淀粉基生物降解材料
- 格式:doc
- 大小:47.50 KB
- 文档页数:9
淀粉基生物可降解材料的制备生物可降解材料在当今的环保意识高涨的社会中越来越受到人们的重视。
其中,淀粉基生物可降解材料作为一种天然、可再生、生物降解的材料,在环保材料的制备中有着广泛的应用。
本文将围绕淀粉基生物可降解材料的制备方法展开详细探讨。
一、淀粉基生物可降解材料的特性淀粉基生物可降解材料以淀粉为主体,以淀粉降解酶、淀粉酸和植物蛋白质等为助剂的共混物。
该材料不仅具有完全生物降解的特点,而且具有较高的可塑性、可加工性和可降解性等优良特性,在环保材料领域具有广泛的应用前景。
二、淀粉基生物可降解材料的制备方法1.熔融法制备淀粉基生物可降解材料熔融法是一种常见的制备淀粉基生物可降解材料的方法。
该方法将聚乳酸、聚己内酯等在高温条件下与淀粉共混,并在混合物中加入塑化剂、稳定剂等辅助添加剂,经过混合、熔融、挤出成型等工艺步骤后,制得淀粉基生物可降解材料。
2.溶液法制备淀粉基生物可降解材料溶液法是另一种常用的制备淀粉基生物可降解材料的方法。
该方法将淀粉与聚乳酸、聚苯乙烯等有机物质在适宜的溶剂中混合后,经过搅拌均匀、成膜、干燥等步骤,制得淀粉基生物可降解材料。
3.生物法制备淀粉基生物可降解材料生物法是一种新兴的、绿色环保的淀粉基生物可降解材料制备方法。
该方法采用微生物发酵技术,将淀粉经发酵后得到聚羟基丁酸酯等生物塑料,在辅助添加剂的帮助下,制作成淀粉基生物可降解材料,生物法制备的淀粉基生物可降解材料不仅具有良好的可降解性,而且使用过程中不会带来二氧化碳、甲烷等有害气体,具有较好的环保性。
三、淀粉基生物可降解材料的应用淀粉基生物可降解材料在包装、餐具、土壤保护等众多领域有广泛的应用。
以包装材料为例,使用淀粉基生物可降解材料来制作环保餐盒、环保袋等,不仅可以很好地解决传统塑料袋、塑料餐具等存在的环境问题,而且还可以减少资源浪费,达到节能减排的效果。
四、淀粉基生物可降解材料发展的前景淀粉基生物可降解材料作为一种生物基材料,在环保材料领域有着广泛的应用前景。
淀粉基可降解材料的应用及其研究现状徐国皓孟瑶任芯雨张潮发布时间:2023-07-13T04:42:27.662Z 来源:《国家科学进展》2023年5期作者:徐国皓孟瑶任芯雨张潮[导读] 新材料是现代科技发展之本,可降解材料是国家战略性新兴产业发展方向之一。
随着全球对改善环境的诉求越来越强烈,使用生物可降解材料被认为是根治一次性塑料“白色污染”最有效的解决方案。
淀粉属于天然可再生材料,用廉价的淀粉为原料制备各种高价值的生物质材料,不仅实现了淀粉的华丽变身,而且取代了大量难以降解的传统塑料制品,有效参与到“白色污染”治理当中,促进社会生态体系的建设,对中国双碳战略目标以及全球节能减排具有重要意义。
四川省宜宾市翠屏区西华大学四川宜宾 644000摘要:新材料是现代科技发展之本,可降解材料是国家战略性新兴产业发展方向之一。
随着全球对改善环境的诉求越来越强烈,使用生物可降解材料被认为是根治一次性塑料“白色污染”最有效的解决方案。
淀粉属于天然可再生材料,用廉价的淀粉为原料制备各种高价值的生物质材料,不仅实现了淀粉的华丽变身,而且取代了大量难以降解的传统塑料制品,有效参与到“白色污染”治理当中,促进社会生态体系的建设,对中国双碳战略目标以及全球节能减排具有重要意义。
关键词:淀粉;可降解材料;环境保护一、淀粉基可降解材料的概念淀粉基可降解材料是一类新型的可生物降解材料,通常由淀粉等植物性原料制成,经过一系列的工艺处理使其成为可降解材料。
淀粉基可降解材料可以在自然环境中被微生物分解,变成二氧化碳和水等无害物质,不会对环境造成污染。
在制造过程中,需要添加一定的降解剂,以便使其更容易被微生物分解,加快分解速度。
淀粉基可降解材料可以被广泛应用于制造一次性包装材料、餐具、农业覆盖膜等,是当前环保意识逐渐增强的条件下,替代传统不可降解材料的热门选择。
二、淀粉基可降解材料的优势淀粉基可降解材料是一种具有极大优势的环保材料,其应用前景广泛,具有推动环保、可持续发展的重要作用。
生物可降解塑料和淀粉基可降解塑料的比较在当今的塑料业中,可塑性和耐用性是最主要的目标,但塑料被广泛使用产生的环境污染问题变得越来越严重。
在这种情况下,生物可降解塑料和淀粉基可降解塑料成为塑料行业的新选择。
本文将比较这两种可降解塑料的优缺点。
1. 生物可降解塑料生物可降解塑料是指由天然的有机高分子或其混合物构成的塑料,具有生物降解性能。
这种塑料可以在自然条件下进一步分解和转化为水、二氧化碳和基本物质,不会对环境造成污染。
生物可降解塑料的主要材料是玉米、木薯、甘蔗等有机材料。
这些材料可以通过特殊技术转化为生物可降解塑料。
优点:a. 环保生物可降解塑料可以被自然分解,不会在土壤和水中对环境造成污染,并且对人体健康无害。
b. 节约资源与传统塑料相比,生物可降解塑料的生产所需材料少,使用更加节省资源,也能够降低生产成本。
c. 安全生物可降解塑料由天然的材料组成,不含有害物质,对人体健康无害,安全可靠。
缺点:a. 降解速度慢生物可降解塑料需要花费较长的时间来降解,容易导致环境卫生问题和资源浪费。
b. 酸碱敏感生物可降解塑料对酸碱敏感,易被腐蚀。
c. 贮存期短由于生物可降解塑料内部含有微生物,如果贮存时间过长,塑料将会分解,使质量下降。
2. 淀粉基可降解塑料淀粉基可降解塑料是由淀粉与高分子制成的塑料。
淀粉基可降解塑料会随着时间的推移和环境条件的不同而自然交联断裂,使物质降解为水、二氧化碳和其他化合物。
淀粉基可降解塑料是一种强度不高,柔韧性较好的塑料。
优点:a. 环保淀粉基可降解塑料可以在自然条件下降解,而且可以被微生物完全降解,不会产生对环境有害的污染物。
b. 食品级别安全淀粉基可降解塑料可以达到食品级别安全,可用于食品、饮料、药品等领域。
c. 可加工性好淀粉基可降解塑料可以进行成型、吹塑、吸塑等多种加工方式,与传统塑料具有相同的加工性能。
缺点:a. 寿命短淀粉基可降解塑料的寿命比较短,存贮时要注意环境条件,长时间受阳光照射可能导致分解。
68·FOOD INDUSTRY调查 研究 柯琼贤 刘海平 广东省茂名市质量计量监督检测所生物可降解塑料和淀粉基可降解塑料的比较在适宜的生理条件下迅速进行。
淀粉基可降解塑料的原理:物理改性:理改性是指通过淀粉细微化、挤压机破坏淀粉结构或添加偶联剂和增塑剂等添加剂以增加淀粉与通用塑料的相容性;化学改性:化学改性通常是向淀粉分子引入疏水基团,使其在淀粉和合成树脂之间起到增强相容性的作用,改性方法有酯化、羟烷基化或接枝共聚、醚化和交联改性等;淀粉共混塑料:共聚型光解塑料主要通过共聚反应在高分子主链引入羧基型感光基而赋予其光降解特性,并通过调节羧基型感光基因团含量可控制光降解活性;全淀粉塑料:全淀粉型淀粉指以淀粉为主料(占90%以上),不添加任何石油化工原料一类产品。
这里淀粉包括天然淀粉和改性淀粉。
天然淀粉由于分子间存在氢键,溶解性很差,亲水但并不易溶于水,且直接加热时没有熔融过程,300℃以上分解。
优势和存在问题生物塑料可不同程度进行生物降解,且具有良好环保性能、原料再生等市场优势。
生物降解塑料由于有良好的降解性。
淀粉基降解塑料由于较高温度下易急剧降解,因此以淀粉为基材的降解塑料加工温度通常在150℃以下,而一般聚烯烃塑料加工温度多在200℃左右,以此计算相同产量生物降解塑料的加工能耗明显低于普通塑料。
该降解材料在推行低碳经济方面将发挥重要作用。
可生物降解塑料价格相对高昂、某些性能指标与传统塑料还有一定差距,其市场接受度还不是很高。
价格高是生物塑料推广难的最主要原因。
淀粉基可降解塑料存在的问题:成本和性能等方面的问题。
降解不彻底,仍然会造成环境污染。
填充型和双降解塑料的主要成分是合成树脂,所以它们只能不完全降解,降解的结果导致材料整体力学性质大幅度降低而崩溃成碎片或呈网架式结构,其碎片更加难以收集处理。
虽力学性能已达到传统塑料的标准,但因淀粉本身具有吸水性,所以材料回潮吸水导致其力学性能严重下降,且淀粉含量越高,问题越严重。
淀粉_聚酯体系⽣物可降解材料淀粉/聚酯体系⽣物可降解材料马骁飞,于九皋*(天津⼤学理学院,天津 300072)摘要:主要从淀粉/聚酯共混、聚酯淀粉聚酯复合层、交联及⽣物降解性⽅⾯综述了近年来淀粉/聚酯体系的⽣物可降解材料的研究进展。
关键词:淀粉;聚酯;复合层;⽣物降解聚合物材料是上个世纪发展最为迅速的材料,但是⼤多数聚合物都是来源于⽯油这种不可更新能源。
⾯对全球能源危机和持续增长的环境污染,⽣产新型可⽣物降解聚合物的要求越来越迫切。
来源于农业资源的天然聚合物具有原料可更新,产品可⽣物降解、⽆污染等特点,近⼗年来成为众多学者的研究对象。
淀粉产量丰富、价格便宜、易⽣物降解,通常以颗粒形式存在于⽟⽶、⼩麦、⼤⽶和⼟⾖等⼤量植物中[1]。
直链淀粉和⽀链淀粉是淀粉颗粒的两种主要组分,直链淀粉相当于⼀个链状分⼦,其中包含有数百个 1,4连接的D 吡喃葡萄糖单元;⽀链淀粉是⼀种⾼度⽀化的分⼦,由短链多糖(10 ~50残基)通过l~6⽀化点(5%~6%的总链段)连接到⼀起,是⼀种树形结构[2,3]。
淀粉中两种组分的⽐例对淀粉的性能有很⼤影响,直链淀粉含量增加,颗粒结晶度下降。
有实验证明在淀粉颗粒内部[4,5],直链淀粉多数不参与形成有序结构,⽽是形成部分⽆定型区域。
淀粉是多羟基聚合物,每个葡萄糖结构单元中的2,3,6位碳上含有羟基,形成了⼤量的分⼦内、分⼦间氢键,需要加⼊增塑剂(如,⽔和多元醇)降低淀粉分⼦间作⽤⼒以提⾼加⼯性能。
实际上,纯热塑性淀粉(不含合成聚合物)可以⽤传统⽅法加⼯成塑料,但是纯淀粉塑料的强亲⽔性使其对湿度⼗分敏感低湿度环境中,增塑剂会从产品中扩散出来,使产品变脆;⾼湿度环境时,⽔会扩散进⼊产品,改变产品形状、降低⼒学性能。
另外,弹性低和回缩性⾼也是淀粉的弱点。
具有良好实⽤性能的新型可⽣物降解合成聚合物是解决环境问题的⼀种⽅法。
聚合物的⽣物降解是指在微⽣物活性(有酶参与)的作⽤下,酶进⼊聚合物的活性位置并渗透到聚合物的作⽤点后,使聚合物⽔解,⼤分⼦⾻架断裂成⼩的链段,最终成为⼩分⼦稳定产物。
淀粉基生物降解材料的研究与应用随着环境保护意识的提升和可持续发展的迫切需求,生物降解材料逐渐成为了材料科学领域的热门研究方向。
淀粉作为一种常见的天然高分子材料,由于其良好的生物可降解性和丰富的来源,成为了许多研究者的关注点之一。
本文将着重探讨淀粉基生物降解材料在研究与应用上的进展。
1、淀粉基生物降解材料制备技术的发展淀粉基生物降解材料的制备技术主要包括两种——化学合成和生物制备。
化学合成法是通过将淀粉与聚合物、交联剂等进行混合后进行反应,形成淀粉基复合材料。
这种方法制备的复合材料具有良好的物理性能和化学稳定性,但是却有毒性大、易污染等缺点。
生物制备法则是利用微生物酶的催化作用,将淀粉作为基质,与微生物发酵产生的高分子以及其他添加物进行混合反应,制得淀粉基生物降解材料。
这种方法由于原料来源广泛、环境影响小,针对性强等优势,因此越来越受到研究者的青睐。
2、淀粉基生物降解材料的应用领域淀粉基生物降解材料的应用领域主要包括包装材料、农用膜等多个领域。
首先,淀粉基生物降解材料在包装材料领域得到了广泛的应用。
常见的一次性餐具、外卖餐盒等都是采用淀粉基材料制作,具有良好的环保性能,同时在淀粉与其他材料复合后,还增强了材料的强度和耐热性能。
其次,淀粉基生物降解材料也在农用膜制备方面得到了广泛的应用。
生产农用膜时采用淀粉作为基质,通过添加微生物和其他助剂,制得具有优秀的降解性和生物安全性能的农用膜,可以有效减少传统农膜在土壤中的环境污染和对生态系统造成的负面影响。
3、淀粉基生物降解材料的未来发展方向虽然淀粉基生物降解材料在环境保护和可持续发展方面具有广阔的应用前景,但目前还存在一些问题需要解决。
首先,淀粉材料本身具有较低的物理性能,如强度、耐水性等,一些复合材料的添加虽然使其性能得到提升,但同时也增加了制备成本。
其次,淀粉基材料还存在与食品接触时的健康安全问题,需要进一步加强研究。
因此,淀粉基生物降解材料的未来方向应该是开发新型复合材料,以提高材料的物理性能、生物降解性和生物安全性。
淀粉基生物降解材料work Information Technology Company.2020YEAR海南大学毕业论文(设计)题目:淀粉基生物降解材料学号: 20110402310001姓名:陈广平年级: 2011学院:材料与化工学院专业:高分子材料与工程(塑料)指导教师:赵富春完成日期: 2014 年 11 月 23 日淀粉基生物降解材料摘要淀粉基生物降解材料是一类很重要的可降解高分子材料。
随着08年政府大力发展可降解塑料政策的出台,淀粉基生物降解材料近几年得到了飞速的发展,各类研究成果层出不穷。
淀粉与高分子材料复合方法,淀粉的改性方法也多种多样。
本文着重介绍淀粉基生物降解材料的一些基本知识:淀粉基生物降解材料的结构与性质、生物降解的定义及原理、降解性能的影响因素、应用与发展…等。
关键词:淀粉生物降解降解性能应用与发展合成高分子材料具有质轻、强度高、化学稳定性好以及价格低廉等优点,与钢铁、木材、水泥并列成为国民经济的四大支柱[1]。
然而,在合成高分子材料给人们生活带来便利、改善生活品质的同时,其使用后的大量废弃物也与日俱增,给人类赖以生存的环境造成了不可忽视的负面影响[2]。
另外,生产合成高分子材料的原料一一石油也总有用尽的一天,因而,寻找新的环境友好型材料,发展非石油基聚合物迫在眉睫,而淀粉基可生物降解材料正是解决这两方面问题的有效途径。
1、淀粉的基本性质淀粉以葡萄糖为结构单元,分子链呈顺式结构,一般分为直链淀粉和支链淀粉两种。
直链淀粉是以ɑ一1, 4-糖苷键连接D一吡喃葡萄糖单元所形成的直链高分子化合物,而支链淀粉是在淀粉链上以ɑ一1, 6-糖苷键连接侧链结构的高分子化合物,分子量通常要比直链淀粉的大很多。
通常玉米淀粉中直链淀粉占28%,分子量大约为(0.3×106-3×106),占72% 的支链淀粉分子量则可以达到数亿[3、4]淀粉是一种多羟基化合物,每个葡萄糖单元上均含有三个羟基。
2024年淀粉基生物降解塑料市场分析现状1. 引言淀粉基生物降解塑料是近年来受到广泛关注的一种环保材料。
相比于传统的石油基塑料,淀粉基生物降解塑料具有良好的可降解性和可再生性,对环境的影响更小。
本文将对淀粉基生物降解塑料市场的现状进行分析,并展望未来的发展趋势。
2. 市场规模淀粉基生物降解塑料市场在过去几年中保持着快速增长的势头。
根据市场调研机构的数据显示,2019年全球淀粉基生物降解塑料市场规模达到XX亿美元。
预计到2025年,这一市场规模将增长至XX亿美元,年复合增长率超过XX%。
主要驱动市场增长的因素包括严格的环境法规、消费者的环保意识提升以及淀粉基生物降解塑料的应用领域不断扩大等。
3. 市场分析3.1. 区域分析全球淀粉基生物降解塑料市场在不同地区呈现出差异化的特点。
•北美地区:北美是淀粉基生物降解塑料的主要市场之一。
在北美地区,强制法规和消费者对环境保护的高度认识推动了淀粉基生物降解塑料市场的发展。
预计未来几年该市场规模将持续增长。
•欧洲地区:欧洲地区是淀粉基生物降解塑料行业的中心之一。
欧洲各国政府鼓励使用淀粉基生物降解塑料,并制定了一系列环境保护法规来推动其市场发展。
预计未来几年该市场规模将继续扩大。
•亚太地区:亚太地区是全球淀粉基生物降解塑料市场增长最快的地区之一。
该地区的快速工业化和人口增长导致了对环境友好产品的需求增加。
预计未来几年该市场将保持强劲增长。
3.2. 应用领域分析淀粉基生物降解塑料在各个领域都有广泛的应用。
•包装材料:淀粉基生物降解塑料在食品包装、日用品包装等领域得到广泛应用。
其可降解性可以减少对环境的负面影响。
•农业领域:淀粉基生物降解塑料在农业领域的应用主要体现在地膜和农膜等方面。
使用淀粉基生物降解塑料制作的地膜可以降低土壤污染风险。
•医疗领域:淀粉基生物降解塑料在医疗领域有一定的应用潜力。
它可以用于一次性手术器械和医疗包装等方面,减少医疗废弃物产生。
4. 发展趋势未来的淀粉基生物降解塑料市场将呈现以下发展趋势:•技术创新:随着技术的不断进步,新型淀粉基生物降解塑料材料将不断涌现。
淀粉基生物降解材料淀粉基生物降解材料是一种新型的环保材料,它具有良好的生物降解性能,对环境友好,广泛应用于塑料制品、包装材料、土壤修复等领域。
本文将从淀粉基生物降解材料的定义、特点、应用和发展前景等方面进行探讨。
首先,淀粉基生物降解材料是以淀粉为主要原料制成的生物降解材料。
淀粉是一种天然的生物高分子化合物,具有良好的生物降解性和可再生性,是制备生物降解材料的理想选择。
淀粉基生物降解材料不仅可以降解成二氧化碳和水,还可以在一定条件下被微生物降解,对环境不会造成污染。
其次,淀粉基生物降解材料具有良好的可加工性和成型性,可以通过注塑、挤出、吹塑等工艺制备成各种形状的制品,如餐具、包装袋、一次性餐盒等。
这些制品不仅可以满足人们的日常生活需求,而且在使用后可以自然降解,减少了对环境的影响。
此外,淀粉基生物降解材料还具有良好的生物相容性和生物活性,可以应用于医疗领域,制备生物降解的医用材料,如缝合线、骨修复材料等。
这些材料不仅可以降低手术对患者的创伤,而且在术后可以自然降解,减少了二次手术的风险。
最后,淀粉基生物降解材料的发展前景十分广阔。
随着人们对环境保护意识的提高,对生物降解材料的需求将越来越大。
淀粉基生物降解材料作为一种环保材料,将在塑料替代、包装材料、医用材料等领域得到广泛应用。
同时,随着生物技术和材料科学的不断发展,淀粉基生物降解材料的性能和加工工艺将得到进一步提升,为其应用提供更广阔的空间。
综上所述,淀粉基生物降解材料具有良好的生物降解性能、可加工性和生物相容性,具有广阔的应用前景。
相信随着相关技术的不断进步,淀粉基生物降解材料将会在各个领域得到更广泛的应用,为推动可持续发展做出更大的贡献。
生物可降解塑料和淀粉基可降解塑料的比较比较生物可降解塑料和淀粉基可降解塑料生物可降解塑料和淀粉基可降解塑料是目前应用比较广泛的可降解塑料之一。
它们具有一些共同的优势,比如可以代替传统的塑料制品。
但它们也有不同之处。
本文将对它们进行比较。
1. 介绍生物可降解塑料和淀粉基可降解塑料生物可降解塑料:它是指通过生物降解或者较慢的土壤降解来达到可降解的目的。
它通常采用生物来源材料,如淀粉、木材或者蔗糖为原料生产而成。
生物可降解塑料是将生物质转化成高分子材料的一种途径,因为这些材料都可以通过微生物的代谢方式降解成二氧化碳和水等无害的物质。
淀粉基可降解塑料:淀粉基可降解塑料是一种以淀粉为基础的塑料,主要由淀粉和改性聚乳酸组成。
淀粉是一种具有天然可再生性的高分子材料,可以循环利用,因此淀粉基可降解塑料对环境的影响更小。
2. 生产工艺生物可降解塑料的生产工艺相对较为简单,是利用微生物发酵技术把生物质转化成塑料。
而淀粉基可降解塑料的生产工艺较为复杂,需要淀粉和聚乳酸进行改性,然后再通过挤出、注塑、吹塑等工艺制造塑料制品。
3. 性能生物可降解塑料和淀粉基可降解塑料的性能存在一定差异。
生物可降解塑料具有较好的降解性能,适用于一次性塑料袋等产品。
而淀粉基可降解塑料的降解速度相对较慢,适用于耐用性产品制造,如农用薄膜、手套等。
4. 环保性生物可降解塑料和淀粉基可降解塑料的环保性表现出较大的差异。
生物可降解塑料可以完全降解,其降解后的二氧化碳等气体对环境和生态系统不会造成影响。
而淀粉基可降解塑料的降解速度较慢,因此会对环境产生一定的污染,尤其是在淀粉含量较低的情况下。
综上所述,生物可降解塑料和淀粉基可降解塑料的选择应根据产品的使用情况、环保要求等综合考虑。
同时,应通过加强科研投入和技术创新,提高可降解塑料的性能、减少其生产过程中对环境的影响,为人类和环境做出更大的贡献。
生物可降解塑料与淀粉基可降解塑料的比较与优缺点生物可降解塑料和淀粉基可降解塑料是可持续发展中备受瞩目的两种塑料,前者是采用生物来源材料制成的高分子聚合物,具有较好的可降解性;后者是主要由淀粉和改性聚乳酸等材料组成。
生物可降解材料在环境污染治理中的应用随着人类社会的不断发展,环境污染已成为我们面对的一个重要问题。
与此同时,塑料、纸张等各类垃圾的积累也给环境带来了严重的影响。
因此,生物可降解材料的出现在治理环境污染方面提供了有力的帮助。
本文就生物可降解材料在环境污染治理中的应用进行介绍。
一、生物可降解材料的概念与特点生物可降解材料是指能够在特定环境中通过生物作用、化学反应或光照等作用而自然分解成无害的物质。
与传统的塑料、纸张等垃圾不同,生物可降解材料具有以下特点:1. 环保:生物可降解材料是在自然环境中可以自然分解的,不会对环境造成污染。
2. 能够降解:生物可降解材料的分子结构简单,能够被微生物降解成水、二氧化碳、有机肥料等无害物质。
3. 原材料可再生:生物可降解材料大多以天然高分子物质为原材料,如淀粉、纤维素等,其制造过程具有良好的循环环保性。
4. 功能齐全:生物可降解材料具有与传统材料相近的机械性能、透明度和耐温性等。
二、生物可降解材料的种类与应用生物可降解材料的种类繁多,主要包括淀粉基生物可降解材料、PHA类生物可降解材料、聚乳酸生物可降解材料等。
1. 淀粉基生物可降解材料淀粉基生物可降解材料是以淀粉为原料,通过化学、物理等方法加工而成。
淀粉基材料可完全降解,无毒害,不污染环境,是目前应用较广的生物可降解材料之一。
淀粉基生物可降解材料在食品茶叶、医药、环保等领域有着广泛的应用。
2. PHA类生物可降解材料PHA类生物可降解材料是一类具有良好生物可降解性的热塑性聚酯,是微生物合成的储存物质,同时也是天然环境中不同细菌和蓝细菌的重要代谢产物。
PHA类生物可降解材料广泛应用于医疗、环保、食品等领域。
3. 聚乳酸生物可降解材料聚乳酸是一种可生物降解的合成材料,是由乳酸分子通过加热或高压反应得到的。
聚乳酸材料广泛应用于一次性餐具、医用缝合线等领域。
总而言之,生物可降解材料具有广泛的应用前景,可以在一定程度上解决环境污染和能源危机问题,从而提高可持续发展水平。
全降解吹膜材料成分
生物降解塑料是指一类由自然界存在的微生物如细菌、霉菌(真菌)和藻类的作用而引起降解的塑料。
理想的生物降解塑料是一种具有优良的使用性能、废弃后可被环境微生物完全分解、最终被无机化而成为自然界中碳素循环的一个组成部分的高分子材料。
生物降解塑料的成分主要有以下几种:
1. 淀粉基生物降解塑料:淀粉基生物降解塑料是淀粉经过化学改性而成,主要有以下两种类型:
- 热塑性淀粉塑料:淀粉经过塑化处理后,加入少量的增塑剂等助剂,形成的塑料。
- 淀粉塑料:淀粉经过化学处理后,形成的具有一定水溶性的塑料。
2. 聚乳酸(PLA)生物降解塑料:聚乳酸是以乳酸为主要原料聚合得到的聚合物,具有良好的生物相容性和可降解性。
3. 聚己内酯(PCL)生物降解塑料:聚己内酯是一种半结晶型的热塑性脂肪族聚酯,具有良好的生物相容性和可降解性。
4. 聚丁二酸丁二醇酯(PBS)生物降解塑料:聚丁二酸丁二醇酯是一种脂肪族聚酯,具有良好的生物相容性和可降解性。
5. 聚羟基脂肪酸酯(PHA)生物降解塑料:聚羟基脂肪酸酯是一种微生物合成的聚酯,具有良好的生物相容性和可降解性。
淀粉基生物全降解材料
随着人们对环保意识的提高,生物降解材料越来越受关注。
其中,淀粉基生物全降解材料成为了一种备受关注的材料。
淀粉基生物全降解材料是由玉米淀粉等淀粉类原料制成,经过特
殊工艺处理后,通过微生物作用在自然环境中完全降解后,最终转化
为二氧化碳和水。
这种材料与传统塑料相比,具有良好的可降解性、
环保性和生物相容性。
首先,淀粉基生物全降解材料具有良好的可降解性。
传统塑料在
自然环境中难以分解,不仅会对环境造成危害,还会造成土地的堆积。
而淀粉基生物全降解材料,经过微生物作用后能够完全降解,不会造
成环境污染,是真正的低碳环保材料。
其次,淀粉基生物全降解材料具有良好的环保性。
生产过程中使
用的原料主要是植物淀粉,不像石油基材料一样会造成环境污染,同
时还能够降低温室气体排放。
最后,淀粉基生物全降解材料具有良好的生物相容性。
传统塑料
中很多成分都是有害物质,会对人体造成危害,而淀粉基生物全降解
材料是由天然植物制成的,对人体没有任何影响。
同时,其自然降解
速度也避免了塑料污染对生物的影响。
淀粉基生物全降解材料已经成为了生物降解材料发展的一个重要方向。
我们可以通过减少对塑料的使用,鼓励使用淀粉基生物全降解材料,来保护我们的生态环境,达到可持续发展的目标。
生物基、淀粉基新材料制造市场分析现状概述生物基和淀粉基新材料是近年来兴起的研究热点,具有广阔的市场潜力。
本文将对生物基、淀粉基新材料的制造市场进行分析,了解其目前的现状及未来的发展趋势。
生物基新材料市场现状生物基新材料是以生物质为原料生产的新材料,在可持续发展和环保方面具有明显优势。
目前,生物基新材料在食品包装、农业领域、医疗器械等方面已实现商业化生产和应用。
其中,生物基塑料以其可降解性和可再生性成为热门领域,广泛应用于塑料包装、日用品制造等行业。
另外,生物基纤维材料在纺织、建筑、汽车等领域也有一定的市场份额。
生物基新材料市场受到政策支持和环保意识的提升,呈现出快速发展的态势。
各国政府纷纷出台相关政策,鼓励研发和应用生物基新材料。
例如,欧盟提出了塑料包装的可持续发展目标,要求到2030年,所有包装均应可回收和可重复使用,这为生物基塑料的发展提供了机遇。
然而,在生物基新材料市场中仍存在一些挑战。
首先,生物基新材料的生产成本较高,与传统材料相比仍存在一定差距。
其次,生物基新材料的性能还需要进一步改善,以满足各个行业的需求。
此外,生物基新材料的产业链尚不完善,需要加强相关技术和设备的研发。
淀粉基新材料市场现状淀粉基新材料是以淀粉为主要原料制造的新材料,具有可再生、可降解的特点。
淀粉基新材料广泛应用于食品包装、餐具制造、土壤修复等领域。
食品包装领域是淀粉基新材料的主要应用市场。
淀粉基生物降解塑料具有良好的可降解性、可回收性,可以替代传统塑料包装。
另外,淀粉基材料在医疗、纺织、建筑等领域也有一定应用。
淀粉基新材料市场受到环保意识和消费者需求的推动,快速发展。
越来越多的企业加大投入研发淀粉基新材料,以取代传统塑料材料。
然而,淀粉基新材料的生产过程中仍存在一些技术难题,如稳定性、塑性、耐水性等方面需要进一步优化。
生物基、淀粉基新材料市场未来发展趋势生物基、淀粉基新材料的市场前景非常广阔,未来有望取代传统石化材料成为主流。
生物降解材料的研发和应用近年来,随着环保意识的不断提升,生物降解材料逐渐成为人们关注的热点话题。
因为传统的塑料制品很难被迅速分解,给环境带来很大的压力,而生物降解材料可以被自然界迅速分解,不会对生态环境造成负面影响。
因此,生物降解材料的研发和应用越来越受到人们的关注。
一、什么是生物降解材料?生物降解材料是指可以被细菌等微生物迅速分解为可被自然界吸收利用的化合物材料。
生物降解材料可以分为两类:一类是生物基降解材料,如淀粉和酚醛树脂等;另一类是化学合成降解材料,如聚酯和聚乳酸等。
生物降解材料的研发与应用已经得到很好的发展,生物降解材料已经被广泛应用于医药、食品、农业等领域。
二、生物降解材料的研发生物降解材料的研发早已开始。
随着科技的进步,科学家不断尝试研发出更多更好的生物降解材料以便更好地满足社会需求。
1、淀粉基生物降解材料淀粉基材料是最常见的生物降解材料之一,其独特的多孔结构和化学性质使其成为制造生物降解塑料和各种其他材料的理想原料。
淀粉基材料的优点是在大自然环境下能迅速被分解,不会污染环境。
2、聚酯基生物降解材料聚酯基生物降解材料在最近几年中得到了大量的研究和开发。
聚酯基材料的优点是生产出来的材料可以根据不同的需求来进行初步设计,如提高机械性能和热稳定性等,满足物理需求。
同时,聚酯基材料的分解产物可以被微生物分解为二氧化碳和水,与环境相容。
3、纤维素基生物降解材料纤维素是天然存在的生物质,被用作代替塑料的可持续替代品。
纤维素基材料主要由纤维素和淀粉粉末等天然材料制成,纤维素基材料与普通塑料相比具有更好的可降解性和可持续性,同时还具有良好的生物学降解性能,不会对环境造成垃圾污染。
三、生物降解材料的应用生物降解材料可以被广泛应用,并为人们带来许多便利。
我们现在使用的生物降解材料主要包括以下几个方面:1、医药领域生物降解材料在医药领域的应用主要包括医用细胞外基质、生物医用材料和医疗设备等。
2、食品领域生物降解材料在食品领域主要应用于食品包装、餐具、茶包纸等领域。
可生物降解材料可生物降解材料是指能够在自然环境中被微生物降解而不产生有害物质的材料。
它们在使用过程中不会对环境造成污染,是一种环保型材料。
随着人们对环境保护意识的提高,可生物降解材料在各个领域的应用越来越广泛,比如包装材料、一次性餐具、生活用品等。
本文将介绍可生物降解材料的种类和特点,以及其在各个领域的应用。
一、种类和特点。
可生物降解材料包括淀粉基材料、聚乳酸材料、纤维素基材料等。
这些材料都具有良好的可生物降解性能,能够在一定条件下被微生物降解成二氧化碳和水,不会对环境造成污染。
与传统塑料材料相比,可生物降解材料更加环保,是未来替代传统塑料的重要选择。
二、在包装领域的应用。
可生物降解材料在包装领域有着广泛的应用。
传统塑料包装在使用后往往难以降解,给环境带来严重污染问题。
而可生物降解材料可以有效解决这一问题,被广泛应用于食品包装、日用品包装等领域。
它们不仅具有良好的可生物降解性能,还能有效保护包装物品的质量和安全,成为包装行业的新宠。
三、在一次性餐具领域的应用。
随着餐饮行业的快速发展,一次性餐具的使用量也在不断增加。
然而,传统塑料一次性餐具的大量使用给环境带来了严重的污染问题。
可生物降解材料的出现为解决这一问题提供了新的思路。
可生物降解一次性餐具不仅具有良好的可生物降解性能,还能有效降解成无害物质,对环境没有任何负面影响。
四、在生活用品领域的应用。
可生物降解材料还在生活用品领域有着广泛的应用。
比如生物降解垃圾袋、生物降解洗涤用品等,它们的出现为人们的生活带来了便利的同时,也减轻了对环境的压力。
人们在购买生活用品时,也更加倾向于选择可生物降解材料制成的产品,以实现对环境的保护。
总结。
可生物降解材料的出现为环保产业注入了新的活力,它们的应用不仅可以有效减轻对环境的压力,还可以为人类的生活带来更多的便利。
随着技术的不断进步,相信可生物降解材料在未来会有更广阔的应用前景。
作为文档创作者,我们也应该积极宣传和推广可生物降解材料,为环保事业贡献自己的一份力量。
生物降解材料有哪几种?—蓝晶微生物生物降解材料是指能被自然界中的生物或微生物分解并回归自然界循环的材料。
与传统的塑料材料相比,生物降解材料具有较低的环境负担和更好的可持续性。
现如今,随着环境保护意识的提高,生物降解材料的研究和应用正变得越来越普遍。
下面蓝晶微生物小编来给大家分别介绍几种常见的生物降解材料,希望对大家有所帮助。
第一种是淀粉类降解材料。
淀粉是一种普遍存在于植物中的多糖,它可通过微生物降解成二氧化碳和水。
淀粉类降解材料通常由淀粉制成,具有良好的降解性能和可塑性,并且可以被广泛应用于塑料包装材料、一次性餐具等领域。
第二种是聚乳酸类降解材料(PLA)。
聚乳酸是一种由乳酸分子聚合而成的聚合物,它可以通过微生物的作用迅速降解为二氧化碳和水。
聚乳酸类降解材料不仅具有良好的降解性能,而且机械性能良好,可以用于制作一次性餐具、医疗用品等。
第三种是纤维素类降解材料。
纤维素是植物细胞壁中最主要的组成部分之一,它具有优异的生物可降解性。
纤维素类降解材料通常由纤维素素材制成,广泛用于制造纸张、食品包装等领域。
第四种是聚羟基脂肪酸酯类降解材料(PHA)。
聚羟基脂肪酸酯是一类由羟基脂肪酸分子聚合而成的聚合物,它具有良好的生物可降解性。
聚羟基脂肪酸酯类降解材料可以用于制造塑料袋、农膜等。
第五种是生物基降解聚合物(PBAT)。
生物基降解聚合物是以天然植物油、蔗糖等为原料制备的,具有良好的生物可降解性和可塑性。
生物基降解聚合物可以应用于一次性餐具、包装材料等。
除了以上几种常见的生物降解材料外,近年来还涌现出许多新型的生物降解材料,如聚酯类降解材料、脂肪族聚酯类降解材料等。
这些新材料具有更好的性能和降解性,将为环境保护和可持续发展做出更大的贡献。
总结起来,生物降解材料的种类繁多,每种材料都有其独特的应用领域和优势。
未来,随着技术的不断发展和创新,生物降解材料的研究和应用将进一步推进,为环境保护和可持续发展做出更大的贡献。
海南大学毕业论文(设计)题目:淀粉基生物降解材料学号:20110402310001姓名:陈广平年级:2011学院:材料与化工学院专业:高分子材料与工程(塑料)指导教师:赵富春完成日期:2014 年11 月23 日淀粉基生物降解材料摘要淀粉基生物降解材料是一类很重要的可降解高分子材料。
随着08年政府大力发展可降解塑料政策的出台,淀粉基生物降解材料近几年得到了飞速的发展,各类研究成果层出不穷。
淀粉与高分子材料复合方法,淀粉的改性方法也多种多样。
本文着重介绍淀粉基生物降解材料的一些基本知识:淀粉基生物降解材料的结构与性质、生物降解的定义及原理、降解性能的影响因素、应用与发展…等。
关键词:淀粉生物降解降解性能应用与发展合成高分子材料具有质轻、强度高、化学稳定性好以及价格低廉等优点,与钢铁、木材、水泥并列成为国民经济的四大支柱[1]。
然而,在合成高分子材料给人们生活带来便利、改善生活品质的同时,其使用后的大量废弃物也与日俱增,给人类赖以生存的环境造成了不可忽视的负面影响[2]。
另外,生产合成高分子材料的原料一一石油也总有用尽的一天,因而,寻找新的环境友好型材料,发展非石油基聚合物迫在眉睫,而淀粉基可生物降解材料正是解决这两方面问题的有效途径。
1、淀粉的基本性质淀粉以葡萄糖为结构单元,分子链呈顺式结构,一般分为直链淀粉和支链淀粉两种。
直链淀粉是以ɑ一1, 4-糖苷键连接D一吡喃葡萄糖单元所形成的直链高分子化合物,而支链淀粉是在淀粉链上以ɑ一1, 6-糖苷键连接侧链结构的高分子化合物,分子量通常要比直链淀粉的大很多。
通常玉米淀粉中直链淀粉占28%,分子量大约为(0.3×106-3×106),占72% 的支链淀粉分子量则可以达到数亿[3、4]淀粉是一种多羟基化合物,每个葡萄糖单元上均含有三个羟基。
分子链通过羟基相互作用形成分子问和分子内氢键,因此淀粉具有很强的吸水性。
淀粉与水分子相互结合,从而形成颗粒状结构[4],因此淀粉具有亲水性,但不溶于水,从而大量存在于植物体中。
淀粉是一种高度结晶化合物,分子问的氢键作用力很强,淀粉的糖苷键在150℃时则开始发生断裂,因此其熔融温度要高于分解温度。
2、可生物降解材料的定义及降解原理降解材料是指在材料中加人某些能促进降解的添加剂制成的材料,合成本身具有降解性能的材料以及由生物材料制成的材料或采用可再生的原料制成的材料。
其在使用和保存期内能满足原来应用性能要求,使用后在特定环境条件下,在较短时间内化学结构发生变化,从而引起性能损失的材料[5]。
生物降解材料,亦称为“绿色生态材料”,指的是在土壤微生物和酶的作用下能降解的材料。
具体地讲,就是指在一定条件下,能在细菌、霉菌、藻类等自然界的微生物作用下,导致生物降解的高分子材料[6]。
理想的生物降解材料在微生物作用下,能完全分解为CO2和H2O。
生物降解材料的分解主要是通过微生物的作用,因而,生物降解材料的降解机理即材料被细菌、霉菌等作用消化吸收的过程。
首先,微生物向体外分泌水解酶与材料表面结合,通过水解切断表面的高分子链,生成小分子量的化合物,然后降解的生成物被微生物摄人体内,经过种种代谢路线,合成微生物体内所需要的物质或转化为微生物活动的能量,最终转化成CO2和H2O[7]。
在生物可降解材料中,对降解起主要作用的是细菌、霉菌、真菌和放线菌等微生物,降解作用的形式主要有以下几种[8]:(1) 生物的物理作用,由于生物细胞的增长而使材料发生机械性毁坏;(2) 生物的生化作用,微生物对材料作用而产生新的物质;(3) 酶的直接作用,微生物侵蚀材料制品部分成分进而导致材料分解。
3、淀粉基生物降解塑料普通淀粉粒径为25um左右,既可作为制备降解复合材料的一种填料,又可以通过一定改性处理制备降解塑料。
淀粉基生物降解塑料分为破坏性生物降解塑料和完全生物降解塑料。
前者主要是指将淀粉与不可降解树脂共混,研究开发较早,是淀粉基可降解塑料研究的第一代产品。
后者则包括淀粉与可降解聚酯共混材料和全淀粉塑料两种,这两种材料在使用后均能实现彻底降解,目前是国外生物降解材料开发的主流。
由于淀粉的成本比普通塑料要低很多。
普通食用淀粉的价格为每吨2200元,而通用塑料的价格为每吨13000元,因此开发全淀粉降解塑料是今后淀粉基生物降解材料的大趋势[9]。
3.1破坏性生物降解塑料破坏性生物降解塑料主要是指淀粉填充型降解塑料,将淀粉或变性淀粉作为填料,与聚烯烃等热塑性塑料共混并加入一定添加剂制备的部分降解塑料[10]。
制品在使用后,淀粉部分首先降解,制品崩裂为碎片,因此又称为崩溃性生物降解塑料。
材料破碎后表面积增大,有利于树脂部分的进一步降解。
这类降解塑料研究较早。
早在1973年英国Griffin就以淀粉为填料,直接与聚烯烃进行共混。
此后一些国家以这一方法为依据开发出淀粉填充型生物降解塑料。
但是填充量一般只有5%-30%,增大淀粉含量会导致材料性能无法达到要求。
这是由于天然淀粉分子内含有大量的羟基,属于强极性物质,而聚烯烃的极性较小,两者相容性较差,很容易发生相分离,难以形成连续相[11]。
多年来,很多科学工作者致力于淀粉基生物降解塑料的研究,证明采用淀粉与非极性树脂进行共混,必须对淀粉进行预处理,改变其表面性质和结构特征,才能使两相界面结合很好,从而制备出具有优良性能的产品。
改性处理淀粉的方法主要分为物理改性和化学改性两种:1)物理改性物理改性[12]是指将淀粉进行机械化处理(气流粉碎等),并通过采用偶联剂,表面活性剂和增塑剂等助剂进行改性处理,降低淀粉的极性,在一定程度上提高了两相间的相容性。
同时改性剂本身与淀粉的羟基发生作用,破坏淀粉本身的结晶性,使其刚性减弱,塑性增加,从而改善了淀粉的加工性能。
该方法研究最成功的是加拿大的warnce公司制备的Ecostar母料。
2)化学改性化学改性是指通过在淀粉中加入一定单体,在引发剂和催化剂的作用下,单体与淀粉发生接枝反应,在淀粉分子链引入疏水化基团,在淀粉与合成树脂间起到增容剂的作用,而且接枝淀粉也可进行填充。
化学改性的方法主要有酯化,醚化,接枝共聚或交联改性等方法[13]此外还有其他对淀粉进行改性的方法,例如等离子体法,微波辐射等方法。
Ismael E.Rivero[14]等采用微波辐射的方法将淀粉与辛烯丁二酸酐以不同比例进行反应,然后将其作为淀粉和LLDPE共混体系的相容剂,通过结构和力学性能测试表明加入10%的相容剂能够明显减少淀粉相的大小,同时改进共混体系的力学性能。
淀粉/聚烯烃共混制备工艺简单,对生产条件的要求低,加工设备不需要作太大的改进,在工业化生产方面有很大的优势[15],而且对于及时缓解目前严重的废旧塑料污染问题有很重要的意义。
但是由于复合材料中淀粉填充量较小,复合材料中不可降解部分仍占很大比例,难以实现完全降解,因此该方向对塑料降解的作用会受到一定的限制。
3.2完全生物降解塑料1)淀粉/可降解聚酯共混塑料淀粉/可降解聚酯共混塑料是将淀粉与可降解聚酯如PCL, PV A, PHB或天然高分子纤维素等共混制备,由于聚酯类化合物本身具有生物降解性,因此产品可以完全降解,更有利于环保。
作为降解材料,聚酯类化合物如聚乳酸等己经广泛应用于医学等领域。
然而其力学性能差,成本高的缺点限制了其进一步发展。
如果在聚酯中添加一定量的淀粉,不仅可以使共混塑料的成本降低,而且淀粉的加入在一定程度上改善了聚酯的机械性能[16]。
但是淀粉和聚酯类化合物都是极性化合物,具有很强的亲水性,长时间暴露会导致其性能的下降。
另外淀粉与聚酯之间也同样存在相容性的问题,因此在共混之前添加一定改性剂进行处理也十分必要的。
2)全淀粉塑料全淀粉塑料是指以淀粉作为材料的基体,在淀粉中添加少量的助剂制备而成。
淀粉本身是一种高分子聚合物,分子以顺式排列,结晶温度高,难以直接加工成型。
因此必须在淀粉中加入一些增塑剂等助剂,破坏淀粉与原有的分子结构,使其物理性质和化学性质产生一定改变,从而能够应用生产生活[17]。
例如淀粉在塑化状态下表现出很高的强度和韧性,但是在重新冷却结晶后,则表现为脆性很高,难以进行实际应用。
因此制备全淀粉塑料中,需要对淀粉进行一定变性处理,破坏其高度结晶的结构。
另外全淀粉塑料吸水性很强,在空气中吸收大量水分后,材料难以保持很好的性能。
全淀粉塑料是淀粉基生物降解塑料发展的最新方向,实现全淀粉塑料的应用,对于缓解目前石油能源医乏,解决塑料污染具有很重要的意义。
4、淀粉基生物降解材料降解性能的自身影响因素1)聚合物改性为了使淀粉基生物降解材料在降解前具有一定的力学性能,需要将复合材料组分中的聚合物进行化学改性。
Demirgoz等[18]研究了3种淀粉基降解复合材料:玉米淀粉/乙烯-乙烯醇共聚物(SEV A-C)、玉米淀粉/醋酸纤维素(SCA)和玉米淀粉/聚己内酯( SPCL),通过链交联对这3种复合材料中的聚合物组分进行化学改性,研究了复合材料在盐溶液中的降解行为。
结果表明,复合材料经过交联改性后,共混物的失重率比未改性的聚合物共混物要小,说明交联改性延缓了共混物的降解。
对于淀粉和PLA共混复合材料,将PLA进行改性比如共聚作用,产生酸性物质,使得微生物侵蚀材料,从而可加快复合材料的生物降解[19]。
2)淀粉改性原淀粉由于亲水性太强而不能用于食品包装材料,通过淀粉改性可使淀粉的疏水性增强,这些改性必将影响到淀粉的降解性能。
通过比较原淀粉和淀粉醋酸酯挤出共混物的酶降解性能[20],可知当共混物中淀粉醋酸酯的含量增加时,共混物的降解性能下降,因为淀粉醋酸酯是共混物中疏水的部分,比较难与酶解近,故降解速率在初始阶段有所下降。
Kim [21]通过比较原淀粉(NS) /PE和羟丙基淀粉(HPS) /PE共混物的降解性能,发现HPS/PE共混物更易被热氧化降解,而NS/PE 共混物较难被氧化,因为在加热过程中其羟基指数没有增加。
并且HPS/PE较NS /PE共混物更易被微生物降解,因为HPS/PE的拨基能够进一步参与氧化降解,氧化降解协同微生物降解一起加快了HPS/PE共混物的降解。
3)增溶剂土埋法淀粉/LDPE共混物降解性能显示[22],与未加增容剂相比,加入增容剂MA g PLDPE和AAe g PLDPE后共混物的失重随着增容剂含量的增加而呈现无规律性的变化,表明增容剂对淀粉/LDPE的降解性能有一定的影响,随着MA g PLDPE含量的增加,共混物的降解能力下降。
Bikiaris等[23]研究了增容剂PE g MA对LDPE/热塑性淀粉(PLST)共混物降解性能的影响,失重曲线表明含有增容剂共混物的失重比未含增容剂共混物的失重要略小,说明增容剂对共混物的降解起到一定的限制作用。