针由避雷针针头、引流体和接地体三部分组成,一般高于被保护物,当雷云先导放电临近地面时首先击中避雷针,避雷针中的引流体将雷电流安全引入地中,从而保护了某一范围内的设备。避雷针的接地装置的作用是减小泄流途径上的电阻值,降低雷电冲击电流在避雷针上的电压降。

4.3避雷线

避雷线:架空避雷线是高压线最基本的防雷措施。它由悬挂在被保护线上方的钢绞线、接地引下线和接地体三个主要部分组成。一般使用截面积不小于35mm2的镀锌钢绞线,架设在架空高压电力线路上方,防止架空线路遭受直接雷击。由于避雷线既要架空,又要接地,又叫架空接地线。其工作原理与避雷针基本相同,只是保护范围要小一些。其主要作用有:(1)防止雷电直击导线;(2)对塔顶雷击起分流作用。

对架设避雷线的规定有:1)对35Kv 及以下架空线路,只在进、出变电站1~2Km的一段

线路上架设;2)对60 Kv及以下架空线路,沿全线架设。

4.4放电间隙

所谓保护间隙,是由两个金属电极构成的一种简单的防雷保护装置。其中一个电极固定在绝缘子上,与带电导线相接,另一个电极通过辅助间隙与接地装置相接,两个电极之间保持规定的间隙距离。 % {; F H7 S, F) t( o' e) `保护间隙构造简单,维护方便,但其自行灭弧能力较差。其间隙的结构有棒型、球型和角型三种。棒型间隙的伏秒特性较陡,不易与设备的绝缘特性配合;球型间隙虽然伏秒特性最平坦,保护性能也很好,但它与棒型间隙一样,都存在着间隙端头易烧伤的缺点,烧伤后间隙距离增大,不能保证动作的准确性;角型间隙放电时,电弧会沿羊角迅速向上移动而被拉长,因而容易自行灭弧,间隙不会严重烧伤,所以,近年来角型间隙被广泛用于配电线路和配电设备的防雷保护。

由于保护间隙的间隙距离较小(8~25mm),易为昆虫、鸟类或其他外物偶然碰触而引起短路,因此常在接地引下线上串接一个小角型辅助间隙。在正常情况下,保护间隙对地是绝缘的,并且绝缘强度低于所保护线路的绝缘水平,因此,当线路遭到雷击时,保护间隙首先因过电压而被击穿,将大量雷电流泄入大地,使过电压大幅度下降,从而起到保护线路和电气设备的作用。

防雷保护间隙的结构应满足以下要求:(1)间隙距离应符合要求,并稳定不变。(2)间隙放电时,应能够防止电弧跳到其他设备上。(3)能防止间隙的支持绝缘子损坏。(4)间隙正常动作时,能防止电极烧坏。(5)电极应镀锌或采取其他防锈蚀的措施。(6)主、辅间隙之间的距离应尽量小,最好三相共用一个辅助间隙。

结束语

在实际的变电运行管理中,电力系统过电压的情况经常发生。特别对电力系统而言,系统电气事故的发生直接威胁设备安全和值班员人身安全。完善和采取必要技术防范措施,对减少和避免各类事故的发生有着重要的现实意义。

参考文献

1.《电力系统内部过电压保护及实例分析》.陶书缘.2006年.

2.《电力系统过电压分析与计算》.胡国根.1995年

3.《过电压防护与绝缘配合》.张纬钹.2007年

4.《电力系统过电压》.鲁铁成

5.《电力系统过电压保护》.董振亚.1997年

(推荐)职业病危害防治措施

职业危害防治措施 为了预防、控制和消除职业病危害,防治职业病,保护员工(劳动者)的身体健康,根据《中华人民共和国职业病防治法》及有关行政法规的规定,结合本公司的实际情况,特制定职业病防治措施规定。 一、职业危害因素、职业病 1、职业危害因素,是指在生产劳动或者其他职业活动中存在的危害劳动者身体健康的物理性、化学性、生物性各种有害因素的总称。本企业主要职业危害来自露天作业环境中的紫外线照射和寒冷天气对人体的伤害,人孔内的有毒、有害气体等。 二、职业病危害种类及防治措施 结合公司经营和施工现场的具体情况确定本公司的职业危害为四类: 1、高温作业危害:长期的高温作业可引起人体水电解质紊乱,损害中枢神经系统,可造成人体虚脱,昏迷甚至休克,易造成意外事故。 防治措施 (1)改善工作条件,配备防护设施、设备,加强生产场所通风设备及散热。 (2)加强个人防护,避免高温工作环境,尽量远离高热源,避开或减少热辐射; (3)制订合理的劳动休息制度,减少高温时段作业,增加工间休息次数,尽量避开高温时段进行室外高温作业,为员工提供阴凉的

休息地方

(4)应有足够清洁的饮用水,供给防暑降温清凉饮料、降温品和补充营养:饮水方式以少量多次为宜,同时要注意不要等到口渴时再饮水。 (5)准备毛巾、风油精、藿香正气水以及仁丹等防暑降温用品,要制订合理的膳食制度,膳食中要补充蛋白质和热量。 (6)作业人员如有高温禁忌症要及时报告,班组长对有高温禁忌症的员工不要安排其从事高温作业 (7)留意气象预报发出的酷热天气警告 2、有毒物品的危害:生产过程中常接触到多种有机溶剂,如防水施工中常常接触到苯、甲苯、二甲苯、苯乙烯,喷漆作用常常接触到苯、苯系物外还可接触到醋酸乙酯、氨类、甲苯二氰酸等,这些有机溶剂的沸点低、极易挥发,在使用过程中挥发到空气中的浓度可以达到很高,极易发生急性中毒和中毒死亡事故。 防治措施 (1)控制与消除有毒物质,用无毒或低毒物质代替有毒或高毒物质;改革生产工艺、生产设备,尽量将手工操作变为机械化、密闭化、自动化和遥控化操作。 (2)降低生产性毒物的浓度,避免有毒物质与人体接触;对生产过程中无法避免的有毒物质,通过安装合理的通风、排毒设备,使毒物得到有效控制。

谐波谐振产生的原因及危害分析

谐波谐振产生的原因及危害分析 摘要:在电网运行中,不可避免地会产生谐波和谐振。当谐波谐振发生时,其电压幅值高、变化速度快、持续时间长,轻则影响设备的安全稳定 运行,重则可使开关柜爆炸、毁坏设备,甚至造成大面积停电等严重 事故。本文就其定义、产生原因、危害及预防措施作以介绍,供参考。 1.定义 谐波是一个周期的正弦波分量,其频率为基波频率的整数倍,又称高次谐波。通俗地说,基波频率是50HZ,那么谐波就是频率为100HZ、150HZ、200HZ...N*50HZ的正弦波。 谐振是交流电路的一种特定工作状况,是指在含有电阻、电感、电容的交流电路中,电路两端电压与其电流一般是不同相位的,当电路中的负载或电源频率发生变化,使电压相量与电流相量同相时,称这时的电路工作状态为谐振。谐波在电网中长期存在,而谐振仅是电网某一范围内的一种异常状态。 2.产生的原因 谐波的产生是由于电网中存在着非线性负荷(谐波源),如电力变压器和电抗器、可控硅整流设备、电弧炉、旋转电机、家用电器等,另外,当系统中发生谐振时,也要产生谐波。 谐振的发生是由于电力系统中存在电感和电容等储能元件,在某些情况下,如电压互感器铁磁饱和、非全相拉合闸、输电线路一相断线并一端接地等,在部分电路中形成谐振。谐波也可产生谐振,由谐波源和系统中

的某一设备或某几台设备可能构成某次谐波的谐振电路。 3.造成的危害 3.1谐波的危害 谐波电流和谐波电压的出现,对公用电网是一种污染,它使用电设备所处的环境恶化,也对周围的通信系统产生干扰。电力电子设备广泛应用以前,人们对谐振及其危害就进行过一些研究,并有一定认识,但那时谐波污染没有引起足够的重视。近三四十年来,各种电力、电子装置的迅速使用,使得公用电网的谐波污染日趋严重,由谐波引起的各种故障和事故也不断发生,谐波危害的严重性才引起人们高度的关注。谐波对公用电网和其他系统的危害大致有以下几个方面。 (1)谐波使公用电网中的元件产生了附加的谐波损耗,降低了发电、输电及用电设备的效率,大量的3次谐波流过中性线时会使线路过热 甚至发生火灾。 (2)谐波影响各种电气设备的正常工作。谐波对电机的影响除引起附加损耗外,还会产生机械振动、噪声和过电压,使变压器局部严重 过热。谐波使电容器、电缆等设备过热、绝缘老化、寿命缩短,以 至损坏。 (3)谐波会引起公用电网中局部的并联谐振和串联谐振,从而使谐波放大,这就使上述(1)和(2)的危害大大增加,甚至引起严重事故。 (4)谐波会导致继电保护和自动装置的误动作,并会使电气测量仪表计量不准确。 (5)谐波会对邻近的通信系统产生干扰,轻者产生噪声,降低通信质量;

全过电压抑制柜、消弧柜、消弧线圈的比较

全过电压抑制柜和消弧线圈、消弧柜的比较(一)消弧线圈 消弧方面:利用电感电流和电容电流相位差为180°的特点,当电网发生接地故障后,消弧线圈提供一电感电流,补偿故障点电容电流,使接地电流减小,达到熄灭电弧的目的。 缺点:1、消弧线圈对工频电容电流能起到一定的补偿作用,对高频电流无法起到补偿作用,而电缆线路发生单相电弧接地时,电弧电流以高频电流为主。 2、消弧线圈的使用还会降低小电流选线的灵敏度。 3、消弧线圈体积大,造价高,受电网规模的影响,不利于电网的长远规划。(二)消弧柜 1、消弧方面:运用快速接地开关迅速将间歇性弧光接地转换成稳定的金属性接地,消弧原理与系统的电容电流大小、频率无关,可以消除任何频率的弧光接地。 2、PT柜功能:系统正常运行时,装置可以作PT柜用不会给系统增加任何额外负担。 3、具备微机消谐功能。 缺点:同一系统内大量使用消弧柜,也会造成弧光接地时多台消弧柜同时动作,形成多点接地。若其中有消弧柜发生相别误判或误动,则会形成严重的相间短路事故。 (三)全过电压抑制柜 1、消弧方面:运用快速接地开关迅速将间歇性弧光接地转换成稳定的金属性接地,消弧原理与系统的电容电流大小、频率无关,可以消除任何频率的弧光接地。 2、根据不同用户的系统进行针对性设计生产,同一系统中不同位置选用不同型号的全过电压限制装置,使装置动作的协调性大大提高,避免出现弧光接地时多台接地开关同时动作形成多点接地或误动引起的相间短路事故。保护功能也更加完善合理,有效消除系统过电压保护死区。 3、可以有效抑制系统中大气过电压、操作过电压,装置中配有特制的尖峰过电压吸收装置,可有效抑制大气过电压、操作过电压等过电压尖峰,缓和过电压波头陡度。内部采用专制的尖峰过电压吸收装置吸收过电压能量大,2ms方波电流可以达到3200A。

浅谈热电厂谐振过电压及抑制措施

浅谈热电厂谐振过电压及抑制措施 在电力系统中性点经消弧线圈接地系统中包含有很多电感元件和电容元件。在开关操作或发生故障时,这些电感和电容元件可能形成不同自振频率的振荡回路,在外加电源作用下产生谐振现象,引起谐振过电压。谐振往往在电网某一局部造成过电压,从而危及电气设备的绝缘,甚至产生过电流而烧毁设备。本文针对热电厂发生的故障进行了全面的分析论述,并提出解决问题的措施 标签:真空断路器消弧线圈谐振过电压抑制措施 1 问题出现 2008年10月20日15时40分,运行人员启动#3炉磨煤机产生操作过电压,造成已运行的#3炉排粉电机线圈开路,#4炉引风机电缆一相击穿接地,引起运行中高压电压互感器烧毁及一次高压熔丝烧断。#3炉、#4炉、#1机、#3机相继停止运行,终止对外供汽,反送电时间长达六小时之久,造成重大经济损失。 2 事故分析 2.1 我厂磨煤机、排粉电机小车开关是真空断路器。真空断路器由于灭弧能力强、电气寿命長、现场维护方便、技术含量高等优点,在电力系统35kV及以下电压等级中被广泛应用。但是,真空断路器在开断运行过程中出现过电压问题时有发生,已成为不可忽视的重要环节。产生过电压分析如下: 2.1.1 真空断路器由于具有高速灭弧能力,在切断电路时,往往在电流过零前被强行开断,在断弧瞬间储藏在负载内的电感与电容之间的电磁能量转换将在负载上产生过电压,这比一般断路器要突出,尤其在最先断开相触头间,有可能因过电压引起电弧重燃,而产生过电压。 2.1.2 如果由于某种原因引起真空开关真空度降低,将严重影响真空断路器开断过电流的能力,以至承受不住恢复电压发生电弧重燃,回路中出现高频电流,高频电流过零时,出现电弧熄灭、重燃循环过程。由于负载侧存在L-C振荡回路(电机线圈、电缆储能元件),则产生很高过电压。 2.2 消弧线圈运行方式存在问题 我厂共有两组消弧线圈,#1发电机中性点、#2、3发电机中性点各接一组消弧线圈。出现上述事故前是#1、#3发电机,#3、#4炉在运行中,而#1发电机中性点消弧线圈没有投入运行,只有#3发电机中性点投入运行。前述故障发生后,发生过电压,#3发电机循环泵运行中突然停运,备用循环泵联动不成功,汽轮机真空急剧下降,#3发电机被迫停机,也就是说电厂消弧线圈脱离系统,形成谐振,机、炉辅机相继跳闸,全厂停运。

职业危害防治措施

职业危害防治措施 一、目的 根据《中华人民共和国职业病防治法》,为了预防、控制和消除职业病危害,防治职业病,保护劳动者健康及其相关权益,促进企业持续、稳定发展,实现公司所确定的职业健康安全目标,特制定本措施。 二、适用范围 公司人员从事涉及到易燃,易爆、触电、中毒、高坠、机械伤害、灼烫,淹溺,透水、物体打击、粉尘伤害、噪声、振动、窒息等作业时均应执行本办法。 三、危害的成因及危害的类型 危害的成因分为物理危害和化学危害 物理危害的成因: 1.粉尘伤害 建筑行业在施工过程中产生多种粉尘,主要包括矽尘、水泥尘、电焊尘、石棉尘以及其他粉尘等。产生这些粉尘的作业主要有: a)矽尘:挖土机、推土机、刮土机、铺路机、压路机、打桩机、钻孔机、凿岩机、碎石设备作业;挖方工程、土方工程、地下工程、竖井和隧道掘进作业;爆破作业;喷砂除锈作业;旧建筑物的拆除和翻修作业。 b)水泥尘:水泥运输、储存和使用。 c)电焊尘:电焊作业。 d)石棉尘:保温工程、防腐工程、绝缘工程作业;旧建筑物的拆除和翻修作业。 e)其他粉尘:木材加工产生木尘;钢筋、铝合金切割产生金

属尘;炸药运输、贮存和使用产生三硝基甲苯粉尘;装饰作业使用腻子粉产生混合粉尘;使用石棉代用品产生人造玻璃纤维、岩棉、渣棉粉尘。 2. 噪声 建筑行业在施工过程中产生噪声,主要是机械性噪声和空气动力性噪声。产生噪声的作业主要有: a)机械性噪声:凿岩机、钻孔机、打桩机、挖土机、推土机、刮 土机、自卸车、挖泥船、升降机、起重机、混凝土搅拌机、传输机等作业;混凝土破碎机、碎石机、压路机、铺路机,移动沥青铺设机和整面机等作业;混凝土振动棒、电动圆锯、刨板机、金属切割机、电钻、磨光机、射钉枪类工具等作业;构架、模板的装卸、安装、拆除、清理、修复以及建筑物拆除作业等。 b) 空气动力性噪声:通风机、鼓风机、空气压缩机、铆枪、发电机 等作业;爆破作业;管道吹扫作业等。 3. 振动 部分建筑施工活动存在局部振动和全身振动危害。产生局部振动的作业主要有:混凝土振动棒、凿岩机、风钻、射钉枪类、电钻、电锯、砂轮磨光机等手动工具作业。产生全身振动的作业主要有:挖土机、推土机、刮土机、移动沥青铺设机和整面机、铺路机、压路机、打桩机等施工机械以及运输车辆作业。 4.窒息 许多施工活动存在密闭空间作业,导致窒息主要包括:

智能过电压综合抑制柜SHK-XGB

智能过电压综合抑治柜SHK-XGB 说明书 上海合凯电力保护设备有限公司 2013年11月

?概述 我国3-35kV系统中存在如下几种过电压:断路器动作过程中产生的操作过电压、电容元件和非线性电感在一定条件下产生的谐振过电压、雷电时产生的大气过电压和单相接地时产生的弧光过电压等。目前尚无针对这些过电压的完整的保护方案,从而会发生电缆放炮、电动机绝缘击穿、避雷器爆炸和电压互感器烧毁等事故。此类事故发生的原因,除了与系统中安装的过电压保护装置的性能有关外,系统本身的复杂性对过电压装置的选择有着重要的影响,对于不同的系统,选择过电压保护时需考虑系统输电线路的类型,输配电线路的网络结构,负载的性能和系统的接地方式等。 针对如此复杂的系统,难以孤立的使用某种或某几种过电压保护装置来全面抑制各种类型的系统过电压,且这些不同厂家生产的过电压保护产品,因保护特性不能相互匹配,而无法彻底有效的抑制系统过电压。 针对目前中压系统过电压防治的现状,我公司研制生产了智能过电压综合抑治柜(简称抑治柜,型号为SHK-XGB),该柜可消除系统中过电压保护元件及装置的保护死区,优化系统过电压的保护特性。 本装置中所有的主要器件由我公司针对消弧工况研发、试验和生产,使用了我公司3项专利。专利号分别为:ZL 2011 2 0205412.0、ZL 2011 2 0203815.1、ZL 2012 2 0721125.X 。 ?产品的功能、特点 ◆主要元器件功能 ?高能容能量吸收器SHK-LEP

高能容能量吸收器(SHK-LEP),能够有效平缓过电压的上升前沿并消平电压尖峰,并能够耐受过电压产生的超大能量,该专用元件与本公司生产的过电压保护器及消弧柜的保护特性相匹配,可以全面消除系统过电压保护的死区。 2ms的方波电流可以达到3200A。 ?半导体自限流强阻尼抑制器SHK-SIDR SHK-SIDR半导体自限流强阻尼抑制器能够消除电压互感器产生的铁磁谐振。限制电压互感器一次绕组的激磁电流突增,防止因电压互感器一次绕组电流增加,熔断器熔断后因能量不足不能灭弧引发的母线短路事故。 装置安装在PT中性点与地之间,采用了正温度技术,利用电阻的阻尼作用,可破坏其谐振条件,使谐振消除。在正常运行状态下电阻为0,不改变PT的零序回路,因此不会影响互感器的测量精度,也不会放大中性点不平衡电压;在谐振发生时,电阻趋于∞,相当于互感器不接地,也就破坏了零序谐振回路。 ?防磁饱和式PT SHK-USPT SHK-USPT系列防磁饱和式电压互感器是一种特殊的变压器,按比例变换电压。它被广泛应用于供电系统中向测量仪表和继电器的电压线圈供电,实现测量仪表、保护设备及自动控制设备的标准化、小型化。同时互感器还可用来隔开高电压系统,以保证人身和设备的安全。 产品采用的励磁技术,其主绝缘为树脂材料,采取真空浇注后再压力注射,保证产品的绝缘性能优良。确保产品各种工况的用户单位。同时产品的抗饱和系数可以做到3.5倍。 产品采用了优质硅钢片,降低工作磁密,从而保证了在最大的过电压下互感器不饱和,不会与输电线路的电容发生谐振。铁芯及线圈采用特殊性设计,

10kV电力系统谐振过电压的原因及抑制措施_孟繁宏

10 kV电力系统谐振过电压的原因及抑制措施 孟繁宏,李学山,张占胜 摘 要:通过对10 kV中性点不接地运行方式下谐振过电压的分析,说明产生谐振过电压的条件、种类及特点,并提出以下抑制谐振过电压的措施:采用自动调谐接地补偿装置或可控硅多功能消谐装置,在电压互感器的中性点接消弧线圈,或接消谐器等。 关键词:铁路;电力;过电压;抑制措施 Abstract:By analyzing the resonant over-voltage in 10 kV power supply system with its neutral point being unearthed, illustrates the conditions causing the resonance over-voltage and their types and characteristics, and puts forward the following measures to suppressing resonant over-voltage: by adopting automatic tuned earthing compensation device or silicon-controlled resonance suppressor, connecting the arc-extinguishing coil with neutral point of the voltage transformer or connecting the resonance suppressor. Key words: Railway; power supply system; over-voltage; suppression measure 中图分类号:U223.6文献标识码:B文章编号:1007-936X(2005)03-0022-04 0 概述 在10 kV配电所的每段母线上都接有1台电压互感器,其一次线圈中性点直接接地。由于电网对地电容与电压互感器的线圈电感构成谐振条件,在运行中容易产生铁磁谐振,引起内部过电压,这种过电压持续时间长,是导致电压互感器高压熔丝熔断和电压互感器烧损、避雷器爆炸的主要原因,也是诱发某些重大事故的原因之一。近5年以来,在大同西供电段管内共发生谐振过电压烧坏电压互感器高压保险12次,烧毁10 kV电压互感器1台,烧断电压互感器瓷瓶内部引出线1次。 1 谐振过电压产生的条件 1.1 内部条件 铁路10 kV电力系统是中性点不接地系统,为了监视系统的三相对地电压,该配电所每段母线上均接有1台三相五柱电磁式电压互感器,其电气接线原理图略。 母线电压互感器的高压侧在接成Y型时其中性点是接地的,由于铁路10 kV电力系统中电缆较多,各相对地电容较高,电网对地电容与电压互感 作者简介:孟繁宏.朔黄铁路发展有限公司原平分公司,工程师,山西原平037005,电话:029-93638(路电); 李学山,张占胜.大秦铁路股份有限公司大同西供电段。器的电感相匹配构成谐振条件。当发生谐振时,电压互感器感抗显著下降,励磁电流急剧增大,可达到额定值的数十倍,造成电压互感器烧毁或保险熔断。 1.2 外界激发条件 激发产生谐振过电压的外部条件有以下几种:(1)线路发生单相接地或瞬间接地。(2)不带馈线负荷的情况下向带有三相五柱电磁式电压互感器的母线送电。(3)进行空载线路的投切操作。(4)电力线路有雷电感应。(5)电网负荷轻,电压高,发生传递过电压。 2 过电压种类及特点 2.1 过电压种类 铁路10 kV电力系统过电压主要分为谐振过电压、雷电过电压和操作过电压,其中谐振过电压在正常运行操作中出现频繁,危害性较大;一旦产生过电压,往往造成电气设备损坏和大面积停电事故。运行经验表明,铁路10 kV电力系统中过电压大多数都是由铁磁谐振引起的。在实际运行中,故障形式和操作方式多种多样,谐振性质也各不相同。因此,为了制订防振和消振的对策与措施,应该了解各种不同类型谐振的性质与特点。 2.1.1 基波谐振 通常在配电所全所停电作业完成后向带有电 22

职业病防治的危害与预防措施

职业病防治的危害与预防措施 【职业病】是指企业、事业单位和个体经营组织(统称用人单位)的劳动者在职业活动中,因接触粉尘、放射性物质和其它有毒、有害物质等职业病危害因素而引起的疾病。其中,职业病危害因素是指:职业活动中存在的各种有害的化学、物理、生物因素以及在作业过程中产生的其它职业有害因素。 【职业病危害】是指对从事职业活动的劳动者可能导致职业病的各种危害。职业病危害因素包括职业活动中存在的各种有毒有害的化学、物理、生物因素以及作业过程中产生的其他职业有害因素。化学因素包括金属、类金属如铅、汞、锰、铬、砷等;刺激性、窒息性气体如光气、氯气、氨气、硫化氢、一氧化碳、氰化氢等;有机溶剂及高分子化合物;各种农药;生产性粉尘;物理因素包括噪声、振动、高温、微波、高频、电离辐射等;生物因素包括炭疽杆菌、布氏杆菌、森林脑炎病毒等。 【依法预防职业病】《中华人民共和国职业病防治法》颁布以后,职业病防治工作从此走上了法制化管理轨道,只要坚决贯彻和实施《职业病防治法》,加强预防职业病的宣传教育,对从事接触职业病危害的作业的劳动者,用人单位应当按照规定组织上岗前、在岗期间和离岗时的职业健康检查,并将检查结果如实告知劳动者。让工人了解工作场所产生或者可能产生的职业病危害因素、危害后果和应当采取的职业病防护措施。工人在劳动过程中才能正确使用个人职业病防护用品,拒绝违章指挥和强令进行没有职业病防护措施的作业,才能维护自己的身体健康。只有人们都能逐步认识到职业病的危害,关注劳动者的职业健康,并采取相应的防护措施,依照《职业病防治法》的要求来管理,职业病危害才会远离我们的身边。 【职业病的防治原则】 (1)消除或控制职业有害因素,即从根本上使劳动者不接触职业有害因素,如改进生产过程,寻找容许接触量或接触水平,使生产过程达到安全标准,对人群中的易感者定出就业禁忌症等。 (2)早期发现病损,采取补救措施,防止其进一步发展。 (3)对已得病者,做出正确诊断,及时处理,包括及时脱离接触进行治疗,防治恶化和并发症,促进康复。 【职业病的分级预防】 职业病是一类人为的疾病,应按四级预防措施,来保护接触人群的健康。 原始级预防原始级预防的目标是用立法手段、经济政策、改变生活习惯,避免已知增加发病危险的社会、经济、文化生活因素,以预防某一种疾病。如已知吸烟导致多种慢性病和加剧职业病(尘肺),则用改变国家经济政策,禁止青少年吸烟,创建无烟学校、工厂等预防策略。对职业性病的预防,应以贯彻落实职业病防治法为主进行预防。 第一级预防又称病因预防,是从根本上杜绝危害因素对人的作用,即改进生产工艺和生产设备,合理应用防护设施及个人防护用品,以减少工人接触的机会和程度。对化学和物理因素,国家制订的工业企业设计卫生标准(GBZ1-2002),应作为共同遵守的接触限值或“防线”和预防措施的准则,这在职业病预防方面,常起到有效的作用。对人群中处于高危的个体,可依据职业禁忌证进行检查,凡有该职业禁忌证者,不得参加该工作。 第二级预防又称发病预防,是早期检测人体受到职业危害因素所致的疾病。第一级预防措施虽然是理想的方法,但实现时所需费用较大,有时效果不理想,仍然可致病,所以第二级预防成为必需的措施。其主要手段是定期进行环境中职业危害因素的监测和对接触者的定期体格检查,以早期发现病损而予及时预防。 第三级预防是在得病以后,合理康复处理。其原则有:①对已受损害的接触者应调离原有工作岗位,并予以合理的治疗;②根据接触者受到损害的原因,推动生产环境和劳动条件的改革;③促进患者康复,预防并发症。 同江市疾病预防控制中心

电磁式电压互感器谐振过电压分析及抑制措施

电磁式电压互感器谐振分析及抑制措施研究 (江建明四川省电力工业调整试验所610072) 电力系统接地系统为直接接地系统和不接地系统。直接接地系统易发生并联谐振,不接地系统在单相接地时易发生串联谐振,有并联电容器的断路器易发生串联谐振。长期以来,电力系统谐振过电压严重威胁着电网的安全。特别是对中性点不接地系统,铁磁谐振所占的比例较大。随着电网的日益发展,中性点直接接地系统的铁磁谐振问题越来越严重,出现的概率也越来越大。近年,在四川发生过多次铁磁谐振引起过电压的案例,应引起高度重视。本文将介绍产生铁磁谐振的机理、原因、现象以及应采取的措施。 1.产生铁磁谐振的原因 铁磁谐振存在三种情况:直接接地系统对地电容引发的铁磁谐振;不接地系统的单相接地引起的铁磁谐振;断路器端口并联的电容形成的铁磁谐振。 电力系统中许多元件是属于电感性的,如电力变压器、互感器、发电机、消弧线圈为电感元件,而线路各导线对地和导线间既存在纵向电感又存在横向电容,这些元件组成复杂的LC震荡回路,在一定的能量作用下特定参数配合的回路就会出现谐振现象。由于铁芯电感的磁通和电流之间的非线性关系,电压升高导致铁芯电感饱和,极易使电压互感器发生铁磁谐振。在中性点不接地系统中,如果不考虑线路的有功损耗和相间电容,仅考虑电压互感器电感与线路的对地电容C,当C大到一定值且电压互感器不饱和时,感抗X L大于容抗X C;而

当电压互感器上电压上升到一定数值时,电压互感器的铁芯饱和,感抗X L小于容抗X C,这样就构成了谐振条件,下列几种激发条件可以造成铁磁谐振: (1)当投入电力系统的电力线路长度发生变化时,线路对地电容与线路电阻发生改变。如空载线路投切操作,对空母线充电,尤其是短母线进行倒母线时,易产生对地电容引起的并联谐振。 (2)当系统运行状态突变,在暂态激发条件下,TV铁芯饱和,其电感量L处于非线性变化。如有线路瞬间接地,雷电感应侵入电网,尤其系统出现单相接地,易产生串联谐振。 (3)直接因突然投入系统的电容变化而引起谐振。如补偿电容器的投入,断路器断口打开时的并联电容易产生并联谐振。 (4)由于线路分合或运行状态突变时,会产生多次或分次谐波,从而使ω发生变化。如拉合刀闸、跌落式熔断器动作等,可能引起并联或串联谐振。 2.产生铁磁谐振的机理 由于电压互感器的中性点位移现象,常常在中性点不接地绝缘系统中引起铁磁谐振过电压。在正常运行条件下,励磁电感三相相等,三相负荷相等,电网的中性点电位为零。当线路中出现瞬时单相故障时,其它两相电压升高,三相电压互感器两相电压升高而饱和,其励磁电感相应减小,电网中性点出现位移电压,当三相总导纳之和为零时,便会发生串联谐振,中性点电压将急剧上升。由于铁芯的磁饱和会引起电流、电压波形的畸变,即产生了谐波,使上述谐振回路还会

过电压保护

电力电子器件的保护 一 、过电压保护 电力电子装置中可能产生的过电压外分为外因过电压和内因过电压两类。外因过电压主要来自雷击和系统中的由分闸、合闸等开关操作引起的。电力电子装置中,电源变压器等储能元器件,会在开关操作瞬间产生很高的感应电压。 内因过电压主要来自电力电子装置内部器件的开关过程,包括: (1)换相过电压:由于晶闸管或者与全控器件反并联的续流二极管在换相结束不能立刻恢复阻断能力,因而有较大的反向电流过,使残存的载流子恢复,而当其恢复了阻断能力时,该反向电流急剧减小,会由线路电感在器件两端感应出过电压。 (2)关断过电压:全控型器件在较高频率下工作,当器件关断时,因正向电流的迅速降低而由线路电感在器件两端感应出的过电压。 电力电子电路常见的过电压有交流测过电压和直流测过电压。常用的过电压保护措施及配置位置如图1-1所示。 S F RV RCD T D C U M RC 1 RC 2 RC 3 RC 4 L B S DC 图9-10 过电压保护措施及装置位置 F ─避雷器 D ─变压器静电屏蔽层 C ─静电感应过程电压抑制电容 1RC ─阀测浪涌过电压抑制用RC 电路 2RC ─阀测浪涌过电压抑制用反向阻断式RC 电路 RV─压敏电阻过电压抑制器 3RC ─阀器件换相过电压抑制用RC 电路 4RC ─直流测RC 抑制电路 RCD─阀器件关断过电压抑制用RCD 电路

过电压保护所使用的元器件有阻容吸收电路、非线性电阻元件硒堆和压敏电阻等,其中RC 过电压抑制电路最为常见。由于电容两端电压不能突变,所以能有效抑制尖峰过电压。串联电阻能消耗部分产生过电压的能量,并抑制回路的振荡。 视变流装置和保护装置点不同,过电压保护电路可以有不同的连接方式。图9-11所示为RC 过电压抑制电路用于交流测过电压抑制的连接方式。 + -+ -a) b) 网侧 阀侧 直流侧 C a R a C a R a C dc R dc C dc R dc C a R a C a R a 图9-11 RC 过电压抑制电路联结方式 a)单相 b)三相 二、过电流保护 过电流分为过载和短路两种情况。过流保护常采用的有快速熔断器、直流快速断路器、过电流继电器保护措施,以晶闸管变流电路为例,其位置配置如图2-1所示。

关于谐振过电压及预防的技术措施

关于谐振过电压及预防的技术措施 发表时间:2019-04-11T13:54:14.127Z 来源:《河南电力》2018年19期作者:唐振华 [导读] 谐振过电压是因电网储能参数—电感和电容匹配符合谐振条件而引起的过电压。在电力生产和电力运行的中低压电网中 唐振华 (福建省万维新能源电力有限公司福建福州 350003) 摘要:谐振过电压是因电网储能参数—电感和电容匹配符合谐振条件而引起的过电压。在电力生产和电力运行的中低压电网中,由于故障的形式和操作方式是多种多样的,谐振性质也各不相同。因此,应该了解各种不同类型谐振的性质与特点,掌握其振荡的性质和特点,并制订防振和消振的对策与措施。 关键词:谐振过电压;预防;技术措施 1.谐振的危害性 在电力供电电网上,谐振过电压在正常运行操作中出现频繁,其危害性较大;过电压一旦发生,往往造成电气设备的损坏和大面积的停电事故。多年电力生产运行的记载和事故分析表明,中低压电网中过电压事故大多数都是由谐振现象所引起的。由于谐振过电压作用时间较长,所引起谐振现象的原因又很多,因此在选择保护措施方面造成很大的困难。为了尽可能地防止谐振过电压的发生,在设计和操作电网设备时,应进行必要的估算和安排,以免形成严重的串联谐振回路;或采取适当的防止谐振的措施。 目前变电站大部分采用中性点不接地方式运行,而最常见的谐振过电压就是发生在中性点不接地系统中。从电网的运行实践证明,中性点不接地系统中由于电压互感器铁心饱和引起的铁磁谐振过电压比较多,尽管采取了不少限制谐振过电压的措施,如:消谐灯、消谐器、PT高压中性点增设电阻或单只PT等,但始终没有从根本上得到解决,PT烧毁、熔丝熔断仍不断发生;另一方面由于中性点不接地运行方式的主要特点是单相接地后,允许维持一定的时间,一般为2小时,不致于引起用户断电,但随着中低压电网的扩大,出线回路数增多、线路增长,中低压电网对地电容电流亦大幅度增加,单相接地时接地电弧不能自动熄灭必然产生电弧过电压,一般为3—5倍相电压甚至更高,致使电网中绝缘薄弱的地方放电击穿,并会发展为相间短路造成设备损坏和停电事故。 2.产生谐振过电压的因素 2.1互感器铁磁谐振过电压的因素 电压互感器伏安特性的影响。铁芯电感的伏安特性愈好,即铁芯饱和得愈慢,也即谐振所需要的阻抗参数XC0/XL愈大;反之,谐振所需XC0/XL愈小。考虑到电力系统中运行着的电压.互感器及系统的具体情况总与模拟情况有差异,因此,对于不同型号、不同出厂日期、不同厂家制造的电压互感器,其谐振区域应根据实际试验加以确定。 电压互感器损耗的影响。运行着的互感器,一般损耗较大,例如,35kV的互感器其阻尼系数r/XL为>15/10000.损耗电阻大,可以吸收一部分能量,对谐振有一定的抑制作用,特别是对1/2频谐振,这种抑制作用很明显。 电压互感器结构的影响。现场运行着的电压互感器,既有三台单相电压互感器组,也有三相五柱电压互感器,它们在谐振激发上是不同的。试验研究表明,单相电压互感器组的起振电压较三相五柱电压互感器的低,也就是说,单相电压互感器组容易激发谐振。这主要是由于两者碰路结构的差异,造成零序阻抗不同所致。 单相互感器组零序磁通的磁路和正序磁通的磁路一样,每相都有自己的闭合回路,因而零序阻抗等于正序阻抗。对三芯玉柱电压工感器,由于零序磁通经过两个边往返回,所以其磁路长,而且铁芯截面小,因而其零序磁通磁阻较单相互感器组要大得多。由上所述,谐振是由于零序磁通造成的,三芯五柱互感器零序磁通遇到的磁阻大,谐振就不容易产生。 应当指出,由于磁路的差异,计算和测量这两类电压互感器零序阻抗时所用的电压是不同的。由于电网发生谐振时,作用在电压互感器上的电压是正序电压与零序谐振电压的选加,对于单相互感器组,正序电压和零序电压合成下的服抗值接近干线电压下的阻抗值,因此,XL为额定线电压下的激磁感抗。对于三芯玉柱互感器,零序电压接近于相电压,正序电压对零序电压阻抗影响不大,所以应取相电压下的相应感抗值。 2.2电网零序电容的影响 实践可知,谐振区域与阻抗比XC0/XL有直接关系,对于1/2分频谐振区,阻抗XC0/XL约为0.01~0.08;基波谐振区,XC0/XL约为0.08~0.8;高频谐振区,XC0/XL约为0.6~3.0.当改变电网零序电容时,XC0/XL 随之改变,回路中可能出现由一种借振状态转变为另一种谐振状态。如果零序电容过大或过小,就可以脱离谐振区域,谐振就不会发生。在现场,一般可以测量出电网的对地电容电流,进而计算出对地电容,由XC0/XL估算该电网是否处于谐振区。若在诸振区,再进一步判定可能是哪一种谐振。除上述情况外,电网零序电容还对谐振过电压、过电流的大小和谐振频率有一定影响。 2.3其他影响因素 激发程度。实际激发试验表明,即使阻抗参数XC0/XL落在诸振区域内,也并不是每次都能激发起稳定的谐振。这是因为谐振的产生不仅与XC0/XL有关,还与电压冲击、涌流大小、合闸相角等激发因素有关。激发程度不同时,互感器饱和程度有异,因此谐振特性就不相同。 回路的阻尼作用。当激发起中性点不稳定过电压后,元论是基波、三次谐波还是1/2分次谐波谐振,总是由电源供给谐振所需的能量。如果输入和输出的能量得以平衡,诸波将维持下去;如果能量平衡关系一旦被破坏,则谐振便会自动消除。根据谐振原理,增大回路电阻可使诸振区域缩小,维持谐振所需的电压提高,从而能阻尼振荡。 电网频率的变动。电网频率的变化,使谐振回路中的阻抗参数发生变化,是导致谐振现象不稳定的重要原因。 电网频率变动可能使谐振现象突然发生;突然消失;也可能使谐振由一种状态转变为另一种状态。 3.采取措施 一是防止电压互感器铁磁谐振措施。选择励磁特性好的电压互感器,使其工作点在伏安特性的线性部分,当有激发因素时,铁芯不饱

职业病预防措施示范文本

职业病预防措施示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

职业病预防措施示范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 一、目的 1、为有效预防、控制和消除作业环境中的职业病危害 因素,规范职业健康监护,预防职业病的发生,特制订本 制度。 2、本制度规定了对生产作业环境中职业病危害因素 预防治理的要求、接触职业病危害因素作业人员的健康监 护及职业病诊断治疗的管理要点、方法和内容。 二、要求 1、根据分级管理的原则,公司总经理对公司劳动卫 生与职业病防治工作负全面领导责任,各生产单位行政主 要领导对本单位的劳动卫生和职业病防治工作负直接领导 责任;各级领导在任职期间应采取有效措施,对产生作业

环境中的有害因素进行治理,使其达到国家劳动卫生标准。 2、技术部和各生产单位在新建、改建、扩建、技术改造和引进工程项目应严格执行《建设项目职业安全健康管理制度》规定;在推广新技术、采用新工艺、购置新设备和使用新材料(简称“四新”)时,保证劳动卫生条件达到国家有关标准。 三、职责 1、安监部是职业病预防的主管部门,负责制定职业病防治规划和计划;负责委托职业病危害因素的定期监测,按规定做出报告;参与新建、改建、扩建、技术改造和引进工程项目的设计审查和竣工验收。 2、人力资源部是负责组织安排接触职业危害因素人员到职业病防治医院进行就业定期体检,负责建立全职职业健康监护档案。

电力系统分析 第三版 (于永源 杨绮雯 著) 中国电力出版社 课后答案.解析

Chapter 一 1-1、电力系统和电力网的含义是什么?答:电力系统指生产、变换、输送、分配电能的 设备如发电机、变压器、输配电线路等, 使用电能的设备如电动机、电炉、电灯等,以及测量、保护、控制装置乃至能量管理系统所组成的统一整体。一般电力系统就是由发电设备、输电设备、配电设备及用电设备所组成的统一体。 电力系统中,由各种电压等级的电力线路及升降压变压器等变换、输送、分配电能设备 所组成的部分称电力网络。 1-2、电力系统接线图分为哪两种?有什么区别? 答:电力系统接线图分为地理接线图和电气接线图。地理接线图是按比例显示该系统 中各发电厂和变电所的相对地理位置,反映各条电力线 路按一定比例的路径,以及它们相互间的联络。因此,由地理接线图可获得对该系统的宏观印象。但由于地理接线图上难以表示各主要电机、电器之间的联系,对该系统的进一步了解。还需阅读其电气接线图。 电气接线图主要显示系统中发电机、变压器、母线、断路器、电力线路等主要电力元件之间的电气接线。但电气接线图上难以反映各发电厂、变电所的相对位置,所以阅读电气接线图时,又常需参考地理接线图。 1-3、对电力系统运行的基本要求是什么? 答:对电力系统运行通常有如下三点基本要求: 1)保证可靠地持续供电; 2)保证良好的电能质量; 3)保证系统运行的经济性。 1-4、电力系统的额定电压是如何确定的?系统各元件的额定电压是多少?什么叫电力线路的平均额定电压? 答:各部分电压等级之所以不同,是因三相功率S 和线电压U、线电流I 之间的关系为 UI。当输送功率一定时,输电电压愈高,电流愈小,导线等截流部分的截面积愈小, 投资愈小;但电压愈高,对绝缘的要求愈高,杆塔、变压器、断路器等绝缘的投资也愈大。综合考虑这些因素,对应于一定的输送功率和输送距离应有一个最合理的线路电压。但从设备制造角度考虑,为保证生产的系列性,又不应任意确定线路电压。另外,规定的标准电压等级过多也不利于电力工业的发展。考虑到现有的实际情况和进一步的发展,我国国家标准规定了标准电压,即为额定电压。 各元件的额定电压:

敏感用户电压暂降甩负荷原因分析及防范措施

敏感用户电压暂降甩负荷原因分析及防范措施 发表时间:2018-08-13T15:58:52.753Z 来源:《电力设备》2018年第8期作者:葛凯梁1 钟明祥2 王学思3 [导读] 摘要:在本文中,将对敏感用户电压暂降甩负荷这类情况出现的原因进行分析,电压暂降甩负荷在传统工业当中是比较常见的,而在传统工业当中出现电压暂降甩负荷主要由最常见的四种。 (国网浙江省电力有限公司宁波供电公司浙江省宁波市 315000)摘要:在本文中,将对敏感用户电压暂降甩负荷这类情况出现的原因进行分析,电压暂降甩负荷在传统工业当中是比较常见的,而在传统工业当中出现电压暂降甩负荷主要由最常见的四种。因此,在本文中,笔者将针对这四种工业当中常出现的电压暂降率负荷情况,进行针对性的原因分析并提出针对性的预防措施,希望能为广大工作者提供参考。 关键词:敏感用户;电压暂降;甩负荷;原因及预防 1.前言 当然,甩负荷事件并不是偶然发生的,自从2014年底,我国多地就已经发生了低压甩负荷事件,不仅仅为社会造成了极大影响,而且还引起了巨大的经济损失。引起第二次复合的原因有很多,最常见的是因为系统短路,或者是雷击,或者是大容量感应电机突然间启动导致。针对以上几点原因,再坚固的网架结构也不能够避免,因此电压暂降问题,也引起了越来越多的学者专家关注。如何能在保证电力条件的情况下,让电力供应保持持续和优质,成为了一项急需解决的问题。 2.电压暂将甩负荷出现的原因 当传统工业电网在运营过程当中出现电压暂降时,受到影响的主要是电子类设备,这些设备将无法正常工作,进而影响到由这些设备所控制的工业生产流程。而在传统工业当中,引起电压暂降敏感负荷,主要是由以下几个行业所造成的,其中分别是电解铝,钛合金,碳化硅,电石,晶硅,钢铁以及水泥。这几个行业在实际运营以及生产过程当中,都可能会引起电压暂降甩负荷问题。要不要个行各业的企业具有不同的生产特点,以及生产工业,所以导致的电压暂降以及甩负荷现象表现出都大不相同。在下文将对这些行业引起电压增加甩负荷的原因进行详细分析。 对导致电压暂降敏感负荷发生的机理以及发展的程度进行分析,对于工厂内电气设备的改进和对电压暂降,敏感负荷采取抑制性措施,都具有非常重要的作用。根据调查的情况,我们可以知道,电压暂降对于敏感用户所产生的影响机理在很大程度上都是相同的,而造成电压暂降甩负荷所出现的原因,主要可以分为以下四种:第一种是用户使用400伏进线断路器,当断路器失压动作出现跳闸的时候,就很可能造成低压甩负荷现象。第二种情况是工厂能使用D低压辅机对回路交流接触器进行控制,而因为辅机的原因出现控制失误,导致失压跳闸,这时候接触器没有能够按时复归,使电机出现了停运的情况。第三种情况是,设备软件启动装置自身失压保护动作出现,使电机出现了停运的状况。第四种情况下,工厂内设备安装的变频调速器,只能够判断设备是否出现电压跌落,当设备出现跌落时,变频调速器就会判定出现了异常动作,进而应该立刻停止工作,也就是跳闸。 对于电压暂降,变电站能够通过电网电压波动所产生的影响,而感受到出现故障的部位。出现这样的故障是一般会形成多次电压波动冲击,而每次冲击又保持在毫秒级,并且整个事件过程不会超过两秒。在工厂内使用最多的是低压400伏系统,对这种系统来说,其电机自身存在保护逻辑,这个逻辑需要特定动作来进行处罚。而跳闸是因为电机内存在的控制回路内部交流接触器欠励跳闸,这种跳闸将会导致电机出现跳闸。按照国家标准,在启动器中所安装的,或者是进行单独使用的电磁式接触器,在其控制电压的85%和110%内,在任何数值都能够可靠闭合,而接触器所释放和能够完全断开时电压的极限值是额定控制电压的20%-75%之间。在电压暂降甩负荷事件当中,出现电压暂降的电压跌落幅度可能会达到接触器控制电源电压的50%,因为电压跌落幅度较大,已经达到了用户欠压脱扣和低压保护动作所规定的电压值。首先用户的欠压脱扣和低电压保护动作并没有延时瞬时动作,所以就会导致水循环以及空压机等负荷停止运转,进而导致其他关联的生产负荷设备都出现运行停止运转的状况。由此可以看出,当交流接触器控制的范围越大,将出现电压暂降甩负荷情况时,会影响到更多数量的设备,导致的影响也就越大。 3.预防措施 为了能够对电压暂降甩负荷事件进行预防以及防治,需要采取以下措施: 3.1对400V系统进线断路器进行改造 对进线断路器进行改造,现在最主流的一种方法就是在进线侧增加动态电压恢复器,这种方法是现如今国内外都采用的一种普遍方法。通过这种装置能够对动态以及稳态电压所出现的各种波动,例如跌落,浪涌,闪变等进行有效的补偿控制。当敏感负荷增加动态电压恢复器之后,若出现电压骤降现象,在1/4个周期内,该装置就能够对骤降情况进行及时的应对,保证电压达到系统所需要的水平。还有一种方法是对400伏系统总进线断路器进行改造,采用这种方法进行改造,主要是针对三种智能断路器,分别是欠压以及不欠压脱扣功能断路器,另一种是失去压瞬时脱扣断路器。 3.2对交流接触器进行改造 在现场当中,低压电机控制工作运用了非常多的交流接触器,这些接触器在电网出现波动的情况下,会出现跳闸,这些跳闸现象会导致敏感用户的辅机叫刘艳娟,并关联主设备出现跳闸现象,导致整个生产线出现停止运营的。对交流接触器进行改造第一种方法是对其控制回路进行改造。因为在现场,你所使用的是400伏系统的交流电源,当电网出现波动情况时,控制电源也会出现波动,进而导致控制回路的交流接触器出现跳闸的现象,当电压重新恢复之后,许多电机设备还需要进行重新启动,需要几长时间进行恢复,不能够满足生产线继续运行的要求,最终导致主设备停止运转。若是控制电源所选择的电源是不间断电源,那么利用置电源进行供电,当整个电网出现电压波动的时候,控制电源并不会出现波动。为了能够保证在实际的运行过程当中,电机的主要回路在进行长时间的低压运行状态下当出现问题时,能够及时断开,需要增加继电器对主回路电压进行监视。当主回路电压出现异常状况时,低压继电器开始工作,进行延时调整。第二种状况是对带低压延时脱扣功能的接触器进行更换。具有低压延时脱扣电功能的接触器,能够在雷击或者是短路重合的状况下,使供电系统瞬间失去电压,而且失去电压的时候又不脱扣,当停电时间超过一定限度时,电源电压会降低到接触器维持电压限度以下,这时接触器的主触控头,会出现延时释放的现象,使正在电压波动的时候接触器不会发生脱扣的现象,保证个设备能够在平板电源状态下进行生产活动。 3.3对变频调速器系统进行改造

相关主题
文本预览
相关文档 最新文档