初一上册数学线段图形初步易错题
- 格式:doc
- 大小:201.35 KB
- 文档页数:5
一、解答题1.仓库里有以下四种规格且数量足够多的长方形、正方形的铁片(单位:分米).从中选5块铁片,焊接成一个无盖的长方体(或正方体)铁盒(不浪费材料),甲型盒是由2块规格①,1块规格②和2块规格③焊接而成的铁盒,乙型盒是容积最小的铁盒.(1)甲型盒的容积为________立方分米;乙型盒的容积为________立方分米;(直接写出答案)(2)现取两个装满水的乙型盒,再将其内部所有的水都倒入一个水平放置的甲型盒,甲型盒中水的高度是多少分米?(铁片厚度忽略不计)解析:(1)40,8;(2)甲型盒中水的高度是2分米【分析】(1)甲型盒是由2块规格①、1块规格②和2块规格③焊接而成的铁盒,可得一个长为2分米,宽为4分米,高为5分米的长方体,其中规格②为长方体的底,可求体积为40立方分米,乙型盒是容积最小,即长宽高最小,可得到长宽高都为2分米的正方体,体积为8立方分米,(2)甲盒的底面为长2分米,宽为4分米的长方形,根据体积相等,可求出高度.【详解】(1)因为甲型盒是由2块规格①,1块规格②和2块规格③焊接而成的,⨯⨯=(立方分米).所以甲型盒的容积为24540乙型盒容积最小,即长、宽、高最小,因此乙型盒为长、宽、高均为2分米的正方体,⨯⨯=(立方分米),容积为2228故答案为40,8.⨯=(平方分米),(2)甲型盒的底面积为248⨯=(立方分米),两个乙型盒中的水的体积为8216÷=(分米).所以甲型盒内水的高度为1682答:甲型盒中水的高度是2分米.【点睛】考查长方体、正方体的展开与折叠,长方体、正方体的体积的计算方法,掌握折叠后的长方体或正方体的棱长以及体积相等是解决问题的关键.2.如图所示,长度为12cm的线段AB的中点为点M,点C将线段MB分成MC CB=,求线段AC的长度.:1:2解析:8cm【解析】【分析】设MC =xcm ,由MC :CB =1:2得到CB =2xcm ,则MB =3x ,根据M 点是线段AB 的中点,AB =12cm ,得到AM =MB 12=AB 12=⨯12=3x ,可求出x 的值,又AC =AM +MC =4x ,即可得到AC 的长.【详解】设MC =xcm ,则CB =2xcm ,∴MB =3x .∵M 点是线段AB 的中点,AB =12cm ,∴AM =MB 12=AB 12=⨯12=3x , ∴x =2,而AC =AM +MC ,∴AC =3x +x =4x =4×2=8(cm ).故线段AC 的长度为8㎝.【点睛】本题考查了两点间的距离:两点的连线段的长叫两点间的距离.也考查了方程思想的运用.3.如下图,第二行的图形绕虚线旋转一周,便能形成第一行的某个几何体,用线连一连.解析:见解析【解析】试题分析:根据旋转的特点和各几何图形的特性判断即可.试题如图所示:4.如图,直角三角形ABC的两条直角边AB和BC分别长4厘米和3厘米,现在以斜边AC 为轴旋转一周.求所形成的立体图形的体积.解析:6π立方厘米【解析】试题分析:先根据勾股定理求出斜边为5厘米,再用“3×4÷5=2.4厘米”求出斜边上的高,绕斜边旋转一周后所得到的就是两个底面半径为2.4厘米,高的和为5厘米的圆锥体,由此利用圆锥的体积公式求得这两个圆锥的体积之和即可.试题过B作BD⊥AC,∵直角边AB和BC分别长4厘米和3厘米,∴AC=2234=5(厘米),斜边上的高为“3×4÷5=2.4(厘米),所形成的立体图形的体积:132.42 5 =9.6π(立方厘米).5.如图是由若干个正方体形状的木块堆成的,平放于桌面上。
一、初一数学几何模型部分解答题压轴题精选(难)1.点O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O处.(1)如图①,将三角板MON的一边ON与射线OB重合时,则∠MOC=________;(2)如图②,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,求旋转角∠BON和∠CON的度数;(3)将三角板MON绕点O逆时针旋转至图③时,∠NOC=∠AOM,求∠NOB的度数.【答案】(1)25°(2)解:∠BOC=65°,OC平分∠MOB∠MOB=2∠BOC=130°∠BON=∠MOB-∠MON=130°-90°=40°∠CON=∠COB-∠BON=65°-40°=25°(3)解:∠NOC= ∠AOM ∠AOM=4∠NOC ∠BOC=65°∠AOC=∠AOB-∠BOC=180°-65°=115°∠MON=90°∠AOM+∠NOC=∠AOC-∠MON=115°-90°=25°4∠NOC+∠NOC=25°∠NOC=5°∠NOB=∠NOC+∠BOC=70°【解析】【解答】解:(1)∠MON=90,∠BOC=65°∠MOC=∠MON-∠BOC=90°-65°=25°【分析】(1)根据∠MON和∠BOC的度数可以得到∠MON的度数;(2)根据角平分线的性质,由∠BOC=65°,可以求得∠BOM的度数,然后由∠NOM-90°,可得∠BON的度数,从而得解;(3)由∠BOC=65°,∠NOM=90°,∠NOC= ∠AOM,从而可求得∠NOC的度数,然后由∠BOC=65°,从而得解.2.如图,直线m与直线n互相垂直,垂足为O,A、B两点同时从点O出发,点A沿直线m向左运动,点B沿直线n向上运动.(1)若∠BAO和∠ABO的平分线相交于点P,在点A、B的运动过程中,∠APB的大小是否会发生变化?若不发生变化,请求出其值;若发生变化,请说明理由;(2)若△ABO的两个外角的平分线AQ、BQ相交于点Q,AP的延长线交QB的延长线于点C,在点A、B的运动过程中,∠Q和∠C的大小是否会发生变化?若不发生变化,请求出∠Q和∠C的度数;若发生变化,请说明理由.【答案】(1)解:不变化.理由:∵AP和BP分别是∠BAO和∠ABO的平分线,∠AOB=90°,∴∠APB=180°(∠OAB+∠ABO)=180° ×90°=135°(2)解:都不变.理由:∵AQ和BQ分别是∠BAO的邻补角和∠ABO的邻补角的平分线,AP和BP分别是∠BAO和∠ABO的平分线,∴∠CAQ=∠QBP=90°,又∠APB=135°,∴∠Q=45°,∴∠C=45°【解析】【分析】根据角平分线定义和三角形内角和定理得到∠APB=180° −(∠OAB+∠ABO);根据邻补角的平分线互相垂直,得到∠CAQ=∠QBP=90°,由∠APB的度数,求出∠Q和∠C的度数.3.已知:如图1,点M是线段AB上一定点,AB=12cm,C、D两点分别从M、B出发以1cm/s、2cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AM=4cm,当点C、D运动了2s,此时AC=________,DM=________;(直接填空)(2)当点C、D运动了2s,求AC+MD的值.(3)若点C、D运动时,总有MD=2AC,则AM=________(填空)(4)在(3)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.【答案】(1)2;4(2)解:当点C、D运动了2 s时,CM=2 cm,BD=4 cm∵AB=12 cm,CM=2 cm,BD=4 cm∴AC+MD=AM﹣CM+BM﹣BD=AB﹣CM﹣BD=12﹣2﹣4=6 cm(3)4(4)解:①当点N在线段AB上时,如图1,∵AN﹣BN=MN,又∵AN﹣AM=MN∴BN=AM=4∴MN=AB﹣AM﹣BN=12﹣4﹣4=4∴ = = ;②当点N在线段AB的延长线上时,如图2,∵AN﹣BN=MN,又∵AN﹣BN=AB∴MN=AB=12∴ = =1;综上所述 = 或1【解析】【解答】解:(1.)根据题意知,CM=2cm,BD=4cm,∵AB=12cm,AM=4cm,∴BM=8cm,∴AC=AM﹣CM=2cm,DM=BM﹣BD=4cm,故答案为:2,4;(3.)根据C、D的运动速度知:BD=2MC,∵MD=2AC,∴BD+MD=2(MC+AC),即MB=2AM,∵AM+BM=AB,∴AM+2AM=AB,∴AM= AB=4,故答案为:4;【分析】(1)根据运动速度和时间分别求得CM、BD的长,根据线段的和差计算可得;(2)由题意得CM=2 cm、BD=4 cm,根据AC+MD=AM﹣CM+BM﹣BD=AB﹣CM﹣BD可得答案;(3)根据C、D的运动速度知BD=2MC,再由已知条件MD=2AC求得MB=2AM,所以AM= AB;(4)分点N在线段AB上时和点N在线段AB的延长线上时分别求解可得.4.如图1,点O为直线AB上一点,过点O作射线OC,使∠BOC=120°.将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.将图1中的三角板绕点O逆时针旋转至图2,使一边OM在∠BOC的内部,另一边ON仍在直线AB 的下方.(1)若OM恰好平分∠BOC,求∠BON的度数;(2)若∠BOM等于∠COM余角的3倍,求∠BOM的度数;(3)若设∠BON=α(0°<α<90°),试用含α的代数式表示∠COM.【答案】(1)解:∵∠BOC=120°,OM恰好平分∠BOC∴∠BOM=∠BOC=60°又∵∠MON=90°∴∠BON=∠MON−∠BOM=90°−60°=30°(2)解:设的余角为x°,则由题意得:,x=15,3x=45,所以的度数为45°(3)解:(0°< <90°)..【解析】【分析】(1)利用角平分线的定义求出∠BOM的度数,再根据∠BON=∠MON−∠BOM,即可求出结果。
一、初一数学几何模型部分解答题压轴题精选(难)1.已知BM、CN分别是△的两个外角的角平分线,、分别是和的角平分线,如图①;、分别是和的三等分线(即,),如图②;依此画图,、分别是和的n等分线(即,),,且为整数.图①图②(1)若,求的度数;(2)设,请用和n的代数式表示的大小,并写出表示的过程;(3)当时,请直接写出 + 与的数量关系.【答案】(1)解:,∵、分别是和的角平分线,∴∴(2)解:在△中, + ,,(3)解:【解析】【分析】(1)先根据三角形内角和定理求出,根据角平分线求出,再根据三角形内角和定理求出即可;(2)先根据三角形内角和定理求出 + ,根据n等分线求出,再根据三角形内角和定理得出,代入求出即可.(3)本题以三角形为载体,主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质、角平分线的性质、三角形的内角和是的性质,熟记性质然灵活运用有关性质来分析、推理、解答是解题的关键.2.如图1,点O为直线AB上一点,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为________度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)在上述直角三角板从图1逆时针旋转到图3的位置的过程中,若三角板绕点O按15°每秒的速度旋转,当直角三角板的直角边ON所在直线恰好平分∠AOC时,求此时三角板绕点O的运动时间t的值.【答案】(1)90(2)解:如图3,∠AOM﹣∠NOC=30°.设∠AOC=α,由∠AOC:∠BOC=1:2可得∠BOC=2α.∵∠AOC+∠BOC=180°,∴α+2α=180°.解得α=60°.即∠AOC=60°.∴∠AON+∠NOC=60°.①∵∠MON=90°,∴∠AOM+∠AON=90°.②由②﹣①,得∠AOM﹣∠NOC=30°;(3)(ⅰ)如图4,当直角边ON在∠AOC外部时,由OD平分∠AOC,可得∠BON=30°.因此三角板绕点O逆时针旋转60°.此时三角板的运动时间为:t=60°÷15°=4(秒).(ⅱ)如图5,当直角边ON在∠AOC内部时,由ON平分∠AOC,可得∠CON=30°.因此三角板绕点O逆时针旋转240°.此时三角板的运动时间为:t=240°÷15°=16(秒).【解析】【解答】解:(1)由旋转的性质知,旋转角∠MON=90°.故答案是:90;【分析】(1)根据旋转的性质知,旋转角是∠MON;(2)如图3,利用平角的定义,结合已知条件“∠AOC:∠BOC=1:2”求得∠AOC=60°;然后由直角的性质、图中角与角间的数量关系推知∠AOM﹣∠NOC=30°;(3)需要分类讨论:(ⅰ)当直角边ON在∠AOC外部时,旋转角是60°;(ⅱ)当直角边ON在∠AOC内部时,旋转角是240°.3.如图,已知,在的右侧,平分,平分,,所在直线交于点.(1)求的度数.(2)若,求的度数(用含的代数式表示).(3)将线段沿方向平移,使得点在点的右侧,其他条件不变,在图中画出平移后的图形,并判断的度数是否发生改变?若改变,求出它的度数(用含的式子表示);若不改变,请说明理由.【答案】(1)解:∵平分,,.(2)解:如图,过点作∵,,, .∵平分,平分,,,,,..(3)解:如图2为平移后的图形.的度数发生了改变.过点作,平分,平分,,,, .∵,,,,.【解析】【分析】(1)根据角平分线的定义即可求∠EDC的度数;(2)过点E作EF∥AB,根据平行于同一直线的两条直线互相平行得出AB∥CD∥EF,然后根据两直线平行内错角相等,即可求∠BED的度数;(3)∠BED的度数改变.过点E作EF∥AB,先由角平分线的定义可得:∠ABE=∠ABC,∠CDE=∠ADC,然后根据两直线平行内错角相等及同旁内角互补可得:,进而可由求得答案.4.如图,已知AB∥CD,∠A=40°.点P是射线AB上一动点(与点A不重合),CE、CF分别平分∠ACP和∠DCP交射线AB于点E、F.(1)求∠ECF的度数;(2)随着点P的运动,∠APC与∠AFC之间的数量关系是否改变?若不改变,请求出此数量关系;若改变,请说明理由;(3)当∠AEC=∠ACF时,求∠APC的度数.【答案】(1)解:∵AB∥CD,∴∠A+∠ACD=180°,∴∠ACD=180°-40°=140°∵CE平分∠ACP,CF平分∠DCP,∴∠ACP=2∠ECP,∠DCP=2∠PCF∴∠ECF= ∠ACD=70°(2)解:不变.数量关系为:∠APC=2∠AFC.∵AB∥CD,∴∠AFC=∠DCF,∠APC=∠DCP∵CF平分∠DCP,∴∠DCP=2∠DCF,∴∠APC=2∠AFC(3)解:∵AB∥CD,∴∠AEC=∠ECD当∠AEC=∠ACF时,则有∠ECD=∠ACF,∴∠ACE=∠DCF∴∠PCD=∠ACD=70°∴∠APC=∠PCD=70°【解析】【分析】(1)先根据平行线的性质,得出∠ACD=120°,再根据CE、CF分别平分∠ACP和∠DCP,即可得出∠ECF的度数;(2)根据平行线的性质得出∠APC=∠PCD,∠AFC=∠FCD,再根据CF平分∠PCD,即可得到∠PCD=2∠FCD进而得出∠APC=2∠AFC;(3)根据∠AEC=∠ECD,∠AEC=∠ACF,得出∠ECD=∠ACF,进而得到∠ACE=∠FCD,根据∠ECF=70°,∠ACD=140°,可求得∠APC的度数.5.如图①,△ABC的角平分线BD,CE相交于点P.(1)如果∠A=80∘,求∠BPC=.(2)如图②,过点P作直线MN∥BC,分别交AB和AC于点M和N,试求∠MPB+∠NPC的度数(用含∠A的代数式表示).(3)将直线MN绕点P旋转。
(专题精选)初中数学几何图形初步易错题汇编及解析一、选择题1.下列说法,正确的是( )A.经过一点有且只有一条直线B.两条射线组成的图形叫做角C.两条直线相交至少有两个交点D.两点确定一条直线【答案】D【解析】【分析】根据直线的性质、角的定义、相交线的概念一一判断即可.【详解】A、经过两点有且只有一条直线,故错误;B、有公共顶点的两条射线组成的图形叫做角,故错误;C、两条直线相交有一个交点,故错误;D、两点确定一条直线,故正确,故选D.【点睛】本题考查直线的性质、角的定义、相交线的概念,熟练掌握相关知识是解题的关键.2.∠1与∠2互余,∠1与∠3互补,若∠3=125°,则∠2=()A.35°B.45°C.55°D.65°【答案】A【解析】【分析】【详解】解:根据题意得:∠1+∠3=180°,∠3=125°,则∠1=55°,∵∠1+∠2=90°,则∠2=35°故选:A.【点睛】本题考查余角、补角的计算.3.将如图所示的Rt△ACB绕直角边AC旋转一周,所得几何体的主视图(正视图)是()A .B .C .D .【答案】D【解析】解:Rt △ACB 绕直角边AC 旋转一周,所得几何体是圆锥,主视图是等腰三角形. 故选D .首先判断直角三角形ACB 绕直角边AC 旋转一周所得到的几何体是圆锥,再找出圆锥的主视图即可.4.在等腰ABC ∆中,AB AC =,D 、E 分别是BC ,AC 的中点,点P 是线段AD 上的一个动点,当PCE ∆的周长最小时,P 点的位置在ABC ∆的( )A .重心B .内心C .外心D .不能确定【答案】A【解析】【分析】 连接BP ,根据等边三角形的性质得到AD 是BC 的垂直平分线,根据三角形的周长公式、两点之间线段最短解答即可.【详解】连接BP 、BE ,∵AB=AC ,BD=BC ,∴AD ⊥BC ,∴PB=PC ,∴PC+PE=PB+PE ,∵PB PE BE +≥,∴当B 、P 、E 共线时,PC+PE 的值最小,此时BE 是△ABC 的中线,∵AD 也是中线,∴点P是△ABC的重心,故选:A.【点睛】此题考查等腰三角形的性质,轴对称图形中最短路径问题,三角形的重心定义.5.下列图形中,是正方体表面展开图的是()A.B.C.D.【答案】C【解析】【分析】利用正方体及其表面展开图的特点解题.【详解】解:A、B、D经过折叠后,下边没有面,所以不可以围成正方体,C能折成正方体.故选C.【点睛】本题考查了正方体的展开图,解题时牢记正方体无盖展开图的各种情形.6.如图,将矩形纸片沿EF折叠,点C在落线段AB上,∠AEC=32°,则∠BFD等于()A.28°B.32°C.34°D.36°【答案】B【解析】【分析】根据折叠的性质和矩形的性质,结合余角的性质推导出结果即可.【详解】解:如图,设CD 和BF 交于点O ,由于矩形折叠,∴∠D=∠B=∠A=∠ECD=90°,∠ACE+∠BCO=90°,∠BCO+∠BOC=90°,∵∠AEC=32°,∴∠ACE=90°-32°=58°,∴∠BCO=90°-∠ACE=32°,∴∠BOC=90°-32°=58°=∠DOF ,∴∠BFD=90°-58°=32°.故选B.【点睛】本题考查了折叠的性质和矩形的性质和余角的性质,解题的关键是掌握折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应角相等.7.如右图,在ABC ∆中,90ACB ∠=︒,CD AD ⊥,垂足为点D ,有下列说法:①点A 与点B 的距离是线段AB 的长;②点A 到直线CD 的距离是线段AD 的长;③线段CD 是ABC ∆边AB 上的高;④线段CD 是BCD ∆边BD 上的高.上述说法中,正确的个数为( )A .1个B .2个C .3个D .4个【答案】D【解析】【分析】 根据两点间的距离定义即可判断①,根据点到直线距离的概念即可判断②,根据三角形的高的定义即可判断③④.【详解】解:①、根据两点间的距离的定义得出:点A 与点B 的距离是线段AB 的长,∴①正确; ②、点A 到直线CD 的距离是线段AD 的长,∴②正确;③、根据三角形的高的定义,△ABC 边AB 上的高是线段CD ,∴③正确;④、根据三角形的高的定义,△DBC边BD上的高是线段CD,∴④正确.综上所述,正确的是①②③④共4个.故选:D.【点睛】本题主要考查对两点间的距离,点到直线的距离,三角形的高等知识点的理解和掌握,能熟练地运用概念进行判断是解此题的关键.8.下列图形不是正方体展开图的是()A.B.C.D.【答案】D【解析】【分析】根据正方体展开的11种形式对各选项分析判断即可【详解】A、B、C是正方体展开图,错误;D折叠后,有2个正方形重合,不是展开图形,正确故选:D【点睛】本题是空间想象力的考查,解题关键是在脑海中折叠图形,看是否满足条件9.已知点C在线段AB上,则下列条件中,不能确定点C是线段AB中点的是()A.AC=BC B.AB=2AC C.AC+BC=AB D.12 BC AB【答案】C【解析】【分析】根据线段中点的定义,结合选项一一分析,排除答案.显然A、B、D都可以确定点C是线段AB中点【详解】解:A、AC=BC,则点C是线段AB中点;B、AB=2AC,则点C是线段AB中点;C、AC+BC=AB,则C可以是线段AB上任意一点;D、BC=12AB,则点C是线段AB中点.故选:C.【点睛】本题主要考查线段中点,解决此题时,能根据各选项举出一个反例即可.10.在直角三角形ABC中,∠C=90°,AD平分∠BAC交BC于点D,BE平分∠ABC交AC 于点E,AD、BE相交于点F,过点D作DG∥AB,过点B作BG⊥DG交DG于点G.下列结论:①∠AFB=135°;②∠BDG=2∠CBE;③BC平分∠ABG;④∠BEC=∠FBG.其中正确的个数是()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据角平分线性质、三角形内角和定理以及平行线的性质,即可判定①②正确;根据等角的余角相等,即可判定④正确.【详解】∵AD平分∠BAC交BC于点D,BE平分∠ABC交AC于点E,∴∠BAF=12∠BAC,∠ABF=12∠ABC,又∵∠C=90°,∴∠ABC+∠BAC=90°,∴∠BAF+∠ABF=45°,∴∠AFB=135°,故①正确;∵DG∥AB,∴∠BDG=∠ABC=2∠CBE,故②正确;∵∠ABC的度数不确定,∴BC平分∠ABG不一定成立,故③错误;∵BE平分∠ABC,∴∠ABF=∠CBE,又∵∠C=∠ABG=90°,∴∠BEC+∠CBE=90°,∠ABF+∠FBG=90°,∴∠BEC=∠FBG,故④正确.故选:C【点睛】本题考查了角平分线性质、三角形内角和定理、平行线的性质以及等角的余角相等等知识,熟练运用这些知识点是解题的关键.11.如图是画有一条对角线的平行四边形纸片ABCD,用此纸片可以围成一个无上下底面的三棱柱纸筒,则所围成的三棱柱纸筒可能是()A.B. C.D.【答案】C【解析】【分析】由三棱柱侧面展开图示是长方形,但只需将平行四边线变形成一个长方形,再根据长方形围成的三棱柱不能为斜的进行判断即可.【详解】因为三棱柱侧面展开图示是长方形,所以平行四边形要变形成一个长方形,如图所示:又因为长方形围成的三棱柱不是斜的,所以排除A 、B 、D ,只有C 符合.故选:C .【点睛】考查了学生空间想象能力和三棱柱的展示图形,解题关键是抓住三棱柱侧面展开图示是长方形和长方形围成的三棱柱不能为斜的.12.如图,将三个同样的正方形的一个顶点重合放置,如果145∠=°,330∠=°时,那么2∠的度数是( )A .15°B .25°C .30°D .45°【答案】A【解析】【分析】 根据∠2=∠BOD+EOC-∠BOE ,利用正方形的角都是直角,即可求得∠BOD 和∠EOC 的度数从而求解.【详解】∵∠BOD=90°-∠3=90°-30°=60°,∠EOC=90°-∠1=90°-45°=45°,∵∠2=∠BOD+∠EOC-∠BOE ,∴∠2=60°+45°-90°=15°.故选:A .【点睛】此题考查余角和补角,正确理解∠2=∠BOD+EOC-∠BOE 这一关系是解题的关键.13.如图,点C 是射线OA 上一点,过C 作CD ⊥OB ,垂足为D ,作CE ⊥OA ,垂足为C ,交OB 于点E ,给出下列结论:①∠1是∠DCE 的余角;②∠AOB =∠DCE ;③图中互余的角共有3对;④∠ACD =∠BEC ,其中正确结论有( )A .①②③B .①②④C .①③④D .②③④【答案】B【解析】【分析】 根据垂直定义可得BCA 90∠=o ,ADC BDC ACF 90∠∠∠===o ,然后再根据余角定义和补角定义进行分析即可.【详解】解:CE OA ⊥Q ,OCE 90o ∠∴=,ECD 190∠∠∴+=o ,1∠∴是ECD ∠的余角,故①正确;CD OB ⊥Q ,AOB COCE 90∠∠∴==o ,AOB OEC 90∠∠∴+=o ,DCE OEC 90∠∠+=o ,B BAC 90∠∠∴+=o ,1ACD 90∠∠+=o ,AOB DCE ∠∠∴=,故②正确;1AOB 1DCE DCE CED AOB CED 90∠∠∠∠∠∠∠∠+=+=+=+=o Q , ∴图中互余的角共有4对,故③错误;ACD 90DCE ∠∠=+o Q ,BEC 90AOB ∠∠=+o ,AOB DCE ∠∠=Q ,ACD BEC ∠∠∴=,故④正确.正确的是①②④;故选B .【点睛】考查了余角和补角,关键是掌握两角之和为90o 时,这两个角互余,两角之和为180o 时,这两个角互补.14.如图,ABC ∆为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP的长度y与运动时间x之间的函数关系大致是()A.B.C.D.【答案】B【解析】【分析】根据题意可知点P从点A运动到点B时以及从点C运动到点A时是一条线段,故可排除选项C与D;点P从点B运动到点C时,y是x的二次函数,并且有最小值,故选项B符合题意,选项A不合题意.【详解】根据题意得,点P从点A运动到点B时以及从点C运动到点A时是一条线段,故选项C 与选项D不合题意;点P从点B运动到点C时,y是x的二次函数,并且有最小值,∴选项B符合题意,选项A不合题意.故选B.【点睛】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y与x的函数关系,然后根据二次函数和一次函数图象与性质解决问题.15.如图是正方体的表面展开图,请问展开前与“我”字相对的面上的字是()A.是B.好C.朋D.友【答案】A【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“是”是相对面,“们”与“朋”是相对面,“好”与“友”是相对面.故选:A.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.16.一个角的补角比这个角的余角3倍还多10°,则这个角的度数为()A.140° B.130° C.50° D.40°【答案】C【解析】【分析】根据互为余角的两个角的和等于90°,互为补角的两个角的和等于180°,列出方程,然后解方程即可.【详解】设这个角为α,则它的余角为90°-α,补角为180°-α,根据题意得,180°-α=3(90°-α)+10°,180°-α=270°-3α+10°,解得α=50°.故选C.【点睛】本题考查了互为余角与补角的性质,表示出这个角的余角与补角然后列出方程是解题的关键.17.如图,一副三角尺按不同的位置摆放,下列摆放方式中∠α与∠β互余的是()A.B.C.D.【答案】A【解析】【分析】根据同角的余角相等,等角的补角相等和邻补角的定义对各小题分析判断即可得解.A、图中∠α+∠β=180°﹣90°=90°,∠α与∠β互余,故本选项正确;B、图中∠α=∠β,不一定互余,故本选项错误;C、图中∠α+∠β=180°﹣45°+180°﹣45°=270°,不是互余关系,故本选项错误;D、图中∠α+∠β=180°,互为补角,故本选项错误.故选:A.【点睛】此题考查余角和补角,熟记概念与性质是解题的关键.18.若∠AOB =60°,∠AOC =40°,则∠BOC等于()A.100°B.20°C.20°或100°D.40°【答案】C【解析】【分析】画出符合题意的两个图形,根据图形即可得出答案.【详解】解: 如图1,当∠AOC在∠AOB的外部时,∵∠AOB=60°,∠AOC=40°∴∠BOC=∠AOB+∠AOC=60°+40°=100°如图2,当∠AOC在∠AOB的内部时,∵∠AOB=60°,∠AOC=40°∴∠BOC=∠AOB-∠AOC=60°-40°=20°即∠BOC的度数是100°或20°【点睛】本题考查了角的有关计算的应用,主要考查学生根据图形进行计算的能力,分类讨论思想和数形结合思想的运用.19.如图,在平行四边形ABCD 中,将ADC ∆沿AC 折叠后,点D 恰好落在DC 的延长线上的点E 处.若60B ∠=o ,AB=3,则ADE ∆的周长为()A .12B .15C .18D .2【答案】C【解析】【分析】 依据平行四边形的性质以及折叠的性质,即可得到BC=2AB=6,AD=6,再根据△ADE 是等边三角形,即可得到△ADE 的周长为6×3=18.【详解】由折叠可得,∠ACD=∠ACE=90°,∴∠BAC=90°,又∵∠B=60°,∴∠ACB=30°,∴BC=2AB=6,∴AD=6,由折叠可得,∠E=∠D=∠B=60°,∴∠DAE=60°,∴△ADE 是等边三角形,∴△ADE 的周长为6×3=18,故选:C .【点睛】此题考查平行四边形的性质、轴对称图形性质以及等边三角形的判定.解题关键在于注意折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.20.已知:在Rt △ABC 中,∠C =90°,BC =1,AC 3D 是斜边AB 的中点,点E 是边AC 上一点,则DE +BE 的最小值为( )A.2B.31C.3D.23【答案】C【解析】【分析】作B关于AC的对称点B',连接B′D,易求∠ABB'=60°,则AB=AB',且△ABB'为等边三角形,BE+DE=DE+EB'为B'与直线AB之间的连接线段,其最小值为B'到AB的距离=AC=3,所以最小值为3.【详解】解:作B关于AC的对称点B',连接B′D,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,∵AB=AB',∴△ABB'为等边三角形,∴BE+DE=DE+EB'为B'与直线AB之间的连接线段,∴最小值为B'到AB的距离3故选C.【点睛】本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.。
一、初一数学几何模型部分解答题压轴题精选(难)1.已知如图,∠COD=90°,直线AB与OC交于点B,与OD交于点A,射线OE与射线AF交于点G.(1)若OE平分∠BOA,AF平分∠BAD,∠OBA=42°,则∠OGA=________;(2)若∠GOA= ∠BOA,∠GAD= ∠BAD,∠OBA=42°,则∠OGA=________;(3)将(2)中的“∠OBA=42°”改为“∠OBA= ”,其它条件不变,求∠OGA的度数.(用含的代数式表示)(4)若OE将∠BOA分成1︰2两部分,AF平分∠BAD,∠ABO= (30°< α <90°),求∠OGA的度数.(用含的代数式表示)【答案】(1)21°(2)14°(3)解:∵∠BOA=90°,∠OBA=α,∴∠BAD=∠BOA+∠ABO=90°+α,∵∠BOA=90°,∠GOA= ∠BOA,∠GAD= ∠BAD∴∠GAD=30°+ α,∠EOA=30°,∴∠OGA=∠GAD−∠EOA= α.(4)解:当∠EOD:∠COE=1:2时,∴∠EOD=30°,∵∠BAD=∠ABO+∠BOA=α+90°,∵AF平分∠BAD,∴∠FAD= ∠BAD,∵∠FAD=∠EOD+∠OGA,∴2×30°+2∠OGA=α+90°,∴∠OGA= α+15°;当∠EOD:∠COE=2:1时,则∠EOD=60°,同理得到∠OGA= α−15°,即∠OGA的度数为α+15°或α−15°.【解析】解:(1)∵∠BOA=90°,∠OBA=42°,∴∠BAD=∠BOA+∠ABO=132°,∵AF平分∠BAD,OE平分∠BOA,∠BOA=90°,∴∠GAD= ∠BAD=66°,∠EOA= ∠BOA=45°,∴∠OGA=∠GAD−∠EOA=66°−45°=21°;故答案为21°;⑵∵∠BOA=90°,∠OBA=42°,∴∠BAD=∠BOA+∠ABO=132°,∵∠BOA=90°,∠GOA= ∠BOA,∠GAD= ∠BAD,∴∠GAD=44°,∠EOA=30°,∴∠OGA=∠GAD−∠EOA=44°−30°=14°;故答案为14°;【分析】(1)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;(2)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;(3)根据三角形外角的性质求出∠BAD,求出∠GOA和∠GAD,根据三角形外角性质求出即可;(4)讨论:当∠EOD:∠COE=1:2时,利用∠BAD=∠ABO+∠BOA=α+90°,∠FAD=∠EOD+∠OGA得到2×30°+2∠OGA=α+90°,则∠OGA= α+15°;当∠EOD:∠COE=2:1时,则∠EOD=60°,同理得∠OGA= α-15°.2.已知BM、CN分别是△的两个外角的角平分线,、分别是和的角平分线,如图①;、分别是和的三等分线(即,),如图②;依此画图,、分别是和的n等分线(即,),,且为整数.图①图②(1)若,求的度数;(2)设,请用和n的代数式表示的大小,并写出表示的过程;(3)当时,请直接写出 + 与的数量关系.【答案】(1)解:,∵、分别是和的角平分线,∴∴(2)解:在△中, + ,,(3)解:【解析】【分析】(1)先根据三角形内角和定理求出,根据角平分线求出,再根据三角形内角和定理求出即可;(2)先根据三角形内角和定理求出 + ,根据n等分线求出,再根据三角形内角和定理得出,代入求出即可.(3)本题以三角形为载体,主要考查了三角形的一个外角等于与它不相邻的两个内角的和的性质、角平分线的性质、三角形的内角和是的性质,熟记性质然灵活运用有关性质来分析、推理、解答是解题的关键.3.已知:如图1,点M是线段AB上一定点,AB=12cm,C、D两点分别从M、B出发以1cm/s、2cm/s的速度沿直线BA向左运动,运动方向如箭头所示(C在线段AM上,D在线段BM上)(1)若AM=4cm,当点C、D运动了2s,此时AC=________,DM=________;(直接填空)(2)当点C、D运动了2s,求AC+MD的值.(3)若点C、D运动时,总有MD=2AC,则AM=________(填空)(4)在(3)的条件下,N是直线AB上一点,且AN﹣BN=MN,求的值.【答案】(1)2;4(2)解:当点C、D运动了2 s时,CM=2 cm,BD=4 cm∵AB=12 cm,CM=2 cm,BD=4 cm∴AC+MD=AM﹣CM+BM﹣BD=AB﹣CM﹣BD=12﹣2﹣4=6 cm(3)4(4)解:①当点N在线段AB上时,如图1,∵AN﹣BN=MN,又∵AN﹣AM=MN∴BN=AM=4∴MN=AB﹣AM﹣BN=12﹣4﹣4=4∴ = = ;②当点N在线段AB的延长线上时,如图2,∵AN﹣BN=MN,又∵AN﹣BN=AB∴MN=AB=12∴ = =1;综上所述 = 或1【解析】【解答】解:(1.)根据题意知,CM=2cm,BD=4cm,∵AB=12cm,AM=4cm,∴BM=8cm,∴AC=AM﹣CM=2cm,DM=BM﹣BD=4cm,故答案为:2,4;(3.)根据C、D的运动速度知:BD=2MC,∵MD=2AC,∴BD+MD=2(MC+AC),即MB=2AM,∵AM+BM=AB,∴AM+2AM=AB,∴AM= AB=4,故答案为:4;【分析】(1)根据运动速度和时间分别求得CM、BD的长,根据线段的和差计算可得;(2)由题意得CM=2 cm、BD=4 cm,根据AC+MD=AM﹣CM+BM﹣BD=AB﹣CM﹣BD可得答案;(3)根据C、D的运动速度知BD=2MC,再由已知条件MD=2AC求得MB=2AM,所以AM= AB;(4)分点N在线段AB上时和点N在线段AB的延长线上时分别求解可得.4.如图1,点为直线上一点,过点作射线,使,将一直角三角板的直角顶点放在点处,一边在射线上,另一边在直线的下方.(1)将图1中的三角板绕点逆时针旋转至图,使一边在的内部,且恰好平分,问:此时直线是否平分?请直接写出结论:直线 ________(平分或不平分) .(2)将图1中的三角板绕点以每秒的速度沿逆时针方向旋转一周,在旋转的过程中,第秒时,直线恰好平分锐角,则的值为________.(直接写出结果)(3)将图1中的三角板绕点顺时针旋转,请探究:当始终在的内部时(如图3),与的差是否发生变化?若不变,请求出这个差值;若变化,请举例说明.【答案】(1)平分(2)或49(3)解:不变,设,,,【解析】【解答】(1)直线平分;(2)或【分析】(1)根据图形得到直线ON平分∠AOC ;(2)由三角板绕点 O 以每秒 5 °的速度沿逆时针方向旋转一周,在旋转的过程中,第t 秒时,直线ON恰好平分锐角∠AOC,求出t的值;(3)根据题意得到∠AON=50°−y,∠AOM−∠NOC=x−y=40°.5.如图,点C在线段AB上,AC=8 cm,CB=6 cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=a cm,其它条件不变,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,M、N分别为AC、BC的中点,你能猜想MN的长度吗?请画出图形,写出你的结论,并说明理由;(4)你能用一句简洁的话,描述你发现的结论吗?【答案】(1)MN=MC+NC= AC+ BC= (AC+BC)= ×(8+6)= ×14=7(2)MN=MC+NC= (AC+BC)= a(3)MN=MC-NC= AC- BC= (AC-BC)= b(4)如图,只要满足点C在线段AB所在直线上,点M、N分别是AC、BC的中点.那么MN就等于AB的一半.【解析】【分析】(1)根据M、N分别是AC、BC的中点,我们可得出MC、NC分别是AC、BC的一半,那么MC、CN的和就应该是AC、BC和的一半,也就是说MN是AB的一半,有了AC、CB的值,那么就有了AB的值,也就能求出MN的值了;(2)方法同(1)只不过AC、BC的值换成了AC+CB=a cm,其他步骤是一样的;(3)当C在线段AB的延长线上时,根据M、N分别是AC、BC的中点,我们可得出MC、NC分别是AC、BC的一半.于是,MC、NC的差就应该是AC、BC的差的一半,也就是说MN是AC-BC即AB的一半.有AC-BC的值,MN也就能求出来了;(4)综合上面我们可发现,无论C在线段AB 的什么位置(包括延长线),无论AC、BC的值是多少,MN都恒等于AB的一半.6.如图1,点是第二象限内一点, 轴于,且是轴正半轴上一点,是x轴负半轴上一点,且 .(1)(________),(________)(2)如图2,设为线段上一动点,当时,的角平分线与的角平分线的反向延长线交于点 ,求的度数: (注: 三角形三个内角的和为 )(3)如图3,当点在线段上运动时,作交于的平分线交于 ,当点在运动的过程中,的大小是否变化?若不变,求出其值;若变化,请说明理由.【答案】(1)-2,0;0,3(2)解:如图,作DM∥x轴根据题意,设∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,∵∠CAD=90°,∴∠CAE+∠OAD=90°,∴2y+∠OAD=90°,∴∠OAD=90°-2y,∵DM∥x轴,∴∠OAD+∠ADM=180°,∴90-2y+2x+90°=180°,∴x=y,∴∠APD=180°-(∠PAD+∠ADP)=180°-(y+90°-2y+x)=180°-90°=90°(3)解:∠N的大小不变,∠N=45°理由:如图,过D作DE∥BC,过N作NF∥BC.∵BC∥x轴,∴DE∥BC∥x轴,NF∥BC∥x轴,∴∠EDM=∠BMD,∠EDA=∠OAD,∵DM⊥AD,∴∠ADM=90°,∴∠BMD+∠OAD=∠EDM+∠EDA=∠ADM=90°,∵MN平分∠BMD,AN平分∠DAO,∴∠BMN= ∠BMD,∠OAN= ∠OAD,∴∠ANM=∠BMN+∠OAN= ∠BMD+ ∠OAD= ×90°=45°.【解析】【解答】解:(1)由,可得和,解得∴A的坐标是(-2,0)、B的坐标是(0,3);故答案为:-2,0;0,3;【分析】(1)利用非负数的和为零,各项分别为零,求出a,b的值;(2)如图,作DM∥x轴,结合题意可设∠ADP=∠OAP=x,∠EAF=∠CAF=∠OAP=y,根据平角的定义可知∠OAD=90°-2y,由平行线的性质可得∠OAD+∠ADM=180°,即90-2y+2x+90°=180°,进而可得出x=y,再结合图形即可得出∠APD的度数;(3)∠N的大小不变,∠N=45°,如图,过D作DE∥BC,过N作NF∥BC,根据平行线的性质可知∠BMD+∠OAD=∠ADM=90°,然后根据角平分线的定义和平行线的性质,可得∠ANM= ∠BMD+ ∠OAD,据此即可得到结论.7.已知,与两角的角平分线交于点P,D是射线上一个动点,过点D的直线分别交射线,,于点E,F,C.(1)如图1,若,,,求的度数;(2)如图2,若,请探索与的数量关系,并证明你的结论;(3)在点运动的过程中,请直接写出,与这三个角之间满足的数量关系:________.【答案】(1)解:∵PA、PB是∠BAM、∠ABN的角平分线,∴∠BAP=∠PAE= ∠BAM= ,∠ABP=∠PBE= ∠ABN= ,∴∠BPC=∠BAP+∠ABP= ;(2)解:,理由如下:∵PA、PB是∠BAM、∠ABN的角平分线,∴设,,∵,∴,∵,∴,又∵,∴,∴;(3)【解析】【解答】解:(3)∵PA、PB是∠BAM、∠ABN的角平分线,∴设,,∵,∴,如图,当点P在线段BD上时,,∴;如图,当点P在线段BD的延长线上时,,即,∴,即;故答案为:.【分析】(1)根据角平分线的性质结合三角形外角的性质即可求解;(2)设,,根据角平分线的性质结合四边形内角和定理即可求解;(3)分点P在线段BD上和点P在线段BD的延长线上两种情况讨论即可求解.8.在△ABC中,∠A=60°,BD,CE是△ABC的两条角平分线,且BD,CE交于点F,如图所示,用等式表示BE,BC,CD这三条线段之间的数量关系,并证明你的结论;晓东通过观察,实验,提出猜想:BE+CD=BC,他发现先在BC上截取BM,使BM=BE,连接FM,再利用三角形全等的判定和性质证明CM=CD即可.(1)下面是小东证明该猜想的部分思路,请补充完整;①在BC上截取BM,使BM=BE,连接FM,则可以证明△BEF与________全等,判定它们全等的依据是________;②由∠A=60°,BD,CE是△ABC的两条角平分线,可以得出∠EFB=________°;(2)请直接利用①,②已得到的结论,完成证明猜想BE+CD=BC的过程.【答案】(1)△BMF;SAS;60(2)证明:由①知,∠BFE=60°,∴∠CFD=∠BFE=60°∵△BEF≌△BMF,∴∠BFE=∠BFM=60°,∴∠CFM=∠BFC-∠BFM=120°-60°=60°,∴∠CFM=∠CFD=60°,∵CE是∠ACB的平分线,∴∠FCM=∠FCD,在△FCM和△FCD中,,∴△FCM≌△FCD(ASA),∴CM=CD,∴BC=CM+BM=CD+BE,∴BE+CD=BC.【解析】【解答】解:(1)解:①在BC上取一点M,使BM=BE,连接FM,如图所示:∵BD、CE是△ABC的两条角平分线,∴∠FBE=∠FBM= ∠ABC,在△BEF和△BMF中,,∴△BEF≌△BMF(SAS),故答案为:△BMF,SAS;②∵BD、CE是△ABC的两条角平分线,∴∠FBC+FCB= (∠ABC+∠ACB),在△ABC中,∠A+∠ABC+∠ACB=180°,∵∠A=60°,∴∠ABC+∠ACB=180°-∠A=180°-60°=120°,∴∠BFC=180°-(∠FBC+∠FCB)=180°- (∠ABC+∠ACB)=180°- ×120°=120°,∴∠EFB=60°,故答案为:60;【分析】(1)①由BD,CE是△ABC的两条角平分线知∠FBE=∠FBC= ∠ABC,结合BE=BM,BF=BF,依据“SAS”即可证得△BEF≌△BMF;②利用三角形内角和求出∠ABC+∠ACB=120°,进而得出∠FBC+∠FCB=60°,得出∠BFC=120°,即可得出结论;(2)利用角平分线得出∠EBF=∠MBF,进而得出△BEF≌△BMF,求出∠BFM,即可判断出∠CFM=∠CFD,即可判断出△FCM≌△FCD,即可得出结论.9.如图,∠AOB=40°,点C在OA上,点P为OB上一动点,∠CPB的角平分线PD交射线OA于D。
一、初一数学几何模型部分解答题压轴题精选(难)1.如图①,△ABC中,BD平分∠ABC,且与△ABC的外角∠ACE的角平分线交于点D.(1)若,,求∠D的度数;(2)若把∠A截去,得到四边形MNCB,如图②,猜想∠D、∠M、∠N的关系,并说明理由.【答案】(1)解:∵BD平分∠ABC,∴∠CBD= ∠ABC= ×75°=37.5°,∵CD平分△ABC的外角,∴∠DCA= (180°-∠ACB)= (180°-45°)=67.5°,∴∠D=180°-∠DBC-∠DCB=180°-37.5°-67.5°-45°=30°.(2)解:猜想:∠ D = ( ∠ M + ∠ N − 180 ° ).∵∠M+∠N+∠CBM+∠NCB=360°,∴∠D=180°- ∠CBM-∠NCB- ∠NCE.=180°- (360°-∠NCB-∠M-∠N)- ∠NCB- ∠NCE.=180°-180°+ ∠NCB+ ∠M+ ∠N-∠NCB- ∠NCE.= ∠M+ ∠N- ∠NCB- ∠NCE= ,或写成【解析】【分析】(1)根据角平分线的定义可得∠DBC=37.5°,根据邻补角定义以及角平分线定义求得∠DCA的度数为67.5°,最后根据三角形内角和定理即可求得∠D的度数;(2)由四边形内角和与角平分线性质即可求解.2.如图1,直线MN与直线AB,CD分别交于点E,F,∠1与∠2互补(1)试判断直线AB与直线CD的位置关系,并说明理由(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH(3)如图3,在(2)的条件下,连结PH,在GH上取一点K,使得∠PKG=2∠HPK,过点P 作PQ平分∠EPK交EF于点Q,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.(温馨提示:三角形的三个内角和为180°.)【答案】(1)解:如图,∵∠1和∠2互补,∠2和∠3互补,∴∠1=∠3∴AB∥CD(2)解:如图,由(1)得AB∥CD,∴∠BEF+∠EFD=180°又∵∠BEF与∠EFD的角平分线交于点P,∴∠FEP+∠EFP= (∠BEF+∠EFD)=90°,∴∠EPF=90°,即EG⊥PF∵GH⊥EG,∴PF∥GH.(3)解:∠HPQ的大小不发生变化,理由如下:∵EG⊥HG,∴∠KGP=90°∴∠EPK=180°-∠4=180°-(180-∠3-∠KGP)=90°+∠3∵∠3=2∠6,∴∠EPK=90°+2∠6∵PQ平分∠EPK,∴∠QPK= ∠EPK=45°+∠6∴∠HPQ=∠QPK-∠6=45°∴∠HPQ的大小不发生变化,一直是45°【解析】【分析】(1)利用邻补角的定义可证得∠2与∠3互补,再根据同角的补角相等,可证得∠1=∠3,然后利用同位角相等,两直线平行,可证得结论。
一、初一数学几何模型部分解答题压轴题精选(难)1.如图下图所示,已知AB//CD, ∠B=30°,∠D=120°;(1)若∠E=60°,则∠F=________;(2)请探索∠E与∠F之间满足的数量关系?说明理由.(3)如下图所示,已知EP平分∠BEF,FG平分∠EFD,反向延长FG交EP于点P,求∠P的度数;【答案】(1)90°(2)解:如图,分别过点E,F作EM∥AB,FN∥AB∴EM∥AB∥FN∴∠B=∠BEM=30°,∠MEF=∠EFN又∵AB∥CD,AB∥FN∴CD∥FN∴∠D+∠DFN=180°又∵∠D =120°∴∠DFN=60°∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°∴∠EFD=∠MEF +60°∴∠EFD=∠BEF+30°(3)解:如图,过点F作FH∥EP由(2)知,∠EFD=∠BEF+30°设∠BEF=2x°,则∠EFD=(2x+30)°∵EP平分∠BEF,GF平分∠EFD∴∠PEF= ∠BEF=x°,∠EFG= ∠EFD=(x+15)°∵FH∥EP∴∠PEF=∠EFH=x°,∠P=∠HFG ∵∠HFG=∠EFG-∠EFH=15°∴∠P=15°【解析】【解答】解:(1)分别过点E、F作EM∥AB,FN∥AB,则有AB∥EM∥FN∥CD.∴∠B=∠BEM=30°,∠MEF=∠EFN,∠DFN=180°-∠CDF=60°,∴∠BEF=∠MEF+30°,∠EFD=∠EFN+60°,∴∠EFD=∠BEF+30°=90°.【分析】(1)分别过点E、F作AB的平行线,根据平行线的性质即可求解;(2)根据平行线的性质可得∠DFN=60°,∠BEM=30°,∠MEF=∠NFE,即可得到结论;(3)过点F作FH∥EP,设∠BEF=2x°,根据(2)中结论即可表示出∠BFD,根据角平分线的定义可得∠PEF=x°,∠EFG=(x+15)°,再根据平行线的性质即可得到结论.2.如图(1),在△ABC和△EDC中,D为△ABC边AC上一点,CA平分∠BCE,BC=CD,AC=CE.(1)求证:△ABC≌△EDC;(2)如图(2),若∠ACB=60°,连接BE交AC于F,G为边CE上一点,满足CG=CF,连接DG交BE于H.①求∠DHF的度数;②若EB平分∠DEC,试说明:BE平分∠ABC.【答案】(1)证明:∵CA平分∠BCE,∴∠ACB=∠ACE.在△ABC和△EDC中.∵BC=CD,∠ACB=∠ACE,AC=CE.∴△ABC≌△EDC(SAS).(2)解:①在△BCF和△DCG中∵BC=DC, ∠BCD=∠DCE,CF=CG,∴△BCF≌△DCG(SAS),∴∠CBF=∠CDG.∵∠CBF+∠BCF=∠CDG+∠DHF∴∠BCF=∠DHF=60°.②∵EB平分∠DEC,∴∠DEH=∠BEC.∵∠DHF=60°,∴∠HDE=60°-∠DEH.∵∠BCE=60°+60°=120°,∴∠CBE=180°-120°-∠BEC=60°-∠BEC.∴∠HDE=∠CBE. ∠A=∠DEG.∵△ABC≌△EDC, △BCF≌△DCG(已证)∴∠BFC=∠DGC,∵∠ABF=∠BFC-∠A, ∠HDE=∠DGC-∠DEG,∴∠ABF=∠HDE,∴∠ABF=∠CBE,∴BE平分∠ABC.【解析】【分析】(1)由角平分线定义得出∠ACB=∠ACE,由ASA证明△ABC≌△EDC即可.(2)①由ASA证明△BCF≌△DCG,得出∠CBF=∠CDG;在△BCF,△DHF中,由三角形内角和定理得出∠BCF=∠DHF=60°.②由全等三角形的性质得出∠A=∠DEG,∠ABF=∠BFC-∠A, ∠HDE=∠DGC-∠DEG,从而得出∠ABF=∠HDE,∠ABF=∠CBE,即BE平分∠ABC.3.在△ABC中,∠ACB=2∠B,如图①,当∠C=90°,AD为∠BAC的角平分线时,在AB上截取AE=AC,连接DE,易证AB=AC+CD。
第4章《图形认识初步》直线、射线、线段易错题集精讲一.选择题(共5小题)1.在直线m上顺次取A,B,C三点,使AB=10cm,BC=4cm,如果点O是线段AC的中点,则线段OB的长为()A.3cm B.7cm C.3cm或7cm D.5cm或2cm2.已知线段AB=8cm,在直线AB上画线BC,使它等于3cm,则线段AC等于()A.11cm B.5cm C.11cm或5cm D.8cm或11cm3.已知线段AB=5,C是直线AB上一点,BC=2,则线段AC长为()A.7B.3C.3或7 D.以上都不对4.我们知道,若线段上取一个点(不与两个端点重合,以下同),则图中线段的条数为1+2=3条;若线段上取两个点,则图中线段的条数为1+2+3=6条;若线段上取三个点,则图中线段的条数为1+2+3+4=10条…请用你找到的规律解决下列实际问题:杭甬铁路(即杭州﹣﹣宁波)上有萧山,绍兴,上虞,余姚4个中途站,则车站需要印的不同种类的火车票为()A.6种B.15种C.20种D.30种5.C,D是线段AB上任意两点,M,N分别是AC,BD的中点,若CD=a,MN=b,则AB 的长为()A.2b﹣a B.b﹣a C.2b+a D.以上均不对二.填空题(共25小题)6.(2010•宿迁)直线上有2010个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有_________个点.7.(2003•河北)乘火车从A站出发,沿途经过3个车站方可到达B站,那么A,B两站之间需要安排_________种不同的车票.8.观察下列图形,并阅读图形下面的相关文字:像这样,十条直线相交,最多有_________个交点.9.平面上有三个点,若过两点画直线,则可以画出直线的条数为_________条.10.平面内有A、B、C、D四个点,可以画_________条直线.11.如图,能用图中字母表示的射线有_________条.12.已知A,B,C三点在同一直线上,线段AB=3cm、BC=4cm,则A,C两点之间的距离是_________.13.如果线段AB=6cm,在直线AB上有一点C,使线段BC=2cm,那么A,C两点间的距离是_________cm.14.如果线段AB=5cm,BC=3cm,那么A,C两点间的距离是_________.15.已知线段AC和BC在同一条直线上,如果AC=5.6cm,BC=2.4cm,线段AC和BC的中点之间的距离为_________.16.如果线段AB=5cm,BC=3cm,且A,B,C三点在同一条直线上,那么A,C两点之间的距离是_________.17.已知A、O、B三点在同一直线上.OA=2,OB=3,则AB两点之间的距离是_________.18.(2008•株洲)已知A、B、C三点在同一条直线上,M、N分别为线段AB、BC的中点,且AB=60,BC=40,则MN的长为_________.19.(2006•哈尔滨)已知点O在直线AB上,且线段OA的长度为4cm,线段OB的长度为6cm,E、F分别为线段OA、OB的中点,则线段EF的长度为_________cm.20.已知点B在直线AC上,线段AB=8cm,AC=18cm,p、Q分别是线段AB、AC的中点,则线段PQ=_________.21.若线段AB=10cm,在直线AB上有一个点C,且BC=4cm,M是线段AC的中点,则AM=_________cm.22.如图,若CB=4cm,DB=7cm,且D是AC的中点,则AC=_________cm.23.已知线段AB=9厘米,在直线AB上画线段BC,使它等于3厘米,则线段AC=_________.24.已知A,B,C三点在同一条直线上,若AB=60cm,BC=40cm,则AC的长为_________.25.若线段MN=10cm,Q是直线MN上一点,且线段NQ=5cm,则线段MQ长是_________ cm.26.如图,点C、D是线段AB上的两点,若AC=4,CD=5,DB=3,则图中所有线段的和是_________.27.M,N是线段AB的三等分点,P是NB的中点,若AB=12厘米,则PA=_________厘米.28.线段AB=8cm.在直线AB上另取一点C,使AC=2cm,P、Q分别是AB、AC的中点,则线段PQ的长度为_________cm.29.已知直线l上有三点A,B,C,线段AB=10cm,BC=6cm,点M是线段BC的中点,则AM=_________.30.已知线段AB=6cm,在直线AB上画线段AC=2cm,则BC的长是_________cm.第4章《图形认识初步》直线、射线、线段易错题集精讲参考答案与试题解析一.选择题(共5小题)1.在直线m上顺次取A,B,C三点,使AB=10cm,BC=4cm,如果点O是线段AC的中点,则线段OB的长为()A.3cm B.7cm C.3cm或7cm D.5cm或2cm考点:比较线段的长短.专题:计算题.分析:由已知条件可知,AC=10+4=14,又因为点O是线段AC的中点,可求得AO的值,最后根据题意结合图形,则OB=AB﹣AO可求.解答:解:如图所示,AC=10+4=14cm,∵点O是线段AC的中点,∴AO=AC=7cm,∴OB=AB﹣AO=3cm.故选A.点评:首先注意根据题意正确画出图形,这里是顺次取A,B,C三点,所以不用考虑多种情况.能够根据中点的概念,熟练写出需要的表达式,还要结合图形进行线段的和差计算.2.已知线段AB=8cm,在直线AB上画线BC,使它等于3cm,则线段AC等于()A.11cm B.5cm C.11cm或5cm D.8cm或11cm考点:比较线段的长短.专题:分类讨论.分析:由于C点的位置不能确定,故要分两种情况考虑AC的长,注意不要漏解.解答:解:由于C点的位置不确定,故要分两种情况讨论:(1)当C点在B点右侧时,如图所示:AC=AB+BC=8+3=11cm;(2)当C点在B点左侧时,如图所示:AC=AB﹣BC=8﹣3=5cm;所以线段AC等于5cm或11cm,故选C.点评:本题考查了比较线段的长短,注意点的位置的确定,利用图形结合更易直观地得到结论.3.已知线段AB=5,C是直线AB上一点,BC=2,则线段AC长为()A.7B.3C.3或7 D.以上都不对考点:比较线段的长短.专题:分类讨论.分析:C在直线AB上应分:在线段AB上或在线段AB延长线上两种情况讨论.解答:解:当点C在线段AB上时:AC=5﹣2=3;当C在AB的延长线上时:AC=5+2=7.故选C.点评:本题要注意点C在直线AB上,要分几种情况讨论.4.我们知道,若线段上取一个点(不与两个端点重合,以下同),则图中线段的条数为1+2=3条;若线段上取两个点,则图中线段的条数为1+2+3=6条;若线段上取三个点,则图中线段的条数为1+2+3+4=10条…请用你找到的规律解决下列实际问题:杭甬铁路(即杭州﹣﹣宁波)上有萧山,绍兴,上虞,余姚4个中途站,则车站需要印的不同种类的火车票为()A.6种B.15种C.20种D.30种考点:比较线段的长短.专题:规律型.分析:相当于一条线段上有4个点,又火车票是要说往返的.解答:解:故有2(1+2+3+4+5)=30.故选D.点评:注意根据规律计算的同时,还要注意火车票需要考虑往返情况.5.C,D是线段AB上任意两点,M,N分别是AC,BD的中点,若CD=a,MN=b,则AB 的长为()A.2b﹣a B.b﹣a C.2b+a D.以上均不对考点:比较线段的长短.专题:分类讨论.分析:因不知道ABCD四点之间的关系,只能分情况处理:若C在D的左边,则AB的长为2b﹣a;反之则AB的长为2b+a.解答:解:如图所知,可分两种情况:若C在D的左边,则AB的长为2b﹣a;若C在D的右边,则AB的长为2b+a.故选D.点评:利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.二.填空题(共25小题)6.(2010•宿迁)直线上有2010个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有16073个点.考点:直线、射线、线段.专题:规律型.分析:根据题意分析,找出规律解题即可.解答:解:第一次:2010+(2010﹣1)=2×2010﹣1,第二次:2×2010﹣1+2×2010﹣2=4×2010﹣3,第三次:4×2010﹣3+4×2010﹣4=8×2010﹣7.∴经过3次这样的操作后,直线上共有8×2010﹣7=16073个点.点评:此题为规律型题.解题的关键是找对规律.7.(2003•河北)乘火车从A站出发,沿途经过3个车站方可到达B站,那么A,B两站之间需要安排20种不同的车票.考点:直线、射线、线段.专题:应用题.分析:画出图形,结合图形,表示出线段的条数,就可以知道车票的种数.解答:解:从A到B共有AC、AD、AE、AB、CD、CE、CB、DE、DB、EB共10条,因为从两站出发点不同,车票就不同如A到C与C到A不同,故应有20种.点评:此题的关键是要联系生活实际,从几个站点设车票就要都能直达,所以学生平时不可死学生死学知识,要联系生活.8.观察下列图形,并阅读图形下面的相关文字:像这样,十条直线相交,最多有45个交点.考点:直线、射线、线段.专题:规律型.分析:要使的交点最多,必须交点不重合;由此可知:设原有n条直线,最多有m个交点,此时增加一条直线,交点个数最多增加n个.故可猜想,n条直线相交,最多有1+2+3+…+(n﹣1)=个交点.解答:解:将n=10代入得:m=45.点评:本题考查直线的相交情况,要细心,查找是要不重不漏;同时要借助规律,细心分析.9.平面上有三个点,若过两点画直线,则可以画出直线的条数为1或3条.考点:直线、射线、线段.专题:分类讨论.分析:分平面内的三点可能在一条直线上,也可能不在一条直线上,分几种情况进行讨论.解答:解:当三点在同一条直线上时,可以画1条直线;当三点不在同一直线上时,可以画3条.故平面上有三个点,若过两点画直线,则可以画出直线的条数为1或3条.点评:能够注意到分情况进行讨论是解题的关键.10.平面内有A、B、C、D四个点,可以画1或4或6条直线.考点:直线、射线、线段.专题:分类讨论.分析:根据直线的定义分析即可得出答案.解答:解:若A、B、C、D共线,则可画1条直线若四点中至多只有2点在同一条直线上,则可画6条线段根据题意,平面内有A、B、C、D四个点,故可组成直线AB,直线BC,直线CD,直线BD,直线AC,直线AD六条直线.若四点中有三点共线,则同理,可作4条线段;故答案为:1或4或6.点评:本题比较简单,主要是考查直线的相关基本知识.11.如图,能用图中字母表示的射线有5条.考点:直线、射线、线段.分析:结合图形,根据射线的概念和表示方法进行分析.解答:解:图中可以表示的射线有AC、CB、CD,DB,BD5条.点评:此题考查了射线的概念和射线的表示方法.12.已知A,B,C三点在同一直线上,线段AB=3cm、BC=4cm,则A,C两点之间的距离是7cm或1cm.考点:两点间的距离.专题:计算题;分类讨论.分析:要求学生分情况讨论A,B,C三点的位置关系,即点C在线段AB内,点C在线段AB外.解答:解:此题画图时会出现两种情况,即点C在线段AB内,点C在线段AB外,所以要分两种情况计算.第一种情况:在AB外,AC=3+4=7;第二种情况:在AB内,AC=4﹣3=1.故答案为7或1cm.点评:在未画图类问题中,正确画图很重要.本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.13.如果线段AB=6cm,在直线AB上有一点C,使线段BC=2cm,那么A,C两点间的距离是4或8cm.考点:两点间的距离.专题:计算题;分类讨论.分析:本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系的多种可能,再根据正确画出的图形解题.解答:解:本题有两种情形:(1)当点C在线段AB上时,如图:AC=AB﹣BC,又∵AB=6cm,BC=2cm,∴AC=6﹣2=4cm;(2)当点C在线段AB的延长线上时,如图:AC=AB+BC,又∵AB=6cm,BC=2cm,∴AC=6+2=8cm.点评:在画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.14.如果线段AB=5cm,BC=3cm,那么A,C两点间的距离是大于等于2cm且小于等于8cm..考点:两点间的距离.专题:计算题;分类讨论.分析:分两种情况:C在AB之间,有AC=AB﹣BC;C不在AB之间,有AC=AB+BC,分别得出A,C两点间的距离.解答:解:C在AB之间,有AC=AB﹣BC=5﹣3=2cm;C不在AB之间,有AC=AB+BC=5+3=8cm.故A,C两点间的距离是大于等于2cm且小于等于8cm.点评:要求学生分情况讨论A,B,C三点的位置关系,考查学生对图形的理解与运用.15.已知线段AC和BC在同一条直线上,如果AC=5.6cm,BC=2.4cm,线段AC和BC的中点之间的距离为4或1.6cm.考点:两点间的距离.专题:计算题;分类讨论.分析:此题有两种情况:①当C点在线段AB上,此时AB=AC+BC,然后根据中点的性质即可求出线段AC和BC的中点之间的距离;②当B在线段AC上时,那么AB=AC ﹣CB,然后根据中点的性质即可求出线段AC和BC的中点之间的距离.解答:解:此题有两种情况:①当C点在线段AB上,此时AB=AC+BC,而AC=5.6cm,BC=2.4cm,∴AB=AC+BC=8cm,∴线段AC和BC的中点之间的距离为AC+BC=(AC+BC)=4cm;②当B点在线段AC上,此时AB=AC﹣BC,而AC=5.6cm,BC=2.4cm,∴AB=AC﹣BC=3.2cm,∴线段AC和BC的中点之间的距离为AC﹣BC=(AC﹣BC)=1.6cm.点评:在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.16.如果线段AB=5cm,BC=3cm,且A,B,C三点在同一条直线上,那么A,C两点之间的距离是8cm或2cm.考点:两点间的距离.专题:计算题;分类讨论.分析:本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系的多种可能,再根据正确画出的图形解题.当点C在AB之间时,AC=AB﹣BC;当点C在点B的右侧时,AC=AB+BC.解答:解:当点C在AB之间时,AC=AB﹣BC=5﹣3=2cm;当点C在点B的右侧时,AC=AB+BC=5+3=8cm.故填8或2.点评:在未画图类问题中,正确画图很重要.本题渗透了分类讨论的思想,体现了思维的严密性.在今后解决类似的问题时,要防止漏解.17.已知A、O、B三点在同一直线上.OA=2,OB=3,则AB两点之间的距离是5或1.考点:两点间的距离.专题:计算题;分类讨论.分析:此题有两种情况:①当O在AB之间时,此时AB=OA+OB,由此即可求出AB两点之间的距离;②当A在OB之间时,此时AB=OB﹣OA,由此即可求出AB两点之间的距离.解答:解:此题有两种情况:①当O在AB之间时,此时AB=OA+OB而OA=2,OB=3,∴AB=OA+OB=5;②当A在OB之间时,此时AB=OB﹣OA,而OA=2,OB=3,∴AB=OB﹣OA=1;∴AB两点之间的距离是1或5.点评:在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.18.(2008•株洲)已知A、B、C三点在同一条直线上,M、N分别为线段AB、BC的中点,且AB=60,BC=40,则MN的长为10或50.考点:比较线段的长短.专题:分类讨论.分析:画出图形后结合图形求解.解答:解:(1)当C在线段AB延长线上时,∵M、N分别为AB、BC的中点,∴BM=AB=30,BN=BC=20;∴MN=50.(2)当C在AB上时,同理可知BM=30,BN=20,∴MN=10;所以MN=50或10.点评:本题考查线段中点的定义,比较简单,注意有两种可能的情况;解答这类题目,应考虑周全,避免漏掉其中一种情况.19.(2006•哈尔滨)已知点O在直线AB上,且线段OA的长度为4cm,线段OB的长度为6cm,E、F分别为线段OA、OB的中点,则线段EF的长度为1或5cm.考点:比较线段的长短.专题:分类讨论.分析:根据题意,画出图形,此题分两种情况:(1)点O在点A和点B之间(如图①),则EF=OA+OB;(2)点O在点A和点B外(如图②),则EF=OB﹣OA.解答:解:如图,(1)点O在点A和点B之间,如图①,则EF=OA+OB=5cm;(2)点O在点A和点B外,如图②,则EF=OB﹣OA=1cm.∴线段EF的长度为1cm或5cm.点评:此题考查线段中点的定义及线段长的求法.利用中点性质转化线段之间的倍分关系是解题的关键.20.已知点B在直线AC上,线段AB=8cm,AC=18cm,p、Q分别是线段AB、AC的中点,则线段PQ=13cm或5cm.考点:比较线段的长短.专题:分类讨论.分析:本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系的多种可能,再根据正确画出的图形解题.解答:解:当点C在点A左侧时,AP=AC=9,AQ=AB=4,∴PQ=AQ+AP=9+4=13cm.当点C在点B右侧时,AP=AB=4cm,BC=AC﹣AB=10cm,AQ=,AC=9,PQ=AQ ﹣AP=9﹣4=5cm.故答案为13cm或5cm..点评:在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性.在今后解决类似的问题时,要防止漏解.21.若线段AB=10cm,在直线AB上有一个点C,且BC=4cm,M是线段AC的中点,则AM=3或7cm.考点:比较线段的长短.专题:分类讨论.分析:本题没有给出图形,在画图时,应考虑到A、B、C三点之间的位置关系的多种可能,再根据正确画出的图形解题.同时利用中点性质转化线段之间的倍分关系.解答:解:当点C在AB中间时,如上图,AC=AB﹣BC=10﹣4=6,AM=AC=3cm,当点C在AB的外部时,AC=AB+BC=10+4=14,AM=AC=7cm.故答案为3或7cm.点评:在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性.在今后解决类似的问题时,要防止漏解.22.如图,若CB=4cm,DB=7cm,且D是AC的中点,则AC=6cm.考点:比较线段的长短.专题:计算题.分析:理解线段的中点这一概念,灵活运用线段的和、差、倍、分转化线段之间的数量关系进行解题.解答:解:CD=DB﹣BC=7﹣4=3cm,AC=2CD=2×3=6cm.故答案为6.点评:灵活运用线段的和、差、倍、分转化线段之间的数量关系是十分关键的一点.23.已知线段AB=9厘米,在直线AB上画线段BC,使它等于3厘米,则线段AC=6厘米或12厘米.考点:比较线段的长短.专题:计算题;分类讨论.分析:由于点C的位置不确定,所以要分情况讨论:(1)当C在线段AB上时,AC=AB﹣BC;(2)当C在AB的延长线上时,AC=AB+BC.解答:解:(1)当C在线段AB上时,AC=AB﹣BC=9﹣3=6(厘米);(2)当C在AB的延长线上时,AC=AB+BC=9+3=12(厘米).则线段AC=6厘米或12厘米.故答案为:6厘米或12厘米.点评:注意此类题要分情况画出正确的图形.灵活运用线段的和、差、倍、分转化线段之间的数量关系十分关键.24.已知A,B,C三点在同一条直线上,若AB=60cm,BC=40cm,则AC的长为100cm 或20cm.考点:比较线段的长短.专题:分类讨论.分析:根据题意,分两种情况讨论:(1)C在AB内,则AC=AB﹣BC;(2)C在AB外,则AC=AB+BC.解答:解:(1)C在AB内,则AC=AB﹣BC=20cm;(2)C在AB外,则AC=AB+BC=100cm.∴AC的长为100cm或20cm.点评:本题渗透了分类讨论的思想,体现了思维的严密性.灵活运用线段的和、差转化线段之间的数量关系.在今后解决类似的问题时,要防止漏解.25.若线段MN=10cm,Q是直线MN上一点,且线段NQ=5cm,则线段MQ长是5或15 cm.考点:比较线段的长短.分析:数形结合,先画图,结合图形,应分两种情况,进行分类讨论.解答:解:当点Q在线段MN的内部时,MQ=10﹣5=5cm,当点Q在线段MN的外部时,MQ=10+5=15cm.点评:此类题目很简单,但容易漏解,应结合题意画出图形,进行分类讨论.26.如图,点C、D是线段AB上的两点,若AC=4,CD=5,DB=3,则图中所有线段的和是41.考点:比较线段的长短.专题:计算题.分析:图中所有线段有:AC、AD、AB、CD、CB、DB,由已知条件分别求出线段的长度,再相加即可.解答:解:AD=AC+CD=9,AB=AC+CD+DB=12,CB=CD+DB=8,故所有线段的和=AC+AD+AB+CD+CB+DB=41.点评:找出图中所有线段是解题的关键,注意不要遗漏,也不要增加.27.M,N是线段AB的三等分点,P是NB的中点,若AB=12厘米,则PA=10或8厘米.考点:比较线段的长短.专题:分类讨论.分析:由已知条件可知,此题要分两种情况讨论:①当N在靠近B的一端时,又P是NB的中点,所以PA=AB﹣PB可求;②当N在靠近A的一端时,又P是NB的中点,所以P与M重合,所以PA可求.解答:解:如图,因为M,N是线段AB的三等分点,所以NB=AB=4cm,①当N在靠近B的一端时,又P是NB的中点,所以PB=NB=2,所以PA=12﹣2=10cm;②当N在靠近A的一端时,又P是NB的中点,所以P与M重合,所以PA=12﹣4=8cm.∴PA=10cm或8cm.点评:理解线段的三等分点的概念,还要注意点的位置不同导致有不同的情况.结合图形,正确求解.28.线段AB=8cm.在直线AB上另取一点C,使AC=2cm,P、Q分别是AB、AC的中点,则线段PQ的长度为3或5cm.考点:比较线段的长短.专题:分类讨论.分析:根据题意可得点C的位置有两种,一种是在AB之间,另一种是在AB之外并且在射线BA上.根据不同的情况分别讨论,然后得出PQ的长度.解答:解:当点C在AB之间时,P、Q分别是AB、AC的中点,所以AQ=AC,AP=AB,PQ=AP﹣AQ=AB﹣AC=3cm.当点C在AB之外时,P、Q分别是AB、AC的中点,所以AQ=AC,AP=AB,PQ=AP+AQ=4+1=5cm.故线段PQ的长为3cm或5cm.点评:本题难点是找出题中点C的位置,根据分析可得,点C有两个两种情况满足要求,则根据不同的情况分析各线段之间的关系,然后分别得出PQ的长度.29.已知直线l上有三点A,B,C,线段AB=10cm,BC=6cm,点M是线段BC的中点,则AM=7cm或13cm.考点:比较线段的长短.专题:分类讨论.分析:此题画图会出现两种情况,即C在AB内,C在AB外,所以要分两种情况计算.BC=6cm,点M是线段BC的中点,则BM=3.第一种情况:C在AB内,则AM=AB﹣BM;第二种情况:C在AB外,则AM=AB+BM.解答:解:BC=6cm,点M是线段BC的中点,则BM=3,第一种情况:C在AB内,则AM=AB﹣BM=10﹣3=7;第二种情况:C在AB外,则AM=AB+BM=10+3=13.点评:在未画图类问题中,正确画图很重要.本题渗透了分类讨论的思想,体现了思维的严密性.在今后解决类似的问题时,要防止漏解.30.已知线段AB=6cm,在直线AB上画线段AC=2cm,则BC的长是4或8cm.考点:比较线段的长短.专题:分类讨论.分析:要求学生分情况讨论A,B,C三点的位置关系,考查学生对图形的理解与运用.解答:解:线段AB=6cm,AC=2cm,若A、B在C的同侧,则BC的长是6﹣2=4cm;若A、B在C的两侧,则BC的是6+2=8cm;BC的长是8cm或4cm.故答案为4或8.点评:利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.。
几何图形初步易错题训练一.选择题(共17小题)1.如图,AOE 是一条直线,图中的角共有()A4个B8个C9个D10个2.有三个不同的点A 、B 、C ,过其中每两个点画直线,可以画出()条直线.A1B3C1或3D 无法确定3.如图,图中共有()条线段.A 5B 6C 7D 84.某列绵阳⇔成都的往返列车,途中须停靠的车站有:绵阳,罗江,黄许,德阳,广汉,清白江,新都,成都.那么为该列车制作的车票一共有()A7种B8种C56种D28种5.从起始站A 市坐火车到终点站G 市中途共停靠5次,各站点到A 市距离如下:站点B C D E F G 到A 市距离(千米)4458051135149518252270若火车车票的价格由路程决定,则沿途总共有不同的票价()种.A14B15C 17D216.如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°;③180°﹣∠α;④(∠α﹣∠β).正确的是:()A ①②③④B ①②④C ①②③D ①②7.如果线段AB=12cm ,MA+MB=16cm ,那么下列说法正确的是()A 点M 在线段AB 上B 点M 在直线AB 上C点M 在直线AB 外D点M 在直线AB 上,也可能在直线AB 外8.下列说法不正确的是()A若点C 在线段BA 的延长线上,则BA=AC ﹣BC B 若点C 在线段AB 上,则AB=AC+BC C 若AC+BC >AB ,则点C 一定在线段AB 外D若A ,B ,C ,三点不在一直线上,则AB <AC+BC9.如图,在数轴上有A 、B 、C 、D 四个整数点(即各点均表示整数),且2AB=BC=3CD ,若A 、D 两点表示的数的分别为﹣5和6,那么,该数轴上上述五个点所表示的整数中,离线段BD 的中点最近的整数是()A ﹣1B 0C 1D 210.观察下列图形,并阅读图形下面的相关文字.像这样的十条直线相交最多的交点个数有()A40个B45个C50个D55个11.已知:∠AOC=90°,∠AOB :∠AOC=2:3,则∠BOC 的度数是()A30°.60°.30°或60°D .30°或150°12.从济南开往青岛的列车,途中停靠三个站点,如果任意两站间的票价都不同,不同的票价有()种.A6种B10种C12种D14种13.经过四个点中的每两个点画直线共可以画()A2条,4条或5条B1条,4条或6条C2条,4条或6条D1条,3条或6条14.α,β都是钝角,甲、乙、丙、丁计算,(α+β)的结果依次为50°,26°,72°,90°,其中有正确的结果,则计算正确的是()A甲B乙C丙D丁15.下列关于角的说法,正确的有()①角是由两条射线组成的图形;②角的大小与边的长短无关,只与两条边张开的角度有关;③在角的一边的延长线上取一点D ;④角可以看做由一条射线绕着它的端点旋转而形成的图形;⑤把一个角放到一个放大10倍的放大镜下观看,角的度数也扩大10倍.A1个B2个C3个D4个16.两个同样大小的正方形状的积木每个正方体上相对的两个面上写的数之和都等于﹣1,现将两个正方体并列放置,看得见的五个面上的数字如图所示,则看不见的七个面上的数的和等于()A﹣21B﹣19C﹣5D﹣117.张老师出门散步,出门时5点多一点,他看到手表上分针与时针的夹角恰好为110°.回来时接近6点,他又看了一下手表,发现此时分针与时针再次成110角.则张老师此次散步的时间是()A40分钟B30分钟C50分钟D非以上答案二.填空题(共1小题)18.如图,∠AOB 是直角,OB 平分∠COD ,∠COD=40°,则∠AOD=_________.三.解答题(共8小题)19.如图,直线AB ,CD 相交于O 点,OM ⊥AB 于O .(1)若∠1=∠2,求∠NOD ;(2)若∠BOC=4∠1,求∠AOC 与∠MOD .20.已知点O 是直线AB 上的一点,∠COE=90°,OF 是∠AOE 的平分线.(1)当点C ,E ,F 在直线AB 的同侧(如图1所示)时.试说明∠BOE=2∠COF ;(2)当点C 与点E ,F 在直线AB 的两旁(如图2所示)时,(1)中的结论是否仍然成立?请给出你的结论并说明理由;(3)将图2中的射线OF 绕点O 顺时针旋转m °(0<m <180),得到射线OD .设∠AOC=n °,若∠BOD=,则∠DOE 的度数是_________(用含n的式子表示).21.(1)如图1,∠A=70°,BP、CP分别平分∠ABC和∠ACB,则∠P的度数是_________.(2)如图2,∠A=70°,BP、CP分别平分∠EBC和∠FCD,则∠P的度数是_________.(3)如图3,∠A=70°,BP、CP分别平分∠ABC和∠ACD,求∠P的度数.22.如图是一只蜗牛在地面上爬行时留下来的痕迹,若蜗牛从P点出发按顺时针方向沿图中弧线爬行,最后又回到P点,则该蜗牛共转过了多少度角?23.如图,时钟在四点到五点之间,什么时刻时针与分针成一直角?24.李老师特制了4个同样的立方块,先将它们如图(a)放置,然后又如图(b)放置,则图(b)中四个底面正方形中的点数之和为_________.25.已知:AB:BC:CD=2:3:4,E,F分别是AB和CD的中点,且EF=12厘米(cm),求AD的长(如图).。
(1)
C
B A
D
A B C M N 数学易错题
知识点一:对公式的运用。
例1、如图1,线段AD 上有两点B 、C,图中共有______条线段. 例2、下图中一共有______个角。
例3、99条直线最多有______个交点。
例4、两个火车站之间有6个站,则一共要准备______种车票
例5、某次宴会一共有50人参加,每两人握一次手,则一共握______次手
知识点二:两个定理运用 1、两点确定一条直线 2、两点之间线段最短
例1、如图2,从家A 上学时要走近路到学校B ,最近的路线为 (填序号),理由是 ;
例2、在墙上固定木条,至少需要 个钉子,理由 例3、AB 两地架设电线总是沿着直线架设,理由
知识点三、线段的计算
例1、如图,已知线段AB ,C 点分线段AB 为5:7两部分,D 点分线段AB 为5:11两部分,若CD=1,则AB 长度是多少?
例2、如图,点C 在线段AB 上,AC = 8厘米,CB = 6厘米,点M 、N 分别是AC 、
BC 的中点。
求线段MN 的长;
例3、如图9,AD=1
2BD,E是BC的中点,BE=2cm,AC=10c
m,求线段DE的长.
例4、已知:如图(7),B 、C 是线段AD 上两点,且AB :BC :CD =2:4:3,M
是AD 的中点,CD =6㎝,求线段MC 的长。
知识点四、角的计算,钟的认识
C B
D
E F
(1)
(2)
(3)
图2 图9
A
D
C
B
E
1、钟的认识
例1、晚上8点后,再过多少分钟时针与分针再次重合?
例2、曼切斯特德比于9:38开始,此时时针与分针的夹角是多少度?
例3、新闻联播每天于7:30结束,请问再过多少分钟时针与分针重合?
例4、15、时钟表面11点28分时,时针与分针所夹角的度数是多少?
2、角的换算:
例1:25°20′24″=______度.
42.79= 度 分 秒;
例2、75°30′36″=______度. 31.56= 度 分 秒;
例3、56°43′16″=______度.
43.96= 度 分 秒;
练习
一、选择题:(每题3分,共18分)
1、下列语句正确的是( )
A 、平角就是一条直线
B 、周角就是一条射线
C 、小于平角的角是钝角
D 、一周角等于四个直角 2、下列说法中,正确的有( )
A 过两点有且只有一条直线 B.连结两点的线段叫做两点的距离 C.两点之间,直线最短 D .A
B =B
C ,则点B 是线段AC 的中点
3、如图,点B 、C 是线段AD 上任意两点,M 是AB 的中点,N 是CD 的中点。
若
MN=a ,BC=b ,则线段AD 的长是( )
A.2()a b -;
B.2a b -;
C.a b +;
D.a b -
4、若点B 在点A 的北偏东30度,则点A 在点B 的( )
A 、南偏西30度
B 、北偏东60度
C 、南偏西60度
D 、西南方向
5、直线a 外有一定点A ,A 到直线a 的距离是5㎝,P 是直线a 上的任意一点,则( )
A 、AP>5㎝;
B 、AP ≥5㎝;
C 、AP=5㎝;
D 、AP<5㎝ 6、下列说法中正确的个数为( )
①若∠AOC=1
2
∠AOB ,则OC 平分∠AOB
②经过一点有且只有一条直线与已知直线垂直 ③经过一点有且只有一条直线与已知直线平行 ④如果a ∥b ,b ∥c ,那么a ∥c
⑤如果A 、B 、C 三点在一条直线上,且BC=1
2
AB ,则点C 是线段AB 的中点
A.1个
B.2个
C.3个
D.4个
二、填空题 (每题3分,共30分)
1、 三棱柱有 条棱, 个顶点, 个面;
2、 如图1,若
是
中点,AB=4,则DB= ;
3、
32.71= 度 分 秒;
4、 如图3,OA 、OB 是两条射线,C 是OA 上一点,D 、E 分别是OB 上两点,则图
中共有 条线段,共有 射线,共有 个角;
A
M B C N D 图3 图5
图4
A B
C M N
5、如图4,把书的一角斜折过去,使点A 落在E 点处,BC 为折痕,BD 是∠EBM 的平分线,则∠CBD =
6、如图5,将两块三角板的直角顶点重合,若∠AOD=128°,则∠BOC= ; 7. 2:35时钟面上时针与分针的夹角为 ;
8. 经过平面内四点中的任意两点画直线,总共可以画 条直线; 三、解答题
1.如图,1
2
BC AB =,D 为AC 的中点,2DC cm =,求AB 的长.
2、如图,点C 在线段AB 上,AC = b 厘米,CB = a 厘米,点M 、N 分别是AC 、
BC 的中点。
求线段MN 的长;
3、如图,数轴上两点A 、B 对应的数分别为-30、0。
若点A 、B 同时出发,点A 以每秒2个单位长度的速度向右运动;点B 以每秒3个单位长度的速度向左运动,到达点A 出发时的位置侯立即以每秒4个单位长度的速度向右运动。
设运动的时间为t 秒。
(1)求点A 和点B 第一次相遇时t 的值;
(2)当点A 和点B 之间的距离为6个单位长度时,求t 的值。
4、如图,点A 在点B 的左边,线段AB 的长为20cm ;点C 在点D 的左边,点C 、D 在线段AB 上,CD =10cm ,点E 是线段AC 的中点,点F 是线段BD 的中点 (1)若AC =4cm ,求线段EF 的长;
(2)若AC =acm ,100<<a ,用含a 的式子表示线段BF 的长。