高中数学 第二章 函数 2.6 函数单调性与奇偶性的综合应用课件 北师大版必修1
- 格式:ppt
- 大小:1.04 MB
- 文档页数:15
(完整word版)函数单调性与奇偶性的综合应用函数单调性与奇偶性的综合应用【学习目标】掌握函数单调性与奇偶性的关系;用函数单调性与奇偶性解抽象函数不等式.【重难点】用函数单调性与奇偶性解抽象函数不等式.【知识链接】1.函数单调性定义:2.函数奇偶性定义:3.函数单调性与奇偶性的关系:4.函数单调性、奇偶性性质:典例示范:题型一抽象函数的单调性例 1.已知函数()f x对任意,x y R∈,总有()()(),f x f y f x y+=+且当0x>时,()0f x<,2(1).3f=-(1)求证:()f x在R上是减函数;(2)求()f x在[]3,3-上的最值。
变式训练:函数()f x当0x>时有意义,且满足条件(2)1,()()()f f xy f x f y==+,()f x是增函数。
(1)证明(1)0;f=(2)若(3)(48)2f f x+->,求x的取值范围.(完整word 版)函数单调性与奇偶性的综合应用题型二 解抽象函数不等式例1. 已知奇函数()()(),1,1,()1,1y f x x f x =∈--且在上是减函数,解不等式(1)(13)0.f x f x -+-<变式训练:函数()2()1,11ax b f x x +=-+是定义在上的奇函数,且12().25f = (1)确定函数()f x 的解析式;(2)用定义证明()f x 在()1,1-上是增函数; (3)解不等式:(1)()0.f t f t -+<例2。
已知定义在[]2,2-上的偶函数()g x ,当0x ≥时,()g x 单调递减,若(1)()g m g m -<成立,求m 的取值范围。
(完整word版)函数单调性与奇偶性的综合应用变式训练:定义在R上的偶函数()-∞上是单调递增的,若f x在(),022++<-+,求实数a的取值范围.(21)(321)f a a f a a。
2018高考数学一轮复习第2章函数、导数及其应用第3节函数的奇偶性与周期性教师用书文北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018高考数学一轮复习第2章函数、导数及其应用第3节函数的奇偶性与周期性教师用书文北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018高考数学一轮复习第2章函数、导数及其应用第3节函数的奇偶性与周期性教师用书文北师大版的全部内容。
第三节函数的奇偶性与周期性[考纲传真] 1.结合具体函数,了解函数奇偶性的含义。
2.会运用函数图像理解和研究函数的奇偶性。
3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.1.奇函数、偶函数的概念图像关于原点对称的函数叫作奇函数.图像关于y轴对称的函数叫作偶函数.2.奇(偶)函数的性质(1)对于函数f (x),f (x)为奇函数⇔f (-x)=-f (x);f (x)为偶函数⇔f (-x)=f (x).(2)奇函数在关于原点对称的两个区间上有相同的单调性;偶函数在关于原点对称的两个区间上有相反的单调性.(3)如果奇函数y=f (x)在原点有定义,则f (0)=0。
3.函数的周期性(1)对于函数f (x),如果存在非零实数T,对定义域内的任意一个x值,都有f (x+T)=f (x),则f (x)为周期函数.(2)最小正周期:如果在周期函数f (x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x)的最小正周期.(3)若T是函数y=f (x)的一个周期,则nT(n∈Z,且n≠0)也是函数y=f (x)的一个周期.1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×")(1)偶函数图像不一定过原点,奇函数的图像一定过原点.()(2)若函数y=f (x+a)是偶函数,则函数y=f (x)关于直线x=a对称.( )(3)若函数y=f (x+b)是奇函数,则函数y=f (x)关于点(b,0)中心对称.()(4)函数f (x)在定义域上满足f (x+a)=-f (x),则f (x)是周期为2a(a>0)的周期函数.()[答案] (1)×(2)√(3)√(4)√2.已知f (x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b的值是()【导学号:66482035】A.-错误!B.错误!C.错误!D.-错误!B[依题意b=0,且2a=-(a-1),∴b=0且a=错误!,则a+b=错误!。
第二章函数第2.3节函数的单调性教学设计本小节是函数性质之一单调性,揭示了函数图像的趋势,表示了自变量和因变量之间的关系,是数形结合数学思想的基础,与函数的奇偶性呈并列的关系,他俩从不同侧面研究函数性质。
在函数性质中具有举足轻重的地位。
本节利用图像观察推导单调性判断方法,该方法再次体现了数形结合的主要思想。
一.教学目标1、理解函数单调性的概念,会根据函数的图像判断函数的单调性;2、能够根据函数单调性的定义证明函数在某一区间上的单调性。
二. 核心素养1.数学抽象:函数在区间上单调性概念的概述2.逻辑推理:本节课的教学,使学生能理性的描述生活中的增长、递减的现象;通过生活实例感受函数单调性的意义,培养学生的识图能力和数形语言转化的能力。
3.数学运算:判断函数的单调性及证明4.直观想象:通过对函数单调性定义的探究,渗透数形结合的数学思想方法,培养学生的观察、归纳、抽象思维能力。
5.数学建模:本节课的教学,启发学生养成细心观察,认真分析,严谨论证的良好习惯;通过问题链的引入,激发学生学习数学的兴趣,学生通过积极参与教学活动,获得成功的体验,锻炼克服困难的意志,建立学习数学的自信心。
教学重点函数单调性的概念、判断及证明教学难点归纳抽象函数单调性的定义以及根据定义证明函数的单调性PPT1.知识引入函数是刻画变量关系的.研究函数y=f (x )时最关心的问题是:当自变量x 变化时,函数值f (x )随之怎样变化.我们知道,一次函数y = kx+b,当k<0时,在R 上y 值随x 值的增大而减小;当k>0时,在R 上y 值随x 值的增大而增大.一元二次函数和反比例函数也有类似的性质.可见,用增大或减小来刻画函数在一个区间的变化是非常重要的.如下图分析:图2—9是函数f (x )([6,9])x ∈-的图象,直观上可以看出,对于区间[—6, —5],[—2,1],[3,4.5],[7,8],每个区间上函数值f (x )都随x 值的增大而增大;对于区间 [—5 , —2] , [1,3] , [ 4.5,7] , [ 8,9],每个区间上函数值f (x )都随x 值的增大而减小.一般地,在函数y=f (x )定义域内的一个区间A 上,如果对于任意的12,x x A ∈,当x 1<x 2时, 都有f (x 1)<f (x 2),那么就称函数y=f (x )在区间A 上是增函数或递增的;如果对于任意的12,x x A ∈,当x 1思考: 图2-9中,怎样用数学的符号语言表达函数值f(x)在区间[-6, -5]上隨x 值的增大而增大呢?<x 2时,都有f (x 1)>f (x 2),那么就称函数y=f (x )在区间A 上是减函数或递减的.如果函数y=f (x )在区间A 上是增函数或减函数,那么就称函数y=f (x )在区间A 上是单调函数,或称函数y=f (x )在区间A 上具有单调性.此时,区间A 为函数y=f (x )的单调区间.备注:1.概念中应该注意问题:任意的12,x x A ∈(不能写成“存在12,x x A ∈”)2.在单调区间上,增函数的图象是上升的,减函数的图象是下降的.知识扩充:例1设1()(0)f x x x=<,画出f (x+3)(x<—3)的图像,并通过图像直观判断 它的单调性。