每年高考必考!求数列通项公式的11种方法——高三同学必须掌握
- 格式:docx
- 大小:434.55 KB
- 文档页数:5
1,数列通项公式的十种求法:(1)公式法(构造公式法)例1 已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式。
解:1232nn n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2nna 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。
评注:本题解题的关键是把递推关系式1232nn n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。
(2)累加法例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。
评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+,即得数列{}n a 的通项公式。
数列通项公式的^一种方法知识概要一•利用递推关系式求数列通项的11种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号)、数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、特征根法二。
四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。
等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。
三•求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。
四•求数列通项的基本方法是:累加法和累乘法。
五•数列的本质是一个函数,其定义域是自然数集的一个函数。
这是广义的等差数列累加法是最基本的二个方法之一。
2•若a n 1 a n f (n) (n 2),a2 a i f(1)小a3 a2 f (2)则Ia n 1 a n f (n)n两边分别相加得a n 1 a1f(n)k 1例1已知数列{a n}满足a n 1 a n 2n 1,◎1,求数列{a n}的通项公式。
解:由a n 1 a n2n 1 得a n 1 a n 2n 1 则a n (a n a n 1) (a n 1 a* 2)川(a3 a2) (a2 aj a1[2( n 1) 1] [2(n 2) 1] (2 2 1) (2 1 1) 12[(n 1) (n 2) 2 1] (n 1) 12^^ (n 1) 12(n 1)( n 1) 1n22所以数列{a n}的通项公式为a n n。
例2已知数列{a n}满足a n 1 a n 2 3n 1,印3,求数列{%}的通项公式。
解法一:由a n 1a n 2 3n1得a n 1 a n 2 3n1则a n (anan 1)(an 1a n2)(a3a?)(a2 a1 ) a1(2 3n1 1)(23n2 1)(2321) (2 311) 3n 12(33n2lb3213) (n1)3「(13n1)所以a n 3n n 1 2(n1)3133n 3n 133n n1、累加法1 .适用于:a n i a n f (n)评注:已知ai a ,an 1 an f (n ),其中f(n)可以是关于n 的一次函数、二次函数、指数函 数、分式函数,求通项 an .① 若f(n)是关于n 的一次函数,累加后可转化为等差数列求和 ② 若f(n)是关于n 的二次函数,累加后可分组求和;③ 若f(n)是关于n 的指数函数,累加后可转化为等比数列求和 ④ 若f(n)是关于n 的分式函数,累加后可裂项求和。
求数列通项公式方法归纳(十种方法)求数列通项公式方法归纳一、公式法【例1】已知数列{an}满足,,求数列{an}的通项公式。
,则,故数列{是2222222aan323以1为首项,以为公差的等差数列,由等差数列的通项公式,得,2222231所以数列{an}的通项公式为。
22解:两边除以,得an二、累加法【例2】已知数列{an}满足,,求数列{an}的通项公式。
解:由得则212所以数列{an}的通项公式为。
【例3】在数列{an}中,,求通项公式an.解:原递推式可化为:1111n2,13 1n1314,……,1逐项相加得:1n. 故1n【例4】已知数列{an}满足,,求数列{an}的通项公式。
解:由得则所以【例5】已知数列{an}满足,,求数列{an}的通项公式。
解:两边除以,得则an3n2313,an3n13,故an3nan323 nn1313 na23 2a13a13313 233313 23311 因此an3 n23nn2n312n,则12.【例6】在数列中,且,求通项an.2【小练】:已知{an}满足1求{an}的通项公式。
*,已知{an}的首项,n()求通项公式。
an已知{an}中,,,求。
2三、累乘法类型型【例7】已知数列{an}满足,,求数列{an}的通项公式。
解:因为,,所以,则ana3a2a2a1,故n212所以数列{an}的通项公式为2【例8】已知数列{an}满足,,求{an}的通项公式。
解:因为所以用②式-①式得则①②故所以ana3a2n!2a2.③由,取得,则,又知,则,代入③得n!2。
3所以,{an}的通项公式为n!2.【例9】在数列中,,,求通项an.解:由条件等式an得,a2a111,得1n.练习:1、已知:13,{a}()求数列n的通项。
2、已知{an}中,an且求数列通项公式。
四、待定系数法型n【例10】已知数列{an}满足,,求数列的通项公式。
n解:设④将代入④式,得,等式两边消去2an,得代入④式得,两边除以5,得则⑤nnn由及⑤式得,则11nn,则数列{an是以n为首项,以2为公比的等比数列,则,故。
求数列通项公式的十种方法求解数列的通项公式是高中数学中的一个重要问题,通常需要运用数学分析方法、递推关系、差分方法等多种技巧。
下面将列举十种常见的方法来求解数列的通项公式。
方法一:等差数列的通项公式对于等差数列 an = a1 + (n - 1) * d,其中 a1 为首项,n 为项数,d 为公差。
通项公式可以直接通过公式计算得出。
方法二:等差数列的求和公式对于等差数列 S = (n / 2) * (a1 + an),其中 S 为前 n 项和,a1 为首项,an 为末项,n 为项数。
可以通过求和公式推导出等差数列的通项公式。
方法三:等比数列的通项公式对于等比数列 an = a1 * r^(n - 1),其中 a1 为首项,r 为公比,n 为项数。
通项公式可以直接通过公式计算得出。
方法四:等比数列的求和公式对于等比数列S=(a1*(r^n-1))/(r-1),其中a1为首项,r为公比,n为项数。
可以通过求和公式推导出等比数列的通项公式。
方法五:递推关系法对于一些递推关系的数列,可以通过寻找规律,构建递推关系来求解数列的通项公式。
例如斐波那契数列就可以通过递推关系f(n)=f(n-1)+f(n-2),其中f(1)=1,f(2)=1,来求解通项公式。
方法六:二项式展开法对于一些满足二项式展开的数列,可以通过展开得到二项式系数,然后通过系数的通项公式来求解数列的通项公式。
例如二项式数列(x+1)^n的展开系数就是通过n阶二项展开推导出来的。
方法七:差分法通过对数列进行差分操作,找到规律来求解数列的通项公式。
例如,如果差分的结果是一个等差数列,那么原数列就是一个二次或高次多项式。
方法八:线性递推法对于一些线性递推关系的数列,可以通过构建矩阵形式或特征方程的方法来求解数列的通项公式。
例如,对于一阶线性递推数列a(n)=p*a(n-1)+q,可以通过特征方程x-p*x-q=0来求解通项公式。
方法九:插值法通过给定数列中的若干项,利用 Lagrange 插值公式来推导数列的通项公式。
数列通项公式的求法技巧大全一.利用递推关系式求数列通项的11种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号)、数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、特征根法二。
四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。
等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。
三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等级差数列或等比数列。
四.求数列通项的基本方法是:累加法和累乘法。
五.数列的本质是一个函数,其定义域是自然数集的一个函数。
一、累加法1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。
2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2)()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。
例2 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。
求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号)、数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、特征根法二。
四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。
等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。
三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。
四.求数列通项的基本方法是:累加法和累乘法。
五.数列的本质是一个函数,其定义域是自然数集的一个函数。
一、累加法1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。
2.若1()n n a a f n +-=(2)n ≥,则 21321(1)(2)()n n a a f a a f a a f n +-=-=-=L L两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=L L L所以数列{}n a 的通项公式为2n a n =。
例2 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
求数列通项公式的11种办法办法总述:一.运用递推关系式求数列通项的11种办法:累加法.累乘法.待定系数法.阶差法(逐差法).迭代法.对数变换法.倒数变换法.换元法(目标是去递推关系式中消失的根号).数学归纳法(罕用)不动点法(递推式是一个数列通项的分式表达式).特点根法二.四种根本数列:等差数列.等比数列.等和数列.等积数列及其广义情势.等差数列.等比数列的求通项公式的办法是:累加和累乘,这二种办法是求数列通项公式的最根本办法.三.求数列通项的办法的根本思绪是:把所求数列经由过程变形,代换转化为等级差数列或等比数列.四.求数列通项的根本办法是:累加法和累乘法.五.数列的本质是一个函数,其界说域是天然数集的一个函数. 一.累加法1.实用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最根本的二个办法之一. 2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=双方分离相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 知足11211n n a a n a +=++=,,求数列{}n a 的通项公式. 解:由121n n a a n +=++得121n n a a n +-=+则所以数列{}n a 的通项公式为2n a n =.例2 已知数列{}n a 知足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式. 解法一:由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-所以3 1.n n a n =+-解法二:13231n n n a a +=+⨯+双方除以13n +,得111213333n n n n n a a +++=++, 则111213333n n n n n a a +++-=+,故 是以11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯,则21133.322n n n a n =⨯⨯+⨯-演习1.已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式. 答案:12+-n n演习2.已知数列}{n a 知足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式. 答案:裂项乞降n a n 12-=评注:已知a a =1,)(1n f a a n n =-+,个中f(n)可所以关于n 的一次函数.二次函数.指数函数.分式函数,求通项n a .①若f(n)是关于n 的一次函数,累加后可转化为等差数列乞降; ②若f(n)是关于n 的二次函数,累加后可分组乞降;③若f(n)是关于n 的指数函数,累加后可转化为等比数列乞降; ④若f(n)是关于n 的分式函数,累加后可裂项乞降.例3.已知数列}{n a 中,0>n a 且)(21nn n a n a S +=,求数列}{n a 的通项公式.解:由已知)(21nn n a na S +=得)(2111---+-=n n n n n S S nS S S ,化简有n S S n n =--212,由类型(1)有n S S n ++++= 32212,又11a S =得11=a ,所以2)1(2+=n n S n ,又0>n a 2)1(2+=n n s n ,,则2)1(2)1(2--+=n n n n a n此题也可以用数学归纳法来求解. 二.累乘法1.实用于: 1()n n a f n a += ----------这是广义的等比数列 累乘法是最根本的二个办法之二. 2.若1()n n a f n a +=,则31212(1)(2)()n na aaf f f n a a a +===,,, 双方分离相乘得,1111()nn k a a f k a +==⋅∏例4 已知数列{}n a 知足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式. 解:因为112(1)53n n n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯所以数列{}na 的通项公式为(1)12325!.n n n na n --=⨯⨯⨯例5.设{}n a 是首项为1的正项数列,且()011221=+-+++n n n n a a na a n (n =1,2,3,…),则它的通项公式是n a =________.解:已知等式可化为:[]0)1()(11=-++++n n n n na a n a a0>n a (*N n ∈)∴(n+1)01=-+nn na a , 即11+=+n na a nn ∴2≥n 时,n n a a n n 11-=- ∴112211a a a a a a a a n n n n n ⋅⋅⋅⋅=--- =121121⋅⋅--⋅- n n n n =n 1. 评注:本题是关于n a 和1+n a 的二次齐次式,可以经由过程因式分化(一般情形时用求根公式)得到n a 与1+n a 的更为显著的关系式,从而求出na .1,111->-+=+a n na a n n ,求数列{an}的通项公式.答案:=n a )1()!1(1+⋅-a n -1.评注:本题解题的症结是把本来的递推关系式,11-+=+n na a n n 转化为),1(11+=++n n a n a 若令1+=n n a b ,则问题进一步转化为n n nb b =+1情势,进而运用累乘法求出数列的通项公式. 三.待定系数法 实用于1()n n a qa f n +=+根本思绪是转化为等差数列或等比数列,而数列的本质是一个函数,其界说域是天然数集的一个函数.1.形如0(,1≠+=+c d ca a n n ,个中a a =1)型(1)若c=1时,数列{n a }为等差数列; (2)若d=0时,数列{n a }为等比数列;(3)若01≠≠且d c 时,数列{n a }为线性递推数列,其通项可经由过程待定系数法结构帮助数列来求.待定系数法:设)(1λλ+=++n n a c a ,得λ)1(1-+=+c ca a n n ,与题设,1d ca a n n +=+比较系数得d c =-λ)1(,所以)0(,1≠-=c c dλ所以有:)1(11-+=-+-c d a c c d a n n 是以数列⎭⎬⎫⎩⎨⎧-+1c d a n 组成认为11-+c da 首项,以c 为公比的等比数列, 所以11)1(1-⋅-+=-+n n c c da c d a 即:1)1(11--⋅-+=-c d c c d a a n n .纪律:将递推关系d ca a n n +=+1化为)1(11-+=-++c da c c d a n n ,结构成公比为c 的等比数列}1{-+c da n 从而求得通项公式)1(1111-++-=-+c da c c d a n n逐项相减法(阶差法):有时我们从递推关系dca a n n +=+1中把n换成n-1有dca a n n +=-1,两式相减有)(11-+-=-n n n n a a c a a 从而化为公比为c 的等比数列}{1n n a a -+,进而求得通项公式.)(121a a c a a nn n -=-+,再运用类型(1)即可求得通项公式.我们看到此办法比较庞杂.例6已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式. 解法一:121(2),n n a a n -=+≥又{}112,1n a a +=∴+是首项为2,公比为2的等比数列12n n a ∴+=,即21nn a =-解法二:121(2),n n a a n -=+≥两式相减得112()(2)n n n n a a a a n +--=-≥,故数列{}1n n a a +-是首项为2,公比为2的等比数列,再用累加法的……演习.已知数列}{n a 中,,2121,211+==+n n a a a 求通项n a .答案:1)21(1+=-n n a2.形如:n n n q a p a +⋅=+1 (个中q 是常数,且n ≠0,1)①若p=1时,即:nn n q a a +=+1,累加即可.②若1≠p 时,即:n n n q a p a +⋅=+1,求通项办法有以下三种偏向:i. 双方同除以1+n p .目标是把所求数列结构成等差数列即:nn nn n q p p q a p a )(111⋅+=++,令n n n p a b =,则n nn q p p b b )(11⋅=-+,然后类型1,累加求通项.ii.双方同除以1+n q . 目标是把所求数列结构成等差数列.即: q q a q p q a n n n n 111+⋅=++,令n nn q a b =,则可化为q b q p b n n 11+⋅=+.然后转化为类型5来解,iii.待定系数法:目标是把所求数列结构成等差数列 设)(11n n n n p a p q a ⋅+=⋅+++λλ.经由过程比较系数,求出λ,转化为等比数列求通项.留意:运用待定系数法时,请求p ≠q,不然待定系数法会掉效. 例7已知数列{}n a 知足1112431n n n a a a -+=+⋅=,,求数列{}n a的通项公式.解法一(待定系数法):设11123(3n n n n a a λλλ-++=+⋅),比较系数得124,2λλ=-=,则数列{}143n na--⋅是首项为111435a --⋅=-,公比为2的等比数列,所以114352n n n a ---⋅=-⋅,即114352n n n a --=⋅-⋅解法二(双方同除以1+n q ): 双方同时除以13n +得:112243333n n n n a a ++=⋅+,下面解法略解法三(双方同除以1+n p ): 双方同时除以12+n 得:nn n n n a a )23(342211⋅+=++,下面解法略 演习.(2003天津理) 设a 为常数,且)(2311N n a a n n n ∈-=--.证实对随意率性n≥1,012)1(]2)1(3[51a a n n n n nn ⋅-+⋅-+=-;3.形如b kn pa a n n ++=+1 (个中k,b 是常数,且0≠k ) 办法1:逐项相减法(阶差法) 办法2:待定系数法 经由过程凑配可转化为 ))1(()(1y n x a p y xn a n n +-+=++-;解题根本步调: 1.肯定()f n =kn+b 2.设等比数列)(y xn a b n n ++=,公比为p3.列出关系式))1(()(1y n x a p y xn a n n +-+=++-,即1-=n n pb b4.比较系数求x,y5.解得数列)(y xn a n ++的通项公式6.解得数列{}n a 的通项公式例8 在数列}{n a 中,,23,111n a a a n n +==+求通项n a .(逐项相减法)解: ,,231n a a n n +=+①∴2≥n 时,)1(231-+=-n a a n n ,两式相减得2)(311+-=--+n n n n a a a a .令nn n a a b -=+1,则231+=-n n b b运用类型5的办法知2351+⋅=-n n b 即13511-⋅=--+n n n a a ② 再由累加法可得213251--⋅=-n a n n . 亦可联立 ①②解出213251--⋅=-n a n n .例9. 在数列{}n a 中,362,2311-=-=-n a a a n n ,求通项n a .(待定系数法)解:原递推式可化为yn x a y xn a n n ++-+=++-)1()(21比较系数可得:x=-6,y=9,上式即为12-=n n b b所所以{}n b 一个等比数列,首项299611=+-=n a b ,公比为21.1)21(29-=∴n n b即:nn n a )21(996⋅=+- 故96)21(9-+⋅=n a n n .4.形如cn b n a pa a n n +⋅+⋅+=+21 (个中a,b,c 是常数,且0≠a )根本思绪是转化为等比数列,而数列的本质是一个函数,其界说域是天然数集的一个函数.例10 已知数列{}n a 知足21123451n n a a n n a +=+++=,,求数列{}n a 的通项公式.解:设221(1)(1)2()n na x n y n z a xn yn z ++++++=+++ 比较系数得3,10,18x y z ===,所以2213(1)10(1)182(31018)n n a n n a n n ++++++=+++ 由213110118131320a +⨯+⨯+=+=≠,得2310180n a n n +++≠则2123(1)10(1)18231018n n a n n a n n ++++++=+++,故数列2{31018}n a n n +++为认为21311011813132a +⨯+⨯+=+=首项,以2为公比的等比数列,是以2131018322n n a n n -+++=⨯,则42231018n n a n n +=---.21 n n n a pa qa ++=+时将n a 作为()f n 求解剖析:原递推式可化为211()() n n n n a a p a a λλλ++++=++的情势,比较系数可求得λ,数列{}1n n a a λ++为等比数列. 例11 已知数列{}n a 知足211256,1,2n n n a a a a a ++=-=-=,求数列{}n a 的通项公式. 解:设211(5)()n n n n a a a a λλλ++++=++比较系数得3λ=-或2λ=-,无妨取2λ=-,(取-3 成果情势可能不合,但本质雷同) 则21123(2)n n n n a a a a +++-=-,则{}12n n a a +-是首项为4,公比为3的等比数列11243n n n a a -+∴-=⋅,所以114352n n n a --=⋅-⋅{}n a 中,若2,821==a a ,且知足03412=+-++n n n a a a ,求n a .答案:nn a 311-=.四.迭代法 rn n pa a =+1(个中p,r 为常数)型 例12 已知数列{}n a 知足3(1)2115nn n na aa ++==,,求数列{}n a 的通项公式.解:因为3(1)21n n n na a++=,所以又15a =,所以数列{}n a 的通项公式为(1)123!25n n n n n a --⋅⋅=.注:本题还可分解运用累乘法和对数变换法求数列的通项公式. 例13.(2005江西卷)已知数列:,}{且满足的各项都是正数n a N n a a a a n n n ∈-==+),4(21,110,(1)证实12,;n n a a n N +<<∈ (2)求数列}{n a 的通项公式an.解:(1)略(2)],4)2([21)4(2121+--=-=+n n n n a a a a 所以21)2()2(2--=-+n n a ann nn n n n n n b b b b b a b 22212122222112)21()21(21)21(2121,2-+++----==⋅-=--=-=-= 则令又b n =-1,所以1212)21(22,)21(---=+=-=n n n n n b a b 即.办法2:本题用归纳-猜测-证实,也很简捷,请试一试.解法3:设c n n b -=,则c2121-=n n c ,转化为上面类型(1)来解五.对数变换法 实用于rn n pa a =+1(个中p,r 为常数)型 p>0,0>n a例14. 设正项数列{}n a 知足11=a ,212-=n na a (n ≥2).求数列{}n a 的通项公式.解:双方取对数得:122log 21log -+=n n a a ,)1(log 21log 122+=+-n na a ,设1log 2+=n a n b ,则12-=n n b b {}n b 是以2为公比的等比数列,11log 121=+=b 11221--=⨯=n n n b ,1221log -=+n a n,12log 12-=-n a n,∴1212--=n na演习 数列{}n a 中,11=a ,12-=n n a a (n ≥2),求数列{}n a 的通项公式.答案:nna --=2222例15 已知数列{}n a 知足5123n n n a a +=⨯⨯,17a =,求数列{}n a 的通项公式.解:因为511237n n na a a +=⨯⨯=,,所以100n n a a +>>,. 双方取经常运用对数得1lg 5lg lg3lg 2n n a a n +=++ 设1lg (1)5(lg )n n a x n y a xn y ++++=++(同类型四) 比较系数得,lg3lg3lg 2,4164x y ==+ 由1lg3lg3lg 2lg3lg3lg 2lg 1lg 71041644164a +⨯++=+⨯++≠,得lg3lg3lg 2lg 04164n a n +++≠, 所以数列lg3lg3lg 2{lg }4164n a n +++是认为lg3lg3lg 2lg 74164+++首项,以5为公比的等比数列,则1lg3lg3lg 2lg3lg3lg 2lg (lg 7)541644164n n a n -+++=+++,是以11111111116164444111115161644445415151164lg 3lg 3lg 2lg 3lg 3lg 2lg (lg 7)54164464[lg(7332)]5lg(332)lg(7332)lg(332)lg(732)n n n n n n n n n n a n --------=+++---=⋅⋅⋅-⋅⋅=⋅⋅⋅-⋅⋅=⋅⋅则11541515164732n n n n na -----=⨯⨯.六.倒数变换法 实用于分式关系的递推公式,分子只有一项 例16 已知数列{}n a 知足112,12nn n a a a a +==+,求数列{}n a 的通项公式. 解:求倒数得11111111111,,22n n n n n n a a a a a a +++⎧⎫=+∴-=∴-⎨⎬⎩⎭为等差数列,首项111a =,公役为12,112(1),21n n n a a n ∴=+∴=+ 七.换元法 实用于含根式的递推关系 例17 已知数列{}n a知足111(14116n n a a a +=++=,,求数列{}n a 的通项公式.解:令n b =则21(1)24n n a b =-代入11(1416n n a a +=++得 即2214(3)n n b b +=+因为0n b =≥,则123n n b b +=+,即11322n n b b +=+, 可化为113(3)2n n b b +-=-,所所以{3}n b -认为13332b -==首项,认为21公比的等比数列,是以121132()()22n n n b ---==,则21()32n n b -=+,21()32n -=+,得2111()()3423n n n a =++.八.数学归纳法 经由过程首项和递推关系式求出数列的前n 项,猜出数列的通项公式,再用数学归纳法加以证实.例18 已知数列{}n a 知足11228(1)8(21)(23)9n n n a a a n n ++=+=++,,求数列{}n a 的通项公式.解:由1228(1)(21)(23)n n n a a n n ++=+++及189a =,得由此可猜测22(21)1(21)n n a n +-=+,下面用数学归纳法证实这个结论. (1)当1n =时,212(211)18(211)9a ⨯+-==⨯+,所以等式成立. (2)假设当n k =时等式成立,即22(21)1(21)k k a k +-=+,则当1n k =+时, 由此可知,当1n k =+时等式也成立.依据(1),(2)可知,等式对任何*n N ∈都成立. 九.阶差法(逐项相减法) 1.递推公式中既有n S ,又有n a剖析:把已知关系经由过程11,1,2n nn S n a S S n -=⎧=⎨-≥⎩转化为数列{}n a 或n S 的递推关系,然后采取响应的办法求解.例19 已知数列{}n a 的各项均为正数,且前n 项和n S 知足1(1)(2)6n n n S a a =++,且249,,a a a 成等比数列,求数列{}n a 的通项公式.解:∵对随意率性n N +∈有1(1)(2)6n n n S a a =++⑴ ∴当n=1时,11111(1)(2)6S a a a ==++,解得11a =或12a = 当n ≥2时,1111(1)(2)6n n n S a a ---=++⑵ ⑴-⑵整顿得:11()(3)0n n n n a a a a --+--= ∵{}n a 各项均为正数,∴13n n a a --=当11a =时,32n a n =-,此时2429a a a =成立当12a =时,31n a n =-,此时2429a a a =不成立,故12a =舍去所以32n a n =-演习.已知数列}{n a 中,0>n a 且2)1(21+=n n a S ,求数列}{n a 的通项公式.答案:n n na S S =--1212)1()1(+=--n n a a 12-=n a n2.对无限递推数列例20 已知数列{}n a 知足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求{}n a 的通项公式.解:因为123123(1)(2)n n a a a a n a n -=++++-≥①所以1123123(1)n n n a a a a n a na +-=++++-+② 用②式-①式得1.n n n a a na +-= 则1(1)(2)n n a n a n +=+≥ 故11(2)n na n n a +=+≥ 所以13222122![(1)43].2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=③由123123(1)(2)n n a a a a n a n -=++++-≥,21222n a a a ==+取得,则21a a =,又知11a =,则21a =,代入③得!13452n n a n =⋅⋅⋅⋅⋅=. 所以,{}n a 的通项公式为!.2n n a =十.不动点法 目标是将递推数列转化为等比(差)数列的办法不动点的界说:函数()f x 的界说域为D ,若消失0()f x x D ∈,使00()f x x =成立,则称0x 为()f x 的不动点或称00(,())x f x 为函数()f x 的不动点.剖析:由()f x x =求出不动点0x ,在递推公式双方同时减去0x ,在变形求解.类型一:形如1 n n a qa d +=+例21 已知数列{}n a 中,111,21(2)n n a a a n -==+≥,求数列{}n a 的通项公式. 解:递推关系是对应得递归函数为()21f x x =+,由()f x x =得,不动点为-1 ∴112(1)n n a a ++=+,…… 类型二:形如1n n n a a ba c a d+⋅+=⋅+剖析:递归函数为()a x bf x c x d⋅+=⋅+(1)如有两个相异的不动点p,q 时,将递归关系式双方分离减去不动点p,q,再将两式相除得11n n n n a p a pk a q a q++--=⋅--,个中a pc k a qc -=-,∴111111()()()()n n n a q pq k a p pq a a p k a q -----=---(2)如有两个雷同的不动点p,则将递归关系式双方减去不动点p,然后用1除,得111n n k a p a p +=+--,个中2ck a d=+.例22. 设数列{}n a 知足7245,211++==+n n n a a a a ,求数列{}n a 的通项公式.剖析:此类问题经常运用参数法化等比数列求解. 解:对等式两头同时加参数t,得:,725247)52(727)52(72451+++++=+++=+++=++n n n n n n n a t t a t a t a t t a a t a令5247++=t t t , 解之得t=1,-2 代入72)52(1+++=++n n n a t a t t a 得721311+-=-+n n n a a a ,722921++=++n n n a a a ,相除得21312111+-⋅=+-++n n n n a a a a ,即{21+-n n a a }是首项为412111=+-a a , 公比为31的等比数列,21+-n n a a =n -⋅1341, 解得13423411-⋅+⋅=--n n n a . 办法2:,721311+-=-+n n n a a a ,双方取倒数得1332)1(39)1(2)1(372111-+=-+-=-+=-+n n n n n n a a a a a a , 令b 11-=n n a ,则b =n n b 332+,, 转化为累加法来求.例23 已知数列{}n a 知足112124441n n n a a a a +-==+,,求数列{}n a 的通项公式.解:令212441x x x -=+,得2420240x x -+=,则1223x x ==,是函数2124()41x f x x -=+的两个不动点.因为112124224121242(41)13262132124321243(41)92793341n n n n n n n n n n n n n n a a a a a a a a a a a a a a ++---+--+--====----+---+.所以数列23n n a a ⎧⎫-⎨⎬-⎩⎭是认为112422343a a --==--首项,认为913公比的等比数列,故12132()39n n n a a --=-,则113132()19nn a -=+-. 演习1:已知{}n a 知足11122,(2)21n n n a a a n a --+==≥+,求{}n a 的通项n a答案:3(1)3(1)n nn nna --∴=+-演习2.已知数列{}n a 知足*11212,()46n n n a a a n N a +-==∈+,求数列{}n a 的通项n a答案:135106n na n -∴=-演习3.(2009陕西卷文)已知数列{}n a 知足, *11212,,2n n n a a a a a n N ++=∈’+2==. ()I 令1n n n b a a +=-,证实:{}n b 是等比数列;(Ⅱ)求{}n a 的通项公式.答案:(1){}n b 是以1为首项,12-为公比的等比数列.(2)1*521()()332n n a n N -=--∈.十一:特点方程法 形如21(,n n n a pa qa p q ++=+是常数)的数列 (已知 a1;a2)形如112221,,(,n n n a m a m a pa qa p q ++===+是常数)的二阶递推数列都可用特点根法求得通项n a ,其特点方程为2x px q =+…①若①有二异根,αβ,则可令1212(,n nn a c c c c αβ=+是待定常数) 若①有二重根αβ=,则可令1212()(,nn a c nc c c α=+是待定常数)再运用1122,,a m a m ==可求得12,c c ,进而求得n a例24 已知数列{}n a 知足*12212,3,32()n n na a a a a n N ++===-∈,求数列{}n a 的通项n a解:其特点方程为232x x =-,解得121,2x x ==,令1212n nn a c c =⋅+⋅, 由1122122243a c c a c c =+=⎧⎨=+=⎩,得12112c c =⎧⎪⎨=⎪⎩, 112n n a -∴=+例25已知数列{}n a 知足*12211,2,44()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a解:其特点方程为2441x x =-,解得1212x x ==,令()1212nn a c nc ⎛⎫=+ ⎪⎝⎭,由1122121()121(2)24a c c a c c ⎧=+⨯=⎪⎪⎨⎪=+⨯=⎪⎩,得1246c c =-⎧⎨=⎩, 1322n n n a --∴=演习1.已知数列{}n a 知足*12211,2,441()n n n a a a a a n N ++===--∈,求数列{}n a 的通项演习2.已知数列{}n a 知足*12211,2,444()n n n a a a a a n n N ++===---∈,求数列{}n a 的通项解释:(1)若方程2x px q =+有两不合的解s , t,则)(11-+-=-n n n n ta a s ta a , )(11-+-=-n n n n sa a t sa a ,由等比数列性质可得1121)(-+-=-n n n s ta a ta a , 1121)(-+-=-n n n t sa a sa a ,,s t ≠ 由上两式消去1+n a 可得()()()nn n t t s t sa a s t s s ta a a ..1212-----=.(2)若方程2x px q =+有两相等的解t s =,则()()12121211)(ta a s ta a s ta a s ta a n n n n n n n -==-=-=-----+ ,21211s ta a s a s a n n n n -=-∴++,等于⎭⎬⎫⎩⎨⎧n n s a 等差数列, 由等差数列性质可知()2121.1ssa a n s a s a n n --+=, 所以nn s n s sa a s sa a s a a ⎥⎦⎤⎢⎣⎡-+⎪⎭⎫ ⎝⎛--=.2122121. 例26.数列{}n a 知足1512a =-,且212542924n n n a a a +-=+求数列{}n a 的通项.解:2211252925244429292244n n n n n n n a a a a a a a λλλλ++-++-+==+=++……① 令229254λλ-=,解得12251,4λλ==,将它们代回①得,()21112924n n n a a a +++=+……②,212525429424nn n a a a +⎛⎫+ ⎪⎝⎭+=+……③,③÷②,得21125254411n nn n a a a a ++⎛⎫++ ⎪= ⎪++ ⎪⎝⎭,则11252544lg 2lg 11n n n n a a a a ++++=++,∴数列254lg 1n n a a ⎧⎫+⎪⎪⎨⎬+⎪⎪⎩⎭成等比数列,首项为1,公比q =2所以1254lg 21n n n a a -+=+,则12254101n n n a a -+=+,112225104101n n n a ---∴=-十二.四种根本数列1.形如)(1n f a a n n =-+型 等差数列的广义情势,见累加法.)(1n f a a nn =+型 等比数列的广义情势,见累乘法. )(1n f a a n n =++型(1)若d a a n n =++1(d 为常数),则数列{n a }为“等和数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来评论辩论;(2)若f(n)为n 的函数(异常数)时,可经由过程结构转化为)(1n f a a n n =-+型,经由过程累加来求出通项;或用逐差法(两式相减)得)1()(11--=--+n f n f a a n n ,,分奇偶项来分求通项.例27. 数列{n a }知足01=a ,n a a n n 21=++,求数列{a n }的通项公式. 剖析 1:结构 转化为)(1n f a a n n =-+型解法1:令n nn a b )1(-=则n a a a a b b n n n n n n n n n n 2)1()()1()1()1(111111⋅-=+-=---=-++++++.2≥n 时,⎪⎪⎪⎩⎪⎪⎪⎨⎧=-=⨯⋅-=--⋅-=--⋅-=-----012)1()2(2)1()1(2)1(112121211a b b b n b b n b b n n n n n n各式相加:[]1)1(2)1()2()1()1()1(2231⋅-+⋅-++--+--=- n n b n n n当n 为偶数时,n n n b n =⎥⎦⎤⎢⎣⎡-⋅-+-=22)1()1(2. 此时n b a n n == 当n 为奇数时,1)21(2+-=--=n n b n 此时n n a b -=,所以1-=n a n .故 ⎩⎨⎧-=.,,,1为偶数为奇数n n n n a n解法2: na a n n 21=++∴2≥n 时,)1(21-=+-n a a n n ,两式相减得:211=--+n n a a . ∴,,,,531 a a a 组成以1a ,为首项,以2为公役的等差数列; ,,,,642 a a a 组成以2a ,为首项,以2为公役的等差数列∴22)1(112-=-+=-k d k a a k k d k a a k 2)1(22=-+=.∴⎩⎨⎧-=.,,,1为偶数为奇数n n n n a n 评注:成果要还原成n 的表达式.例28.(2005江西卷)已知数列{a n }的前n 项和S n 知足 S n -S n -2=3,23,1),3()21(211-==≥--S S n n 且求数列{a n }的通项公式. 解:办法一:因为),3()21(31112≥-⋅=++=-----n a a a a S S n n n n n n n 所以 以下同上例,略答案 ⎪⎪⎩⎪⎪⎨⎧⋅+-⋅-=--.,)21(34,,)21(3411为偶数为奇数n n a n n n)(1n f a a n n =⋅+型(1)若p a a n n =⋅+1(p 为常数),则数列{n a }为“等积数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来评论辩论;(2)若f(n)为n 的函数(异常数)时,可经由过程逐差法得)1(1-=⋅-n f a a n n ,两式相除后,分奇偶项来分求通项.例29. 已知数列满足}{n a )(,)21(,3*11N n a a a nn n ∈=⋅=+,求此数列的通项公式.注:同上例相似,略.。
1,数列通项公式的十种求法:(1)公式法(构造公式法)例1已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求数列{}n a 的通项公式。
解:1232n n n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2n n a 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n na n =+-,所以数列{}n a 的通项公式为31()222n n a n =-。
评注:本题解题的关键是把递推关系式1232n n n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2nn a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n na n =+-,进而求出数列{}n a 的通项公式。
(2)累加法例2已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则 所以数列{}n a 的通项公式为2n a n =。
评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出1123221()()()()n n n n a a a a a a a a a ----+-++-+-+,即得数列{}n a 的通项公式。
变式:已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
(3)累乘法例3已知数列{}n a 满足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式。
解:因为112(1)53n n n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯评注:本题解题的关键是把递推关系12(1)5n n n a n a +=+⨯转化为12(1)5n n na n a +=+,进而求出13211221n n n n a a a a a a a a a ---⋅⋅⋅⋅⋅,即得数列{}n a 的通项公式。
求数列通项公式的方法大全总述:一.利用递推关系式求数列通项的11种方法:累加法、累乘法、待定系数法、阶差法(逐差法)、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号)、数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、特征根法二。
四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。
等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。
三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。
四.求数列通项的基本方法是:累加法和累乘法。
五.数列的本质是一个函数,其定义域是自然数集的一个函数。
一、累加法1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。
2.若1()n n a a f n +-=(2)n ≥,则 21321(1)(2)()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
例2 已知数列{}n a 满足112313n n n a a a +=+⨯+=,,求数列{}n a 的通项公式。
练习1.已知数列{}n a 的首项为1,且*12()n n a a n n N +=+∈写出数列{}n a 的通项公式.练习2.已知数列}{n a 满足31=a ,)2()1(11≥-+=-n n n a a n n ,求此数列的通项公式.评注:已知a a =1,)(1n f a a n n =-+,其中f(n)可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项n a .①若f(n)是关于n 的一次函数,累加后可转化为等差数列求和;②若f(n)是关于n 的二次函数,累加后可分组求和;③若f(n)是关于n 的指数函数,累加后可转化为等比数列求和;④若f(n)是关于n 的分式函数,累加后可裂项求和。
求数列通项公式的11种方法[学习]求数列通项公式的11种方法[学习]数列通项公式是数学中常见的一种概念,它可以帮助我们更好地理解数列的特征,并用于计算数列的和、积、最大值以及最小值等问题。
学习求数列通项公式的11种方法,可以帮助我们更好地理解数列的概念,并能够更加准确地计算数列的和、积、最大值以及最小值等问题。
下面就来介绍一下求数列通项公式的11种方法:1. 泰勒公式:泰勒公式是一种常用的求数列通项公式的方法,它可以利用数列前n项的值,通过对不同项进行求导和积分,来求出数列的通项公式。
2. 通项定理:通项定理是一种简单易懂的求数列通项公式的方法,它可以利用数列中初始项和公差,通过观察数列的每一项,找出数列的规律,然后求出数列的通项公式。
3. 求极限法:求极限法是一种重要的求数列通项公式的方法,它可以利用数列中前n项的值,通过极限的概念,来求出数列的通项公式。
4. 差分法:差分法是一种常用的求数列通项公式的方法,它可以利用数列中前n项的值,通过计算数列每项与前一项的差值,找出数列的规律,然后求出数列的通项公式。
5. 分类法:分类法是一种简单易懂的求数列通项公式的方法,它可以根据数列的特点,将数列分类,然后再根据各类数列的特点,求出数列的通项公式。
6. 幂级数法:幂级数法是一种重要的求数列通项公式的方法,它可以利用数列中前n项的值,通过将数列转化为幂级数,然后求出数列的通项公式。
7. 矩阵法:矩阵法是一种有效的求数列通项公式的方法,它可以利用数列中前n项的值,通过矩阵运算,求出数列的通项公式。
8. 特征值法:特征值法是一种重要的求数列通项公式的方法,它可以利用数列中前n项的值,通过计算数列的特征值,求出数列的通项公式。
9. 最优化法:最优化法是一种有效的求数列通项公式的方法,它可以利用数列中前n项的值,通过构造相应的优化模型,来求出数列的通项公式。
10. 启发式法:启发式法是一种创新性的求数列通项公式的方法,它可以利用数列中前n项的值,通过启发式算法,来求出数列的通项公式。
求数列通项公式的方法数列是高考中的重点考察内容之一,每年高考都会考察,小题一般较易,大题一般较难。
数列的通项公式,在求数列问题中尤其重要。
本文给出了求数列通项公式的常用方法。
一、直接规律法根据数列的特征,使用作差法等直接写出通项公式。
例1.根据下列数列的前几项,说出数列的通项公式:(1)、23,415,635,863,1099,…; (2)、 1-,13,935-,1763,3399-,…; (3)、1,0,13-,0,15,0,17-,0,…;(4)、1,2,5,8,12……… (5)、21212,1,,,,3253……… 二、公式法①利用等差数列或等比数列的定义求通项②若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2111n S S n S a n n n 求解. (注意:求完后一定要考虑合并通项)例2.①已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S nn n .求数列{}n a 的通项公式.②已知数列{}n a 的前n 项和n S 满足21nS n n =+-,求数列{}n a 的通项公式.③ 已知等比数列{}n a 的首项11=a ,公比10<<q ,设数列{}n b 的通项为21+++=n n n a a b ,求数列{}n b 的通项公式。
③解析:由题意,321++++=n n n a a b ,又{}n a 是等比数列,公比为q ∴q a a a a b b n n n n n n =++=+++++21321,故数列{}n b 是等比数列,)1(211321+=+=+=q q q a q a a a b , ∴ )1()1(1+=⋅+=-q q q q q b nn n三、待定系数法:求数列通项公式方法灵活多样,特别是对于给定的递推关系求通项公式,观察、分析、推理能力要求较高。
求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11种方法:累加法、 累乘法、 待定系数法、 阶差法(逐差法)、 迭代法、 对数变换法、 倒数变换法、换元法(目的是去递推关系式中出现的根号)、 数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、 特征根法二.四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。
等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。
三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。
四.求数列通项的基本方法是:累加法和累乘法。
五.数列的本质是一个函数,其定义域是自然数集的一个函数。
一、累加法1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。
2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2)()n n a a f a a f a a f n +-=-=-=两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。
例2 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。
高考数学总复习之求数列的通项公式的常用方法求数列的通项公式的常用方法一、观察法:给出前几项(或用图形给出),求通项公式。
一般从以下几个方面考虑: ①符号相隔变化用()()111n n +--或来调节。
②分式形式的数列,注意分子、分母分别找通项,并注意分子与分母的联系。
③分别观察奇数项与偶数项的变化规律,用分段函数的形式写出通项。
④观察是否与等差数列和等比数列相联系。
⑤分析相邻项的关系。
例1根据下面数列的前几项的值,写出数列的一个通项公式:(1) 3, 5, 9, 17, 33,……; (2) 32, 154, 356, 638, 9910, ……; (3) 0, 1, 0, 1, 0, 1,……; (4) 1, 3, 3, 5, 5, 7, 7, 9,9, ……;(5) 2, -6, 12, -20, 30, -42,…….练习:1.根据下面数列的前几项的值,写出数列的一个通项公式:(1)1,3,7,15,31,……; (2)1,11,111,1111,……;(3)745,534,323,1122222----,……; (4)174,72,114,21,54,2---,……; (5)9,99,999,9999,……; (6)17164,1093,542,211,……; (7),52,21,32,1……;答案:(1)12-=n n a (2))110(91-=n n a (3)12)1(2--+=n n n a n (4)13)1(41--⨯=+n a n n (5)110-=n n a(6)122++=n n n a n (7)12+=n a n2.如图,这是一个正六边形的序列,则第(n )个图形的线段数为( C ).A. 5n-1B. 6nC. 5n+1D.4n+23、数列⋯--,924,715,58,1的一个通项公式是( D ).A .12)1(3++-=n n n a nnB .12)3()1(++-=n n n a nnC .121)1()1(2--+-=n n a nnD .12)2()1(++-=n n n a nn 二、定义法:数列为等差(或等比)数列如果已知数列为等差(或等比)数列,求得首项1a ,公差d (或公比q ),可直接根据等差(或等比)数列的通项公式,从而直接写出通项公式。
最全的数列通项公式的求法数列是高考中的重点内容之一,每年的高考题都会考察到,小题一般较易,大题一般较难。
而作为给出数列的一种形式——通项公式,在求数列问题中尤其重要。
本文给出了求数列通项公式的常用方法。
◆一、直接法根据数列的特征,使用作差法等直接写出通项公式。
例1. 根据下列数列的前几项,说出数列的通项公式: 1、1.3.7.15.31……… 2、1,2,5,8,12………3、21212,1,,,,3253………4、1,-1,1,-1………5、1、0、1、0………◆二、公式法①利用等差数列或等比数列的定义求通项②若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2111n S S n S a n nn 求解. (注意:求完后一定要考虑合并通项)例2.①已知数列{}n a 的前n 项和n S 满足1,)1(2≥-+=n a S nn n .求数列{}n a 的通项公式.②已知数列{}n a 的前n 项和n S 满足21nS n n =+-,求数列{}n a 的通项公式.③ 已知等比数列{}n a 的首项11=a ,公比10<<q ,设数列{}n b 的通项为21+++=n n n a a b ,求数列{}n b 的通项公式。
③解析:由题意,321++++=n n n a a b ,又{}n a 是等比数列,公比为q ∴q a a a a b b n n n n n n =++=+++++21321,故数列{}n b 是等比数列,)1(211321+=+=+=q q q a q a a a b , ∴ )1()1(1+=⋅+=-q q q q q b nn n◆三、归纳猜想法如果给出了数列的前几项或能求出数列的前几项,我们可以根据前几项的规律,归纳猜想出数列的通项公式,然后再用数学归纳法证明之。
史上最全的数列通项公式的求法15种数列是数学中很重要的一种数学对象,它是由一系列的数按照一定的顺序排列而成。
数列通项公式是数列中的每一项与项号之间的关系式,可以通过该公式来求出数列的任意一项。
下面将介绍15种常见的数列通项公式的求法。
1.等差数列:等差数列是一种公差为常数的数列,通项公式为an = a1 + (n - 1)d,其中a1为首项,d为公差。
2.等比数列:等比数列是一种比值为常数的数列,通项公式为an = a1 * r^(n - 1),其中a1为首项,r为公比。
3. 斐波那契数列:斐波那契数列是一种特殊的数列,每一项是其前两项之和,通项公式为an = an-1 + an-2,其中a1 = 1,a2 = 14. 平方数列:平方数列是由平方数所组成的数列,通项公式为an = n^25. 立方数列:立方数列是由立方数所组成的数列,通项公式为an = n^36.等差立方数列:等差立方数列是一种公差为常数的立方数列,通项公式为an = a1 + (n - 1)^3,其中a1为首项。
7.等比立方数列:等比立方数列是一种比值为常数的立方数列,通项公式为an = a1 * r^(n - 1)^3,其中a1为首项,r为公比。
8. 焦比数列:焦比数列是一种特殊的数列,每一项是其前一项的反数,通项公式为an = -1 / an-1,其中a1为首项。
9. 调和数列:调和数列是一种特殊的数列,每一项是其前一项的倒数与项号之和的倒数,通项公式为an = 1 / (1 / a1 + n - 1),其中a1为首项。
10. 初等数列:初等数列是一种特殊的数列,每一项是其前一项与项号之和的和,通项公式为an = an-1 + n,其中a1为首项。
11.等差等比数列:等差等比数列是一种既是等差数列又是等比数列的数列,通项公式为an = a1 * (1 + (n - 1)d),其中a1为首项,d为公差。
12. 菲波拿契数列:菲波拿契数列是一种特殊的数列,每一项是其前一项与项号之和的差,通项公式为an = an-1 - n,其中a1为首项。
高中数学求解数列通项公式常用方法总结(共15种类型)类型1(迭加法)1112212212(21)2()log 1(n 1)n n n n n n n n n n a a f n n -++-⎧⎪⎪⎪-+⎪⎪--==⎨⎪⎪⎪⎪⎪+⎩,n a a 求,11=以上 6 种情况都要试着做一遍例1:已知数列{}n a 满足11211,2n n a a a n n+=-=+,求n a 。
解:由条件知:121111(1)1n n a a n n n n n n +-===-+++分别令1,2,3,,(1)n n =- ,代入上式得(1)n -个等式累加之,即2132431()()()()n n a a a a a a a a --+-+-++- 1111111(1)()()()223341n n=-+-+-++-- 所以111n a a n-=-111131,1222n a a n n=∴=+-=-类型2(迭乘法)11()=2n n nn a f n n a ++⎧⎪=⎨⎪⎩,na a 求,11=例2:已知数列{}n a 满足112,31n n na a a n +==+,求n a 。
解:由条件知11n n a na n +=+,分别令1,2,3,,(1)n n =- ,代入上式得(1)n -个等式累乘之,即3241231112311234n n n a a a a a n a a a a n a n--=⨯⨯⨯⨯⇒=又122,33n a a n=∴=∵类型3 (退一相减法)递推公式为S n 与a n 的关系式。
(或()n n S f a =)解法:这种类型一般利用11(1)(2)n n n S n a S S n -=⎧=⎨-≥⎩ 与11()()n n n n n a S S f a f a --=-=-消去n S (2)n ≥或与1()(2)n n n S f S S n -=-≥消去n a 进行求解。
常见题型:1、12++=n n S n ,n a 求(关系与n S n )2、n n n a a S 求,23+=(关系与n n a S )3、n n a a a a n 22223133221+⋅⋅⋅+++=+,求n a (n a n 与)例:已知数列{}n a 前n 项和2142n n n S a -=--.(1)求1n a +与n a 的关系;(2)求通项公式n a .解:(1)2142n n n S a -=--得:111142n n n S a ++-=--于是112111()()22n n n n n n S S a a ++---=-+-所以1111111222n n n n n n n a a a a a +++-=-+⇒=+.类型3 (构造法 1) n 1n a pa q +=+(其中,p q 均为常数,((1)0)pq p -≠)。
求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11 种方法:累加法、累乘法、待定系数法、阶差法(逐差法) 、迭代法、对数变换法、倒数变换法、换元法(目的是去递推关系式中出现的根号) 、数学归纳法、不动点法(递推式是一个数列通项的分式表达式) 、特征根法二。
四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。
等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。
三.求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等差数列或等比数列。
四.求数列通项的基本方法是:累加法和累乘法。
五.数列的本质是一个函数,其定义域是自然数集的一个函数。
、累加法1.适用于:a n 1 a n f (n) ------------------ 这是广义的等差数列累加法是最基本的二个方法之一。
2.若a n 1 a n f (n) (n 2) ,a2 a1 f (1)a3 a2 f (2) LLa n 1 a n f ( n)n两边分别相加得a n 1 a1 f (n )k1例1已知数列{a n }满足a n 1a n 2n 1, a i 1,求数列{a n }的通项公式。
解:由 a n 1 a n 2n 1 得 a n 1 a n 2n 1 则a n (a n a n 1) (a n 1 a n 2) L @3a 2) (a 2 aja 1 [2( n 1) 1] [2( n 2) 1]L (2 21) (2 11) 12[(n 1) (n 2) L 2 1] (n 1) 1 (n 1)n 2 (n 1) 12(n 1)( n 1) 1 2n2所以数列{a n }的通项公式为a n n 。
例2已知数列{a n }满足a n 1 a n 2 3n 1,印3,求数列 佝}的通项公式。
解法一:由a n 1 a n n 2 31 得 a n 1a n n2 31则a n (a * an 1)(a n 1 a n 2) L(a 3 a 2) (a 2 a 1) a 1n (2 3 1 1) (2 3n 21)L (2 32 31 1) (2 31) 312(33n2L 32 ;31)(n 1)3「(1 3n1)2(n 1) 31 3n3 3 n 133 n1所以a n 3n n 1.解法二:时3an 2 3 1两边除以3n1,得鄴J 3 3a n 2 n3 32132)3 32 3a3na n 3a n 1)a n 1(an 1a n 1a n 2) (a n 2(尹z a2 q 色(3231)33n )1)12门22(n 1)313n 3n13n2Lan 13n22答案:n数、分式函数,求通项 an .① 若f(n)是关于n 的一次函数,累加后可转化为等差数列求和 ② 若f(n)是关于n 的二次函数,累加后可分组求和 ; ③ 若f(n)是关于n 的指数函数,累加后可转化为等比数列求和 ④ 若f(n)是关于n 的分式函数,累加后可裂项求和。
求数列通项公式的十一种方法(方法全,例子全,归纳细)总述:一.利用递推关系式求数列通项的11种方法:累加法、 累乘法、 待定系数法、 阶差法(逐差法)、 迭代法、 对数变换法、 倒数变换法、换元法(目的是去递推关系式中出现的根号)、 数学归纳法、不动点法(递推式是一个数列通项的分式表达式)、 特征根法二。
四种基本数列:等差数列、等比数列、等和数列、等积数列及其广义形式。
等差数列、等比数列的求通项公式的方法是:累加和累乘,这二种方法是求数列通项公式的最基本方法。
三 .求数列通项的方法的基本思路是:把所求数列通过变形,代换转化为等级差数列或等比数列。
四.求数列通项的基本方法是:累加法和累乘法。
五.数列的本质是一个函数,其定义域是自然数集的一个函数。
一、累加法1.适用于:1()n n a a f n +=+ ----------这是广义的等差数列 累加法是最基本的二个方法之一。
2.若1()n n a a f n +-=(2)n ≥,则21321(1)(2) ()n n a a f a a f a a f n +-=-=-=L L两边分别相加得 111()nn k a a f n +=-=∑例1 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2n a n =。
例2 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。
每年高考必考!求数列通项公式的11种方法——高三同学必
须掌握
同学们都知道,求数列通项公式基本上是每年高考必考题。
所以,求通项公式的各种方法和技巧每位同学都应该彻底掌握。
利用递推关系求数列通项一般有11种方法,有累加法、累乘法、等差法、换元法。
相信同学们都再熟悉不过了。
方法只是手段而已,而最核心的是同学们要掌握运用这些方法的能力。
也就是说当你拿到一道题时,你首先需要分析他应该要怎么变形,怎么去构造,然后用什么样的方法去解决,这才是我们必需具备的能力。
通过不断的梳理和整理,从而把这些方法运用得非得心应手。
我们首先要明白求数列通项公式的基本思路:把所求数列通过变形,代换转化为等级差数列或等比数列。
所用的基本方法就是叠加法和叠乘法。
除了能够熟练运用这些方法外,还需要你具备函数思维等(比如:等差数列前n项是属于二次函数型)
那么今天先给同学分享前2种最基要的方法:叠加法和叠乘法。
针对不太好的同学,一定要掌握!
一、累加法(又称叠加法):
1、什么时候用累加?这很关键!
答:就是相邻2项之差是一个变数的时候,就需要用累加法。
2、用法步骤:
①写出所有项式子;
②等式左右两边各相加;
③运算求出通项公式。
3、难点拓展延伸:
①、构造法:所有累加法都可以构造成常数列;
②、隔项累加。
接下来就看例题:
接下来看例2:
解法一:累加法。
我们一看题干就明白可以用累加法。
这里就不再赘述。
解法二:构造法。
前面讲了所有累加法就可以构造成常数列,如果我们一眼就可以看出来可以构造,就可以采用构造法。
关于累加法还有一个难点,那就是会出现隔项累加,这就作为作业给大家去做了,直接看例3:
如果有不懂的可以私信了解。
二、累乘法(又称叠乘法):
1、什么时候用累乘法?
答案:就是相邻2项之比是一个变数的时候,就需要用累乘法。
2、用法步骤:
①写出所有项式子;
②等式左右两边各相乘;
③运算求出通项公式。
接下来再给同学留2道作业题,一定要自己通过演算,找到自己的解题思路和感觉,从而让自己理解得更加深刻!
这就是我们的教学方法:梳理题型,让你直击题目本质,让你会做一类题,而不是一道题,让你做题又快又准。
如果有其它任何疑问可以留言,或者私信。
Psst:完了吗?。