八年级数学上册 第二章 实数 2.7 二次根式(第3课时)课件 (新版)北师大版
- 格式:ppt
- 大小:259.50 KB
- 文档页数:1
《二次根式》说课稿一、说教材《二次根式》是北师大版教材数学八年级上册第二章《实数》的第七节,是“数与代数”的重要内容。
这一内容是在平方根的基础上,进一步研究二次根式的概念和性质。
使学生对算数平方根有更深认识和理解。
因此,教材在编排上就围绕算数平方根这个知识的主轴,以学生熟悉的相关问题展开教学内容。
而本课时的教学内容就是让学生在积极的参与中来学习《二次根式》,丰富对二次根式意义的理解,为学生学会确定被开方数中字母的取值X围打下扎实的基础。
二、说教学目标课标要求:学生要学会学习,自主学习,要为学生的终生学习打下坚实的基础,根据新课程标准的要求和教材所处的地位,以及学生的心理特点和认知规律,我确定本节课的教学目标如下:1、知识目标:能够理解二次根式的意义,会确定被开方数中字母的取值X围。
2、能力目标:通过动手练习,应用拓展,体验经历知识的形成过程,培养学生分析问题,解决问题的能力。
3、情感目标:通过课堂练习,培养学生解决问题的能力,促进学生勇于面对问题的能力。
为达到以上教学目标,本节课的教学重点为:理解二次根式的意义和基本性质,会求解简单的被开方数中字母的取值X围。
本节课的教学难点是:二次根式的基本性质的灵活运用。
为辅助教学,我制作了多媒体课件。
三、说教法、学法《新课程标准》指出:“学生是学习活动的主体,教师是学习活动的组织者,引导者和合作者”。
在本节课教学方法中,根据学生的年龄特征和已有的知识基础,注重加强知识间的纵向联系,复习引入,揭示课题,让学生体会数学学科知识的联系性和严密性。
在具体的教学活动中,让学生新身经历由具体到抽象的认知过程,解决问题的过程,体验探索成功的快乐。
学生通过自主学习,动手练习,独立思索,完善自己的想法,形成自己独特的学习方法,古语说得好“授人以鱼,不如授之以渔。
”我们教师应当引导学生自主地去认识探究,解决问题,让学生体验学数学,用数学的快乐。
四、说教学过程接下来,我将介绍一下本节课的教学过程。
2.7.二次根式一、教案目标是:的概念.2.探索二次根式的性质.3.利用二次根式的性质将二次根式化为最简二次根式.二、教学过程设计本节课设计了六个教学环节:第一环节:明晰概念;第二环节:探究性质;第三环节:知识巩固;第四环节:知识拓展;第五环节:课时小结;第一环节:明晰概念问题1 :5,11,2.7,12149,))((b c b c -+(其中b=24,c=25),上述式子有什么共同特征?(都含有开方运算,并且被开方数都是非负数) 介绍二次根式的概念。
一般地,式子)0(≥a a 叫做二次根式。
a 叫做被开方数.强调条件:0≥a .问题2:二次根式怎样进行运算呢?这是我们本节课要解决的新问题.第二环节:探究性质(一)内容:通过探究得出b a b a •=⋅,ba b a =. 具体过程如下:(1)94⨯=,94⨯=; 2516⨯=,2516⨯=;94=,94=; 2516=,2516=. (2)用计算器计算:76⨯=,76⨯=;76=,76=. 问题1:观察上面的结果你可得出什么结论?问题2:从你上面得出的结论,发现了什么规律?能用字母表示这个规律吗? 问题3:其中的字母a ,b 有限制条件吗? 最终归纳出b a b a •=⋅(a ≥0,b ≥0),ba b a=(a ≥0,b >0). 说明:公式中字母a ≥0,b ≥0(或b >0)这一条件是公式的一部分,不应忽略.第三环节:知识巩固例1 化简(1)6481⨯;(2)625⨯;(3)95。
被开方数中都不含分母,也不含能开得尽的因数。
一般地,被开方数不含分母,也不含能开得尽方的因数或因式,这样的二次根式,叫做最简二次根式。
化简时,要求最终结果中分母不含有根号,而且各个二次根式是最简二次根式。
例2.化简:(1)45;(2)27;(3)31;(4)98;(5)16125. 问题:(1)你怎么发现45含有开得尽方的因数的?你怎么判断714是最简二次根式的? (2)将二次根式化成最简二次根式时,你有哪些经验与体会,与同伴交流。
八年级数学上册教案新版北师大版:2.7二次根式3课时二次根式的混合运算教学目标熟练掌握二次根式的综合运算.(重点、难点)教学过程一、情境导入已知一个直角三角形的两条直角边长分别为(3-2)cm、(3+2)cm,求这个三角形的面积和周长.二、合作探究探究点一:二次根式的混合运算计算:(1)ab(a3b+ab3-ab)(a≥0,b≥0);(2)(232-12)×(128+23);(3)(32+48)×(18-43).解:(1)原式=ab(a ab+b ab-ab)=a ab×ab+b ab×ab-ab ab=a2b+ab2-ab ab;(2)原式=(6-22)(2+63)=6×2+6×63-22×2-22×63=23+2-1-33=1+533;(3)原式=(32+43)(32-43)=(32)2-(43)2=18-48=-30.方法总结:二次根式的混合运算,一般先将二次根式转化为最简二次根式,再灵活运用乘法公式等知识来简化计算.探究点二:二次根式的化简求值已知a=15-2,b=15+2,求a2+b2+2的值.解析:先化简已知条件,再利用乘法公式变形,即a2+b2=(a+b)2-2ab,最后代入求解.解:∵a=15-2=5+2(5-2)(5+2)=5+2,b=15+2=5-2(5+2)(5-2)=5-2,∴a+b=25,ab=1.∴a2+b2+2=(a+b)2-2ab+2=(25)2-2+2=20=2 5.方法总结:解此类问题时,直接代入求值很麻烦,要先化简已知条件,再用乘法公式变形代入即可求得.探究点三:运用二次根式的运算解决实际问题教师节就要到了,李欣同学准备做两张大小不同的正方形贺卡送给老师以表示祝贺,其中一张面积为288平方厘米,另一张面积为338平方厘米,如果用彩带把贺卡镶边会更漂亮,她现在有1.5米的彩带,请你帮忙算一算她的彩带够不够用.(2≈1.414)解析:可以通过两个正方形的面积分别计算出正方形的边长,进一步求出两个正方形的周长之和,与1.5米比较即可得出结论.解:贺卡的周长为4×(288+338)=4×(122+132)=4×252≈141.4(厘米).∵1.5米=150厘米,150>141.4,∴李欣的彩带够用.方法总结:本题是利用二次根式的加法来解决实际生活中的问题,解答本题的关键在于理解题意并列出算式.三、板书设计二次根式⎩⎪⎨⎪⎧综合运算化简求值实际应用教学反思经历本节课的学习,进一步理解二次根式的概念,熟悉二次根式的化简,了解根号内含有字母的二次根式的化简,利用二次根式的化简解决简单的数学问题.学生通过独立思考,能选择合理的方法解决问题;在运算过程中巩固知识,与小组成员交流总结方法.。
八年级数学上册2.7二次根式第3课时二次根式的混合运算说课稿(新版北师大版)一. 教材分析本次说课的内容是北师大版八年级数学上册第2.7节二次根式的混合运算。
这一节内容是在学生已经掌握了二次根式的性质和运算法则的基础上进行学习的,是进一步培养学生解决实际问题能力的重要环节。
二. 学情分析八年级的学生已经具备了一定的数学基础,对于二次根式的概念和性质有一定的了解。
但是,学生在进行混合运算时,可能会对运算顺序和运算法则掌握不牢固,导致运算错误。
因此,在教学过程中,需要引导学生理清运算思路,巩固运算法则。
三. 说教学目标1.知识与技能目标:使学生掌握二次根式的混合运算方法,能够正确地进行计算。
2.过程与方法目标:通过实例分析,培养学生解决实际问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 说教学重难点1.教学重点:二次根式的混合运算方法。
2.教学难点:运算顺序和运算法则的掌握。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组合作法等。
2.教学手段:利用多媒体课件、黑板、粉笔等。
六. 说教学过程1.导入新课:通过一个实际问题,引入二次根式的混合运算。
2.知识讲解:讲解二次根式的混合运算方法,引导学生掌握运算顺序和运算法则。
3.实例分析:分析几个典型的二次根式混合运算题目,让学生明白如何运用所学知识解决实际问题。
4.课堂练习:布置一些练习题,让学生独立完成,巩固所学知识。
5.小组讨论:让学生分组讨论,分享解题心得,培养团队合作意识。
6.总结提升:对本节课的内容进行总结,强调运算顺序和运算法则的重要性。
七. 说板书设计板书设计要简洁明了,突出重点。
主要包括以下内容:1.二次根式的混合运算方法2.运算顺序和运算法则3.典型题目分析八. 说教学评价教学评价主要包括两个方面:1.学生课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。