扭转
- 格式:ppt
- 大小:3.75 MB
- 文档页数:66
第三章 扭 转 1 扭转的力学模型①构件特征——构件为圆截面直杆。
②受力特征——外力偶矩的作用面与杆件轴线相垂直。
③变形特征——杆件各横截面绕杆轴作相对转动。
2圆轴扭转时,横截面上的内力偶矩——扭矩 ①传动轴的速度、传递的功率与外力偶矩之间的关系为{}{}{}minr n KW P M mN e 9950=∙ ②扭矩——构件受扭时,横截面上的内力偶矩,以T 表示。
③扭矩的正负号规定——用右手螺旋法则,扭矩矢量的方向指向截面的为负,背离截面的为正。
④扭矩图——表示圆杆各截面上的扭矩沿杆轴线方向变化规律的图线。
3圆轴扭转时,横截面上的应力、强度条件 (1)横截面上的切应力①分布规律——一点的切应力的大小与该点到圆心的距离成正比,其方向与该点的半径相垂直。
②计算公式 ρτP I T =PP max W TR I T ==τ (2)极惯性矩与扭转截面系数, ①实心圆截面 432D I P π= , 316D W P π=②空心圆截面 ()()444413232αππ-=-=D dDI P ,()44116απ-=D WP式中, Dd =α (3)圆轴扭转的强度条件 []ττ≤=Pmax W T(4)强度计算的三类问题①强度校核 []ττ≤=Pmax W T②截面设计 []τTW P ≥,由P W 计算D⑧许可荷载计算 []P e W M τ≤,由T 计算e M 4.圆轴扭转时的变形,刚度条件 (1)圆轴扭转时的变形小变形时,圆轴的二任意横截面之间仅产生相对的角位移,称为相对扭转角。
① 相对扭转角 ()rad GI TLP=ϕ ②单位长度扭转角 ()m rad GI Tdx d P'==ϕϕ 计算相对扭转角ϕ的公式,应在长度L 范围内,T ,G 和P I 均为常数,若其中任意参数T 或G 或P I 不为常数,则应分段计算ϕ,然后叠加。
2)圆轴扭转时的刚度条件 []()()m GI max T max 'P '0180ϕπϕ≤⨯=5.矩形截面杆扭转的主要结果 (1)横截面上的最大切应力横截面上的最大切应力发生在矩形截面的长边中点处;即 3b Tmax βτ=式中,β为与比值h 有关的系数,可查文献1中表3—1获得。
第四章 扭转§4—1 工程实例、概念一、工程实例1、螺丝刀杆工作时受扭。
2、汽车方向盘的转动轴工作时受扭。
3、机器中的传动轴工作时受扭。
4、钻井中的钻杆工作时受扭。
二、扭转的概念受力特点:杆两端作用着大小相等方向相反的力偶,且作用面垂直杆的轴线。
变形特点:杆任意两截面绕轴线发生相对转动。
轴:主要发生扭转变形的杆。
§4—2 外力偶矩、扭矩一、外力:m (外力偶矩)1、已知:功率 P 千瓦(KW ),转速 n 转/分(r /min ; rpm)。
外力偶矩:m)(N 9549⋅=nPm 2、已知:功率 P 马力(Ps),转速 n 转/分(r /min ;rpm)。
外力偶矩:m)(N 7024⋅=nPm 二、内力:T (扭矩) 1、内力的大小:(截面法)mT m T mx==-=∑002、内力的符号规定:以变形为依据,按右手螺旋法则判断。
(右手的四指代表扭矩的旋转方向,大拇指代表其矢量方向,若其矢量方向背离所在截面则扭矩规定为正值,反之为负值。
)3、注意的问题:(1)、截开面上设正值的扭矩方向;(2)、在采用截面法之前不能将外力简化或平移。
4、内力图(扭矩图):表示构件各横截面扭矩沿轴线变化的图形。
作法:同轴力图:§4—3 薄壁圆筒的扭转 一、薄壁圆筒横截面上的应力(壁厚0101r t ≤,0r :为平均半径) 实验→变形规律→应力的分布规律→应力的计算公式。
1、实验:2、变形规律:圆周线——形状、大小、间距不变,各圆周线只是绕轴线转动了一个不同的角度。
纵向线——倾斜了同一个角度,小方格变成了平行四边形。
3、切应变(角应变、剪应变):直角角度的改变量。
4、定性分析横截面上的应力(1) 00=∴=σε ;(2)00≠∴≠τγ因为同一圆周上切应变相同,所以同一圆周上切应力大小相等。
⑶ 因为壁厚远小于直径,所以可以认为切应力沿壁厚均匀分布,而且方向垂直于其半径方向。
第3章 扭转1、扭转的概念:杆件的两端个作用一个力偶,其力偶矩大小相等、转向相反且作用平面垂直于杆件轴线,致使杆件的任意两个横截面都发生绕轴线的相对转动,即为扭转变形。
2、外力偶矩的计算{}{}{}min /95491000602r KW m N e e n P M P M n=⇒⨯=⨯⨯⋅π 式中,e M 为外力偶矩。
又由截面法:e e M T M T =⇒=-0 T 称为n n -截面上的扭矩。
规定:若按右手螺旋法则把T 表示为矢量,当矢量方向与研究部分中截面的外法线的方向一致时,T 为正;反之为负。
3、纯剪切(1)薄壁圆筒扭转时的切应力 δπττδπ222r M r r M ee =⇒••=(2)切应力互等定理:在单元体相互垂直的两个平面上,切应力必然成对存在,且数值相等;两者都垂直于平面的交线,方向则共同指向或背离这一交线。
(3)切应变 剪切胡克定律:当切应力不超过材料的剪切比例极限时,切应变γ与切应力τ成正比。
γτG = G 为比例常数,称为材料的切变模量。
弹性模量E 、泊松比μ和切变模量G 存在关系:)1(2μ+=EG 4、圆轴扭转时的应力(1)变形几何关系:距圆心为ρ处的切应变为dxd ϕργρ=(2)物理关系:ρτ为横截面上距圆心为ρ处的切应力。
dxd G G ϕρτγτρρρ=⇒= (3)静力关系:内力系对圆心的力矩就是横截面的扭矩:dA d d GdA T AxA⎰⎰==2ρρτϕρ 以p I 表示上式右端的积分式:dA I Ap ⎰=2ρ p I 称为横截面对圆心O 点的极惯性矩(截面二次极矩)横截面上距圆心为ρ的任意点的切应力:pI T ρτρ=ρ最大时为R ,得最大切应力:pI TR =max τ引用记号RI W p t =t W 称为抗扭截面系数。
则tW T =max τp I 和t W 的计算(1)实心轴:3224420032D R d d dA I RAp ππθρρρπ====⎰⎰⎰16233D R RI W p t ππ===(2)空心轴:)1(32)(324444202/2/32αππθρρρπ-=-===⎰⎰⎰D d D d d dA I D d Ap)1(16)(164344αππ-=-==D d D DRI W p t5、圆轴扭转时的变形pGI Tl =ϕ ϕ为扭转角,l 为两横截面间的距离。