模拟IC设计流程总结PPT课件
- 格式:ppt
- 大小:2.32 MB
- 文档页数:12
模拟IC设计流程总结IC(集成电路)设计是将大量的电子元件和电路结构集成到一个芯片中,从而实现特定功能的过程。
在IC设计的过程中,主要包括前端设计和后端设计两个阶段。
本文将对IC设计流程进行总结。
1. 需求分析和规划阶段:在这个阶段,首先需要从市场和客户需求出发,进行需求分析,明确集成电路的功能需求和性能要求。
然后进行技术规划,选择合适的工艺和芯片架构,制定项目计划,并确定预算。
这个阶段的关键是明确设计目标和要求。
2. 前端设计阶段:前端设计阶段主要包括电路设计、逻辑设计和验证三个步骤。
电路设计是将电路图转化为电路元件模型,进行电路分析和优化。
设计人员需要根据电路的功能需求,选取合适的电路拓扑结构和电路元件,通过仿真和优化,得到一个满足要求的电路设计。
逻辑设计是将电路设计转化为逻辑功能的描述,通常使用HDL(硬件描述语言)进行设计。
设计人员需要根据电路的功能需求,使用HDL进行逻辑门级的设计和验证,保证逻辑功能的正确性。
验证是对电路和逻辑设计进行功能和性能的验证。
验证可以分为功能仿真和时序仿真两个层次。
功能仿真是对设计的逻辑功能进行验证,可以使用软件仿真工具进行仿真。
时序仿真是为了验证电路的时序特性,包括时钟频率、延迟等参数。
3. 后端设计阶段:后端设计阶段主要包括物理设计和验证两个步骤。
物理设计是将逻辑设计转化为布局设计和布线设计。
布局设计是将电路的逻辑单元进行合理的布置,包括电路的位置、大小和布局。
布线设计是将电路的逻辑单元通过合适的连线进行连接,形成电路结构。
物理设计需要考虑电路的功耗、时序、面积等多个方面的要求。
验证是对物理设计的正确性进行验证。
物理设计可以通过布局、布线规则的检查和仿真,确保物理设计满足电路的功能和性能要求。
4. 芯片制造和测试阶段:芯片制造是将IC设计转化为实际的芯片制造过程。
制造流程包括掩膜制作、衬底制作、外延、掺杂、化学机械抛光、光刻、蚀刻等工艺步骤,最终得到集成电路芯片。
IC模拟IC设计流程对于模拟Asic而言,在进行设计时是不能使用verilog或者其他的语言对行为进行描述,目前已知的可以对模拟电路进行描述的语言大部分都是针对比较底层的针对管级网表的语言,比如在软件hspice和hsim所使用的面向管级网表连接关系的语言——spice。
因此如果使用语言对电路进行描述的话,在遇到比较大型的电路时使用门级或者管级网表就比较麻烦。
所以,一般在进行模拟电路设计的时候可以使用图形化的方法来对模拟电路进行设计。
比较常用的工具有Cadence公司的Virtuso、Laker、Epd(workview),其中Cadence自带有仿真器spectra可以实现从电路图输入到电路原理图仿真,以及根据电路图得到版图并且可以利用cadence的其他工具插件实现完整的版图验证,从而完成整个模拟电路芯片的设计流程。
但是对于Laker和Epd而言,这些软件所能完成的工作只是利用foundry模拟库中基本单元构建模拟电路图,所得到的只是模拟电路的网表,而不能对该模拟电路进行仿真,因此一般在使用laker或者EPD的时候都需要将得到的模拟电路转化为网表的形式,利用第三方的仿真软件进行仿真,比如使用hsim、hspice或者pspice对得到的网表进行仿真。
然后再使用第三方的版图软件进行版图设计和DRC、ERC、LVS检查,所以从设计的方便性上讲使用Cadence的全系列设计软件进行模拟电路设计是最为方便的。
在得到模拟电路的版图后就可以根据版图提取寄生参数了,寄生参数的提取方法和前面所讲的数字电路的版图参数提取是完全相同的,利用提取得到的寄生参数就可以得到互联线所对应的延迟并且将该延迟或者是RC参数反标回模拟电路图中去,从而得到更符合实际版图情况的电路图。
对该电路图仿真就可以完成后仿真,得到更符合实际芯片工作情况的信号波形。
因此,在模拟电路设计中版图设计是非常重要的,一个有经验的版图设计师可以很好将各种模拟效应通过版图来避免,从而在相同设计的情况下得到性能更好的芯片设计。