第8章最优消费和投资离散时间
- 格式:pptx
- 大小:570.61 KB
- 文档页数:5
第8章 相关分析2. 离散相关与离散序列的卷积运算一样,离散序列的相关运算也可以分为线性相关和循环相关两种类型。
2.1 基本定义线性相互关的计算对应公式(8-1)的离散化形式,计算离散序列][n x 和][n y 的线性互相关,可得:∑+∞-∞=+⋅=i xy n i y i x n r ][][][ (8-6)对有限长度的离散序列][n x ,1,1,0-=L n 、][n y ,1,1,0-=P n ,且二者的长度分别为L 和P 。
那么,有如下公式成立:∑--=+⋅=nP i xy n i y i x n r 10][][][ (8-7)当P n i ≥+时,0][=+n i y ,所以公式(8-7)中的求和上限为n P --1。
因为序列][n r xy 下标n 的取值范围为:11-≤≤-P n M ,所以与线性卷积的长度一样,序列][n x 和][n y 的线性互相关序列的最大长度也是1-+P L 。
与离散Fourier 变换的相关特性对应的是循环相关(或称圆周相关),循环互相关的定义已在第二章中出现过,笔者在下面重新书写一遍。
∑-=+⋅=10])[(][][N i N xy n i y i x n r (8-8)其中,N n i )(+表示)(n i +除以N 的余数,][n r xy 下标n 的取值范围为:2/2/N n N <≤-。
可以利用循环相关来计算两个序列的线性相关,只是要对原有序列进行补零处理。
把长度为L 的序列][n x 和长度为P 的序列][n y 补零后拓展序列长度为N 的新序列][n x 和][n y ,只要满足1-+≥P L N ,两个新序列的循环相关就等同于原有两个序列的线性相关。
与连续函数的互相关函数一样,互相关序列][n r xy 既不是偶序列,也不是奇序列,但满足等式:][][n N r n r yx xy -=。
2.2 快速算法计算两个长度相等的序列的循环相关时,如果直接采用公式(8-8)的定义,计算量是非常大的,尤其在N 较大的情况下。
第8章离散时间信号与系统的z域分析8-1 根据定义求以下序列的单边z变换及其收敛域。
解:根据序列单边z变换的定义即可求出上述信号的z变换及收敛域。
8-2 根据单边z变换的位移性质,求以下序列的z变换及其收敛域。
解:单边z变换的位移特性有以下3种形式(8-1)(8-2)(8-3)对于因果序列的位移,利用式(8-1);非因果序列的位移,利用式(8-2)和(8-3)。
(1)利用因果序列的位移特性,有(2)利用因果序列的位移特性,有(3)利用因果序列的位移特性,有(4)利用因果序列的位移特性,有(5)由于,直接应用指数信号的z变换,可得(6)将改写成,利用因果序列的位移特性,可得8-3 根据z变换的性质,求以下序列的单边z变换及其收敛域。
解:利用z变换的性质求信号z变换的关键是根据待分析信号的构成,确定合适的信号作为基本信号,采用相应的z变换性质。
(1)由,以及z域微分特性,有(2)将改写为利用(1)题结果及因果序列的位移特性,可得(3)将改写为利用的z变换及z域微分特性,有故(4)将改写为利用(3)题结论及因果序列的位移特性,可得(5)将改写为利用卷积特性(6)利用(5)题结果及指数加权特性,有8-4 求以下周期序列的单边z变换。
解:周期为N的单边周期序列可以表示为第一个周期序列及其位移的线性组合,即这样,若计算出的z变换,利用因果序列的位移特性和线性特性,则可求得其单边周期序列的变换为(1)可表示为利用的变换及因果序列的位移特性,可得(2)将改写为利用(1)题的结果及卷积特性,可得8-5 已知,利用z变换的性质,求下列各式的单边z变换及其收敛域。
解:本题的关键是判断各信号是经过什么运算得到的,然后根据其运算,利用相应的z变换性质即可求出它们的z变换。
(1)利用因果序列的位移特性,可得(2)利用指数加权特性,可得(3)利用(1)题结果及指数加权特性,可得(4)利用z域微分特性,可得(5)利用(4)题结果及线性加权特性,可得(6)可以表示为,利用卷积特性可得(7)可以表示为,利用卷积特性可得(8)可以表示为,利用因果序列的位移特性及卷积特性,可得8-6 已知因果序列的z变换式,试求的初值和终值解:利用初值定理和终值定理即可求出的初值和终值。
第八章 离散傅立叶变换8.1 假设()t x c 是一个周期的连续时间信号,其周期为1ms ,它的傅立叶级数为()()∑-=-=9910/23k kt j kc e a t x π. 对于9>k ,傅立叶系数k a 为零,以采样间隔s T 31061-⨯=对()t x c 采样得到[]n x : []⎪⎪⎭⎫⎝⎛=-6103n x n x c .(a) []n x 是周期的吗?如果是,周期为多少?(b) 采样率是否高于奈奎斯特采样率,也就是说T 是否充分小而且可以避免混叠? (c) 利用k a 求出[]n x 的离散傅立叶级数系数。
解:(a )[]∑∑-=-=⎪⎪⎭⎫ ⎝⎛⨯-==⎪⎪⎭⎫ ⎝⎛=--996299610102333610k kn jkk n k j k c ea e a n x n x ππ而() 1,0,62662==+l ee kn jl n k jππ[][]l n x n x 6+=∴∴ []n x 是周期的,周期为6。
(b )30102-=Ωπ而采样频率为03321012106122Ω>=⨯==Ω--πππT 所以T 足够小,而可以避免混叠。
(c )[][]()()()∑∑∑∑∑∑-=---==-=--=-=--=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛==99335995062506299621011k k l k l lk n k l n j l n kn j l nl j l N n knNeea e a e e a w n x k X πππππ 8.2 设[]n x ~是一个周期为N 的周期序列,[]n x ~还是一个周期为3N 的周期序列。
令[]k X ~表示作为周期为N 的周期序列的[]n x ~的DFS 系数,[]k X ~3表示作为周期为3N 的周期序列的[]n x ~的DFS 系数。
(a) 用[]k X ~表示出[]k X ~3。
(b) 用公式计算[]k X ~和[]k X ~3,当[]n x ~为图P8.2中给定的序列时,证明你在(a)中得出的结果。