高考数学题型全归纳第十章圆锥曲线方程第6节圆锥曲线综合
- 格式:pptx
- 大小:277.38 KB
- 文档页数:6
目录圆锥曲线十大题型全归纳题型一弦的垂直平分线问题 (2)题型二动弦过定点的问题 (3)题型三过已知曲线上定点的弦的问题 (4)题型四共线向量问题 (5)题型五面积问题 (7)题型六弦或弦长为定值、最值问题 (10)题型七直线问题 (14)题型八轨迹问题 (16)题型九对称问题 (19)题型十存在性问题 (21)圆锥曲线题型全归纳题型一:弦的垂直平分线问题例题1、过点T(-1,0)作直线l 与曲线N :2y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ∆是等边三角形,若存在,求出0x ;若不存在,请说明理由。
题型二:动弦过定点的问题例题2、已知椭圆C :22221(0)x y a b a b+=>>的离心率为32,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。
(I )求椭圆的方程;(II )若直线:(2)l x t t =>与x 轴交于点T,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论题型三:过已知曲线上定点的弦的问题例题4、已知点A 、B 、C 是椭圆E :22221x y a b+= (0)a b >>上的三点,其中点A (23,0)是椭圆的右顶点,直线BC 过椭圆的中心O ,且0AC BC =,2BC AC =,如图。
(I)求点C 的坐标及椭圆E 的方程;(II)若椭圆E 上存在两点P 、Q ,使得直线PC 与直线QC 关于直线3x =对称,求直线PQ 的斜率。
题型四:共线向量问题1:如图所示,已知圆M A y x C ),0,1(,8)1(:22定点=++为圆上一动点,点P 在AM 上,点N 在CM 上,且满足N AM NP AP AM 点,0,2=⋅=的轨迹为曲线E.I )求曲线E 的方程;II )若过定点F (0,2)的直线交曲线E 于不同的两点G 、H (点G 在点F 、H 之间),且满足FH FG λ=,求λ的取值范围.2:已知椭圆C 的中心在坐标原点,焦点在x 轴上,它的一个顶点恰好是抛物线214y x =的焦点,离心率为5.(1)求椭圆C 的标准方程;(2)过椭圆C 的右焦点作直线l 交椭圆C 于A 、B 两点,交y 轴于M 点,若1MA AF λ=,2MB BF λ= ,求证:1210λλ+=-.题型五:面积问题例题1、已知椭圆C :12222=+by a x (a >b >0)的离心率为,36短轴一个端点到右焦点的距离为3。
圆锥曲线全总结及全题型解析1.圆锥曲线的两定义:第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F ,F 的距离的和等于常,且此常数一定要大于,当常数等时,轨迹是线段 F F ,当常数小时,无轨迹;双曲线中,与两定点F ,F 的距离的差的绝对值等于常数,且此常数一定要小于F |,定义中的“绝对值”与<|F F|不可忽视。
若=|F F|,则轨迹是以F,F为端点的两条射线,若﹥|F F |,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在轴上时(),焦点在轴上时=1()。
方程表示椭圆的充要条件是什么?(A B C≠0,且A,B,C同号,A≠B)。
(2)双曲线:焦点在轴上=1,焦点在轴上=1()。
方表示双曲线的充要条件是什么?(ABC≠0,且A,B 异号)。
(3)抛物线:开口向右时,开口向左,开口向上时,开口向下时。
3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):(1)椭圆:由, 分母的大小决定,焦点在分母大的坐标轴上。
(2)双曲线:由, 项系数的正负决定,焦点在系数为正的坐标轴上;(3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。
提醒:在椭圆中,最大,在双曲线中,最大。
4.圆锥曲线的几何性质:(1)椭圆(以()为例):①范围:;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),四个顶点,其中长轴长为,短轴长为;④准线:两条准线;⑤离心率:,椭圆,越小,椭圆越圆;越大,椭圆越扁。
(2)双曲线(以()为例):①范围:或;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),两个顶点,其中实轴长为2 ,虚轴长为,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为;④准线:两条准线;⑤离心率:,双曲线,等轴双曲线在椭圆外, 越小,开口越小, 越大,开口越大;⑥两条渐近线。
第十章 圆锥曲线方程㊀㊀㊀㊃161㊀㊃心得体会证:设A (x 1,y 1),B (x 2,y 2),Q (x ,y ),由题意知P A ңA Q ң=P B ңQ Bң,设A 在P ,Q 之间,P A ң=λA Q ң(λ>0),又Q 在P ,B 之间,故P B ң=-λB Q ң,因为P B ң>B Q ң,所以0<λ<1,由P A ң=λA Q ң知(x 1-x 0,y 1-y 0)=λ(x -x 1,y -y1),解得x 1=x 0+λx 1+λy 1=y 0+λy1+λìîí,故点A 坐标为x 0+λx 1+λ,y 0+λy 1+λæèöø.同理,由P B ң=-λB Q ң知(x 2-x 0,y 2-y 0)=-λ(x -x 2,y -y 2),解得x 2=x 0-λx 1-λy 2=y 0-λy1-λìîí,故点B 坐标为x 0-λx 1-λ,y 0-λy 1-λæèöø.因为点A 在抛物线上,所以y 0+λy 1+λæèöø2=2p x 0+λx 1+λæèöø,(y 0+λy )2=2p (1+λ)(x 0+λx )①,同理(y 0-λy )2=2p (1-λ)(x 0-λx )②,由①-②得2y 0ˑ(2λy )=4p λ(x +x 0),则y 0y =p (x +x 0).所以点Q 在直线y 0y =p (x +x 0)上.三大圆锥曲线(椭圆㊁双曲线㊁抛物线)中,当定点P (x 0,y0)在曲线上时,相应的定直线x 0x a 2+y 0y b 2=1,x 0x a 2-y 0y b2=1,y y 0=p (x 0+x )均为在定点P (x 0,y 0)处的切线.ʌ例10.54ɔ㊀(2008·安徽理,22)设椭圆C :x 2a 2+y 2b2=1(a >b >0)过点M (2,1),且左焦点为F 1(-2,0).(1)求椭圆C 的方程;(2)当过点P (4,1)的动直线l 与椭圆C 相交于两不同点A ,B 时,在线段A B 上取点Q ,满足|A P ң||Q B ң|=|A Q ң||P B ң|.证明:点Q 总在某定直线上.ʌ分析ɔ㊀用待定系数法求解椭圆的方程,巧妙地利用定比分点解答点Q 的轨迹问题.ʌ解析ɔ㊀(1)由题意知c 2=22a 2+1b 2=1c 2=a 2-b2ìîí,解得a 2=4,b 2=2,所求椭圆方程为x 24+y 22=1.图㊀10-30(2)如图10-30所示,设A (x 1,y 1),B (x 2,y 2),Q (x ,y ),由题意知P A ңA Q ң=P B ңQ B ң,不妨设A 在P ,Q 之间,P Aң=λA Q ң(λ>0),又Q 在P ,B 之间,故P B ң=-λB Q ң,因为P B ң>B Q ң,所以0<λ<1,由P A ң=λA Q ң得(x 1-4,y 1-1)=λ(x -x 1,y -y1),㊀㊀㊀㊀新课标高考数学题型全归纳㊃162㊀㊃心得体会解得x 1=4+λx 1+λy 1=1+λy 1+λìîí;同理,由P B ң=-λB Q ң,得(x 2-4,y 2-1)=-λ(x -x 2,y -y 2),解得x 2=4-λx 1-λy 2=1-λy1-λìîí.因为点A 在椭圆上,所以4+λx 1+λæèöø24+1+λy 1+λæèöø22=1,即4+λx ()24+1+λy ()22=1+λ()2①.同理,由点B 在椭圆上,得4-λx ()24+1-λy ()22=1-λ()2②.由①-②得8ˑ2λx 4+2ˑ2λy 2=4λ,因为λʂ0,所以x +y 2=1.所以点Q 在定直线2x +y -2=0上.ʌ评注ɔ㊀由模型的结论不难知动点Q (x ,y )总在定直线x 0x a 2+y 0y b 2=1上,a 2=4,b 2=2,x 0=4,y 0=1,得4x 4+y 2=1,即2x +y -2=0.┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈题型153㊀定值问题思路提示:求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理,计算,并在计算推理的过程中消去变量,从而得到定值.图㊀10-31㊀㊀㊀证:设椭圆x 2a 2+y 2b2=1a >b >0(),如图10-31所示,作辅助线,设A x 1,y 1(),B x 2,y2(),易知R t әF M R ʐR t әA H B ,所以F R A B =F MAH =A F -B F2x 1-x 2=A F -B F2x 1-x 2(∗)由定义知A F +A F ᶄ=2a ①,从而A F -A F ᶄ=A F 2-A F ᶄ22a =(x 1+c )2+y 21-(x 1-c )2+y 21[]2a=2e x 1②.①+②2得A F =a +e x 1③,同理B F =a +e x 2④.③-④得A F -B F =e x 1-x 2(),代入式(∗)得F R A B =e x 1-x 2()2x 1-x 2=e 2.类比椭圆,在双曲线中有F R A B =e 2.第十章 圆锥曲线方程㊀㊀㊀㊃163㊀㊃心得体会图㊀10-32在抛物线中,设抛物线方程为y 2=2px p >0(),如图10-32所示,作辅助线方法同椭圆中,得F R A B =A F -B F 2A H=A F -B F2A S -B T=A F -B F2A F -B F=12.即F R A B =12=e 2(抛物线离心率为1).ʌ例10.55ɔ㊀(2010㊃全国Ⅱ理,12)已知椭圆C :x 2a 2+y 2b2=1a >b >0()的离心率为32,过右焦点F 且斜率为k k >0()的直线与C 相交于A ,B 两点,若A F ң=3F B ң,则k =(㊀㊀).A .1B .2C .3D .2图㊀10-33ʌ解析ɔ㊀如图10-33所示,不妨设A F ң=3,则F B ң=1,M F ң=1,R F ң=e 2A B =2e =3,在R t әF M R 中,k =t a n øR F M=R M F M =3-11=2.故选B .ʌ评注ɔ㊀若l A B 的倾斜角为θ,且A F ң=λF B ңλ>0(),则c o s θ=λ-1eλ+1().ʌ变式1ɔ㊀(2009㊃全国Ⅱ理,11)已知双曲线C :x 2a 2-y 2b2=1a >0,b >0()的右焦点为F ,过F 且斜率为3的直线交C 于A ,B 两点,若A F ң=4F B ң,则C 的离心率为(㊀㊀).A .65B .75C .85D .95图㊀10-34ʌ变式2ɔ㊀(2010㊃全国Ⅰ理,16)已知F 是椭圆C 的一个焦点,B是短轴的一个端点,线段B F 的延长线交C 于点D ,且B F ң=2F D ң,则C 的离心率为㊀㊀㊀㊀.ʌ变式3ɔ㊀(2007㊃重庆文,21)如图10-34所示,倾斜角为α的直线经过抛物线y 2=8x 的焦点F ,且与抛物线交于A ,B 两点.(1)求抛物线的焦点F 的坐标及准线l 的方程;(2)若α为锐角,作线段A B 的垂直平分线m 交x 轴于点P :F P -F P c o s 2α为定值,并求此定值.┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈㊀㊀㊀证:设椭圆x 2a 2+y 2b2=1a >b >0(),如图10-35所示,过点F 作l ʅx 轴于点F ,过点A ,B 分别作AH 1,B H 2垂直于l 于点H 1,H 2,设A x 1,y 1(),B x 2,y2(),l A B 的倾斜角为α,不妨设x 2<-c <x 1,则AH 1=A F c o s α=x 1+c ,㊀㊀㊀㊀新课标高考数学题型全归纳㊃164㊀㊃心得体会图㊀10-35又由模型一中A F =a +e x 1,所以e AH 1=e A F c o s α=e x 1+e c =A F -a +e c ,即A F 1-e c o s α()=a -e c ,得A F =a -e c 1-e c o s α.1A F =1-e c o s αa -e c =1-e c o s αb2a.同理,在R t әB H 2F 中,1B F =1+e c o s αb2a,所以1A F +1B F =1-e c o s αb 2a +1+e c o s αb 2a =2b 2a=2a b2,为定值.类比椭圆,在双曲线(同支)中,仍有1A F +1B F =2a b2为定值.对于抛物线y 2=2p x p >0(),如图10-36所示,过点A ,B 分别作垂线A S ,B T 垂直于准线l 于点S ,T ,过F 作垂直于x 轴的直线交A S 与B T 的延长线(或反向延长线)于点H 1,H 2,在R t әAH 1F 中,AH 1=A F c o s α①,图㊀10-36又AH 1=A S -S H 1=A F -p ②,将式②代入式①得A F -p =A F c o s α,得A F =p 1-c o s α,所以1A F =1-c o s αp③.同理,在R t әB H 2F 中,可得1B F =1+c o s αp④.由③+④得,1A F +1B F =2p,为定值.ʌ评注ɔ㊀本结论对于A B 为通径也成立,且上述结论可统一为1|A F |+1|B F |=4L(L 为通径长).ʌ例10.56ɔ㊀(1)(2010㊃重庆文,13)已知过抛物线y 2=4x 的焦点F 的直线交该抛物线于A ,B 两点,A F =2,B F =㊀㊀㊀㊀.(2)(2010㊃重庆理,14)已知以F 为焦点的抛物线y 2=4x 上的两点A ,B 满足A F ң=3F B ң,则弦A B 的中点到准线的距离为㊀㊀㊀㊀.ʌ解析ɔ㊀(1)由1A F +1B F =2p=1,得12+1B F =1,故B F =2.(2)如图10-37所示,因为A F ң=3F B ң,所以设F B ң=r ,则A F ң=3r ,由1A F +1B F =2p ,知13r +1r =22,即r =43.因为点M 为线段A B 的中点,所以MN =12A S +B T ()=12A F +B F ()=12r +3r ()=2r =2ˑ43=83.ʌ变式1ɔ㊀(2010㊃北京宣武二模理,8)如图10-38所示,抛物线C 1:y 2=2px 和圆C 2:第十章 圆锥曲线方程㊀㊀㊀㊃165㊀㊃心得体会x -p 2æèöø2+y 2=p 24,其中p >0,直线l 经过C 1的焦点,依次交C 1,C 2于A ,B ,C ,D 四点,则A B ң㊃C D ң的值为(㊀㊀).A .p24B .p 23C .p 22D .p2图图㊀㊀证:①对于椭圆x 2a 2+y 2b2=1a >b >0(),由题意可设θ1=øx +F P 1=α,则θi =øx +F P i =α+2i -1()πn i =1,2, ,n (),且由模型一知1F P i=1-e c o s θib 2ai =1,2, ,n (),所以ðni =11F P i=ðni =11-e c o s θib 2a=n a b 2-c b 2ðn i =1c o s θi (∗).因为θi =α+2i -1()πn ,所以单位向量F P iңF P i ң的终点均匀分布在以F 为圆心的单位圆上,所以ðni =1F P iңF P iң=0(∗∗).(证明:可把F P iңF P iң逆时针旋转2πn ,则式(∗∗)左边不变,其右边只能为0).所以ðn i =1c o s θi ,s i n θi ()=0,即有ðni =1c o s θi =0,代入式(∗)得ðni =11F P i=n a b 2-c b 2ˑ0=n ab 2为定值.②类比椭圆,在双曲线(同支)中,仍有ðni =11F P i=n ab 2.③对于抛物线y 2=2px p >0(),设θ1=øx +F P 1=α,则θi =øx +F P i =α+2i -1()πni =1,2, ,n (),㊀㊀㊀㊀新课标高考数学题型全归纳㊃166㊀㊃心得体会由模型一中知1F P i =1-c o s θip,所以ðni =11F P i =ðn i =11-c o s θip =n p -1p ðn i =1c o s θi ,由①中证明知ðn i =1c o s θi =0,代入上式得ðni =11F P i =np为定值.ʌ评注ɔ㊀上述结论可统一为ðni =11|F P i|=2n L (L 为通径长).ʌ例10.57ɔ㊀(2007·重庆理,22)在椭圆x 236+y 227=1上任取三个不同的点P 1,P 2,P 3,使øP 1F P 2=øP 2F P 3=øP 3F P 1,其中F 为右焦点,求证:1F P 1+1F P 2+1F P 3为定值,并求此定值.ʌ解析ɔ㊀解法一:设椭圆的右顶点为A ,以F 为极点,A F 的延长线为极轴,建立极坐标系,并设øA F P i =θi i =1,2,3(),0ɤθi <2π3且θ2=θ1+2π3,θ3=θ1+4π3,又设点P i 在其右准线l :x =12上的射影为Q i ,因椭圆的离心率e =c a =12,从而有F P i =P i Q i ㊃e =a 2c -c -F P i c o s θi æèöø㊃e =129-F P i c o s θi ()i =1,2,3().解得1F P i=291+12c o s θi æèöøi =1,2,3().因此1F P 1+1F P 2+1F P 3=293+12c o s θ1+c o s 2π3+θ1æèöø+c o s 4π3+θ1æèöø[]{}.又c o s θ1+c o s 2π3+θ1æèöø+c o s 4π3+θ1æèöø=c o s θ1-12c o s θ1-32s i n θ1-12c o s θ1+32s i n θ1=0.故1F P 1+1F P 2+1F P 3=23为定值.解法二:如解法一建立极坐标系.由ρ=e p 1+e c o s θ,e =12,p =a 2c -c =9,则ρ=921+12c o s θ,故F 1P =921+12c o s θ1,F 2P =921+12c o s θ1+2π3æèöø,F 3P =921+12c o s θ1+4π3æèöø,因此第十章 圆锥曲线方程㊀㊀㊀㊃167㊀㊃心得体会1F P 1+1F P 2+1F P 3=291+12c o s θ1+1+12c o s θ1+2π3æèöø+[1+12c o s θ1+4π3æèöø]=23为定值.ʌ评注ɔ㊀对于与定点(焦点)距离有关的问题,利用极坐标可使问题得到简化.同时本题得到的结论1F P 1+1F P 2+1F P 3=23满足ðn i =11F P i=n ab 2.┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈模型三:三大圆锥曲线(椭圆㊁双曲线㊁抛物线)中,曲线上的一定点P 与曲线上的两动点A ,B 满足直线P A 与直线P B 的斜率互为相反数,则直线A B 的斜率为定值.㊀㊀㊀证明:①对于椭圆x 2a 2+y 2b2=1a >b >0().设P x 0,y 0(),A x 1,y 1(),B x 2,y 2().令x 0=a c o s θ,y 0=b s i n θ,A a c o s α,b s i n α(),B a c o s β,b s i n β().则k A B =b s i n α-b s i n βa c o s α-a c o s β=b a ㊃2c o s α+β2s i n α-β2-2s i n α+β2s i nα-β2=-b a c o t α+β2(∗).同理,k P A =-b a c o t α+θ2,k P B =-b a c o t θ+β2.而k P A +k P B =0,得-b a c o t α+θ2-b a c o t θ+β2=0,所以c o t α+θ2+c o t θ+β2=0,得1t a n α+θ2+1t a n θ+β2=0⇒t a n α+θ2+t a n θ+β2=0,即t a n α+β2+θæèöø=0⇒t a n α+β2+t a n θ=0⇒c o t α+β2+c o t θ=0,所以c o t α+β2=-c o t θ,代入式(∗)得k A B =-b a -c o t θ()=b a c o t θ=b 2x 0a 2y 0,为定值.由于x 0y0ʂ0,所以上述所有三角运算均有意义.②对于双曲线x 2a 2-y 2b2=1a ,b >0(),设P (x 0,y 0)为P a s e c θ,b t a n θ(),A a s e c α,b t a n α(),B a s e c β,b t a n β(),则k A B =b t a n α-b t a n βa s e c α-a s e c β=b a ㊃s i n αc o s β-s i n βc o s αc o s β-c o s α=b a ㊃s i n α-β()-2s i n α+β2s i n β-α2=b a ㊃c o s α-β2s i nα+β2(∗).同理,k P A =b a ㊃c o s θ-α2s i n θ+α2,k P B =b a ㊃c o s θ-β2s i n θ+β2,㊀㊀㊀㊀新课标高考数学题型全归纳㊃168㊀㊃心得体会而k P A +k P B =0,即b a c o s θ-α2s i n θ+α2+c o s θ-β2s i n θ+β2æèöø=0,所以c o s θ-α2s i n θ+α2+c o s θ-β2s i n θ+β2=0,s i n θ+β2c o s θ-α2+s i n θ+α2c o s θ-β2=0.即12s i n θ+β+θ-α2æèöø+s i n θ+β-(θ-α)2æèöø[]+12s i n θ+α+θ-β2æèöø+s i n θ+α-θ-β()2æèöø[]=0⇒s i n θ+β-α2æèöø+s i n α+β2+s i n θ+α-β2æèöø+s i n α+β2=0⇒s i n θ-α-β2æèöø+s i n θ+α-β2æèöø+2s i n α+β2=0⇒2s i n θ-α-β2+θ+α-β22c o s θ-α-β2-θ+α-β2æèöø2+2s i n α+β2=0⇒s i n θc o s α-β2+s i n α+β2=0⇒c o s α-β2s i n α+β2=-1s i n θ,代入式(∗)得k A B =b a ㊃-1s i n θæèöø=-b a ㊃1s i n θ=-b 2x 0a 2y 0,为定值.由于y 0ʂ0,所以上述所以三角函数运算均成立.③对于抛物线y 2=2p x p >0(),设P x 0,y 0(),A y 212p ,y 1æèöø,B y 222p ,y2æèöø(y 0,y 1,y 2两两均不相等),则k A B =y 1-y 2y 212p -y222p=2p y 1+y 2(∗).同理,k P A =2p y 0+y 1,k P B =2p y 0+y2,又k P A +k P B =0,得2p y 0+y 1+2p y 0+y 2=0,即1y 0+y 1+1y 0+y2=0,故y 0+y 1+y 0+y 2=0,得y 1+y 2=-2y0,代入式(∗)得k A B =2p -2y 0=-py 0.ʌ例10.58ɔ㊀(2009·辽宁理,20)已知椭圆C :x 24+y 23=1,A 为椭圆C 上的点,其坐标为1,32æèöø,E ,F 是椭圆C 上的两动点,如果直线A E 的斜率与A F 的斜率互为相反数,证明:直线E F 的斜率为定值,并求出该定值.ʌ分析ɔ㊀要求直线E F 的斜率,必须知道E ,F 的坐标.ʌ解析ɔ㊀设直线A E 的方程为y =k x -1()+32,x 24+y23=1y =k x -1()+32ìîí,第十章 圆锥曲线方程㊀㊀㊀㊃169㊀㊃心得体会消y 得4k 2+3()x 2+12k -8k 2()x +432-k æèöø2-12=0,则x E =432-k æèöø2-124k 2+3()x A =3-2k ()2-124k 2+3①,又直线A F 的斜率与A F 的斜率互为相反数,故以上k 用-k 代替得x F =3+2k ()2-124k 2+3②,所以k E F =y F -yE xF -x E=-k x F -1()+32-k x E -1()+32[]x F -x E =-k x F +x E ()+2k x F -x E,把①,②两式代入上式,得k E F =12.ʌ变式1ɔ㊀已知A ,B ,C 是长轴为4,焦点在x 轴上的椭圆上的三点,点A 是长轴的一个顶点,B C 过椭圆的中心O ,且A C ң㊃B C ң=0,B C ң=2A C ң.(1)求椭圆的方程;(2)如果椭圆上的两点P ,Q ,使得øP C Q 的平分线垂直于O A ,问是否总存在实数λ,使得P Q ң=λA B ң?说明理由.ʌ变式2ɔ㊀已知椭圆x 26+y 22=1的内接әP A B 中,点P 坐标为3,1(),P A 与P B 的倾斜角互补,求证:直线A B 的斜率为定值,并求之.图㊀10-39ʌ变式3ɔ㊀已知双曲线x 2-y 23=1上点P 2,3(),过P 作两条直线P A ,P B ,满足直线P A 与P B 倾斜角互补,求直线A B 的斜率.ʌ变式4ɔ㊀(2004㊃北京理,17)如图10-39所示,过抛物线y 2=2px p >0()上一定点P x 0,y 0()y0ʂ0(),作两条直线分别交抛物线于A x 1,y 1(),B x 2,y2().(1)求该抛物线上纵坐标为p 2的点到焦点F 的距离;(2)当P A 与P B 的斜率存在且倾斜角互补时,求y 1+y 2y0的值,并证明直线A B 的斜率是非零常数.ʌ例10.59ɔ㊀如图10-40所示,已知圆O 的半径是a a >0(),圆中有两条互相垂直的直径A B 和C D ,P 是圆周上任意一点(不在A B ,C D 上),直线A P ,B P 分别交直线C D 于M ,N ,证明O M ңO N ң=a 2.ʌ解析ɔ㊀证:因为B P ңʅA P ң,所以B N ңʅA M ң,从而B N ң㊃A M ң=B O ң+O N ң()㊃A O ң+O M ң()=0,㊀㊀㊀㊀新课标高考数学题型全归纳㊃170㊀㊃心得体会图㊀10-40即B O ң㊃A O ң+B O ң㊃O M ң+O N ң㊃A O ң+O M ң㊃O N ң=0,即-a 2+O M ң㊃O N ң=0.所以O M ң㊃O N ң=O M ңO N ңc o s 0=O M ңO N ң=a2,得证.ʌ例10.60ɔ㊀如图10-41所示,已知椭圆x 2a 2+y 2b2=1a >b >0()的上㊁下顶点分别为A ,B ,点P 是椭圆上异于顶点的任意一点,直线A P ,B P 分别交x 轴于M ,N ,证明:图㊀10-41O M ңO N ң=a 2.ʌ解析ɔ㊀证:设P x 0,y 0(),则x 0y0ʂ0,M m ,0(),N n ,0(),则A P ңʊAM ң,即x 0,y0-b ()ʊm ,-b ().所以m y 0-b ()=-b x 0,得m =-b x 0y0-b .同理由B P ңʊB N ң,得n =b x 0y 0+b .所以O MңO N ң=m n =-b 2x 20y 20-b 2=x 201-y20b 2=x 20x 20a2=a 2.图㊀10-42ʌ变式1ɔ㊀如图10-42所示,已知椭圆x 2a 2+y 2b2=1a >b >0()上㊁下顶点分别为A ,B ,点P 是椭圆上异于顶点的任意一点,直线A P ,B P 分别交x 轴于M ,N .证明:AM ң㊃B N ң为定值,并求之.ʌ例10.61ɔ㊀如图10-43所示,已知双曲线x 2a 2-y 2b 2=1a ,b >0()左㊁图㊀10-43右顶点分别为A ,B ,点P 是双曲线异于顶点的任意一点,直线A P ,B P 分别交y 轴于M ,N ,证明:O M ңO N ң=b 2.证:设P x 0,y 0(),y0ʂ0,M 0,m (),N 0,n (),A -a ,0(),B a ,0(),则A P ңʊAM ң,即x 0+a ,y0()ʊa ,m (),所以m x 0+a ()=a y0,即m =a y 0x 0+a .同理,由B P ңʊB N ң,得n =-a y 0x 0-a .所以,O MңO N ң=m n =a y 0x 0+a ㊃-a y 0x 0-a =a 2y 20x 20-a 2=y 20x 20a 2-1=y 20y20b2=b 2.ʌ变式1ɔ㊀(2009·江西理,21)已知双曲线x 22b 2-y 225b2=1b >0()的左㊁右顶点为B ,D ,在双曲线上任取一点Q x 0,y 0()y0ʂ0(),直线Q B ,Q D 分别交y 轴于M ,N 两点,求证:以MN 为直径的圆过两定点.第十章 圆锥曲线方程㊀㊀㊀㊃171㊀㊃心得体会图㊀10-44ʌ例10.62ɔ㊀如图10-44所示,已知抛物线y 2=2px p >0(),动直线l 过定点Q q ,0(),且l 与抛物线交于A ,B 两点,AM 垂直于x 轴于M ,B N 垂直于x 轴于N ,AM ᶄ垂直于y 轴于M ᶄ,B N ᶄ垂直于y 轴于N ᶄ,证明:O M ңO N ң=q 2,O M ᶄңO N ᶄң=2p |q|.ʌ解析ɔ㊀证:由题意知直线l 的斜率非零,故可设直线l :x =t y +qt ɪR (),A x 1,y 1(),B x 2,y 2().由y 2=2px x =t y +q{,得y 2-2p t y -2p q =0.所以O M ᶄңO N ᶄң=y 1y 2=2p |q|,O M ᶄңO N ᶄң=x 1x 2=y 212p ㊃y 222p =y 1y 2()24p 2=4p 2q 24p2=q 2.┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈题型154㊀最值问题思路提示:有两种求解方法:一是几何方法,即利用几何性质结合图形直观求解;二是建立目标函数,通过求函数的最值求解.ʌ例10.63ɔ㊀设椭圆x 225+y 216=1的左㊁右焦点分别为F 1,F 2,点M 是椭圆上任意一点,点A 的坐标为2,1(),求M F 1+MA 的最大值和最小值.ʌ分析ɔ㊀本题若设M x ,y (),建立目标函数MA +M F 1=f x ,y (),则会作茧自缚.但是注意到F 1为椭圆左焦点,联想到椭圆定义及三角形中边的关系不等式时,问题就容易获解.图㊀10-45ʌ解析ɔ㊀如图10-45所示,因为M 在椭圆上,所以有M F 1+M F 2=2a =10.令Z =M F 1+MA ,得Z =10+MA -M F 2.当M ,A ,F 2三点不共线时,有-A F 2<MA -M F 2<A F 2,当M 落在F 2A 的延长线时,MA -M F 2=-F 2A ,当M 落在A F 2的延长线时,MA -M F 2=F 2A .所以Z m a x =10+F 2A =10+2-3()2+1-0()2=10+2,Z m i n =10-F 2A =10-2.ʌ评注ɔ㊀这里利用椭圆定义㊁三角形两边之差小于或等于(注意等号成立的条件)第三边,使与曲线有关的最值转化为直线段间的最值.应明确这里不能用F 1M +AM ȡF 1A =26,求得F 1M +AM ȡF 1A 的最小值26,原因是取不到等号,如果要取到等号,那么M 必须在线段F 1A 上,但这是不可能的.ʌ变式1ɔ㊀如图10-46所示,已知点P 是抛物线y 2=4x 上的点,设点P 到此抛物线的准线的距离为d 1,到直线l :x +2y -12=0的距离为d 2,求d 1+d 2的最小值.ʌ变式2ɔ㊀(2009·辽宁理,16)如图10-47所示,已知点F 是双曲线x 24-y 212=1的左焦点,点A 坐标为1,4(),P 是双曲线右支上的动点,则P F +P A 的最小值㊀㊀㊀㊀新课标高考数学题型全归纳㊃172㊀㊃心得体会为㊀㊀㊀㊀.图㊀10-46图㊀10-47ʌ变式3ɔ㊀(2011㊃广东理,19(2))已知点P 为双曲线L :x 24-y 2=1上的动点,M 355,455æèöø,F 5,0().求MP -F P 的最大值及此时点P 的坐标.ʌ变式4ɔ㊀(2011㊃广东文,21(2))在平面直角坐标系x O y 中,已知E 的方程是y 2=4x +4或x <-1y=0{.已知T 1,-1(),设H 是E 上动点,求H O +HT 的最小值,并给出此时点H 的坐标.ʌ例10.64ɔ㊀(2009㊃重庆理,20)已知椭圆x 2+y 24=1,点M 是椭圆上的动点,若C ,D 的坐标分别是0,-3(),0,3(),求M C MD 的最大值.ʌ分析ɔ㊀求积的最大值,由 和为定值积有最大值 知,必须找出和为定值.ʌ解析ɔ㊀由题设知C ,D 是椭圆的上㊁下焦点,故由椭圆的定义知M C +MD =24=4.所以M CMD ɤM C +MD 2æèöø2=42æèöø2=4.当且仅当M C =MD 时取等号,即M 为左㊁右顶点时取等号.所以,当M 为左㊁右顶点时,M C ㊃MD 的最大值为4.ʌ评注ɔ㊀本题运用均值不等式求最值,但要注意使用均值不等式的条件:一正,二定,三相等,四同时.积为定值时,和最小a +b ȡ2a b a ,b >0();和为定值时,积最大a b ɤa +b 2æèöø2a ,b >0(),取等号的条件均为a =b .ʌ变式1ɔ㊀(2006㊃全国Ⅰ,理20)已知椭圆x 2+y 24=1在第一象限部分为曲线C ,动点P 在C 上,C 在点P 处的切线与x ,y 轴的交点分别为A ,B ,且向量O M ң=O A ң+O B ң,求O M ң的最小值.ʌ变式2ɔ㊀(2010㊃广东文,21)已知曲线C :y =n x 2,点P n x n ,y n ()x n >0,yn >0()是曲线C n 上的点n =1,2, ().(1)试写出曲线C n 在点P n 处的切线l n 的方程,并求出l n 与y 轴的交点Q n 的坐标;(2)若原点O 0,0()到l n 的距离与线段P n Q n 的长度之比取到最大值,试求点P n 的坐标x n ,yn ();(3)设m 与k 为两个给定的不同的正整数,x n 与y n 是满足(2)中条件的点P n第十章 圆锥曲线方程㊀㊀㊀㊃173㊀㊃心得体会的坐标.证明:ðs n =1m +1()x n2-k +1()y n <m s -k s s =1,2, ().ʌ变式3ɔ㊀(2011㊃山东理,22)已知动直线l 与椭圆C :x 23+y 22=1交于P (x 1,y 1),Q (x 2,y2)两个不同点,且әO P Q 的面积S әO P Q =62,其中O 为坐标原点.(1)证明:x 21+x 22和y 21+y 22均为定值;(2)设线段P Q 的中点为M ,求O M P Q 的最大值;(3)椭圆C 上是否存在三点D ,E ,G ,使得S әO D E =S әO D G =S әO E G=62?若存在,判断әD E G 的形状;若不存在,请说明理由.图㊀10-48ʌ例10.65ɔ㊀(2009㊃陕西理,21)已知双曲线y 24-x 2=1,如图10-48所示,P 是双曲线上一点,A ,B 两点在双曲线的两条渐近线上,且分别位于第一㊁二象限,若A P ң=λP B ң,λɪ13,2[],求әA O B 的面积的取值范围.ʌ分析ɔ㊀由图10-48可知,S әA O B =12O AO B s i n øA O B ,从而只要知道A ,B 两点的坐标即可.ʌ解析ɔ㊀设A m ,2m (),B -n ,2n ()m ,n >0(),P x ,y (),由A P ң=λP B ң知点P 坐标为m -λn 1+λ,2m +2λn 1+λæèöø,又P 在双曲线上,所以2m +2λn 1+λæèöø24-m -λn 1+λæèöø21=1⇒m n =1+λ()24λ=λ+1λ+24.设øA O B =2θ,因为t a n π2-θæèöø=2,所以t a n θ=12,s i n 2θ=2t a n θ1+t a n 2θ=11+14=45,所以S әA O B =12ˑ5m ˑ5n ˑ45=2m n =12λ+1λæèöø+1,又λɪ13,2[],当λ=1时,S әA O B 取最小值为2;当λ=13时,S әA O B 取最大值为83.所以S әA O B ɪ2,83[].ʌ评注ɔ㊀本题建立目标函数,即әA O B 的面积与λ的函数关系S λ()=12λ+1λæèöø+1,利㊀㊀㊀㊀新课标高考数学题型全归纳㊃174㊀㊃心得体会用函数的单调性来求解.ʌ变式1ɔ㊀已知抛物线x 2=4y 的焦点为F ,A ,B 是抛物线上的两动点,且A F ң=λF B ңλ>0(),过A ,B 两点分别作抛物线的切线,设其交点为M .(1)证明:F M ң㊃A B ң为定值;(2)求әA B M 的面积的最小值.ʌ例10.66ɔ㊀(2008㊃全国Ⅱ理,21)设椭圆中心在坐标原点,A 2,0(),B 0,1()是它的两个顶点,直线y =k x k >0()与椭圆交于E ,F 两点,求四边形A E B F 面积的最大值.ʌ分析ɔ㊀将四边形A E B F 分割为两个三角形来求面积.ʌ解析ɔ㊀设E x 0,y 0(),F -x 0,-y 0(),x 0,y 0>0,由题意知椭圆方程为x 24+y 2=1,如图10-49所示,S 四边形A E B F =S әA E F +S әB E F =12O A y 0--y 0()+图㊀10-4912O B x 0--x 0()=2y0+x 0,又x 204+y 20=1即x 20+4y 20=4,4=x 20+4y 20ȡ4x 0y0(当x 0=2y0时等号成立).所以S 2四边形A E B F =x 0+2y 0()2=x 20+4x 0y 0+4y20ɤ4+x 20+2y0()2=8,即S 四边形A E B F ɤ22,当且仅当x 0=2y 0时取等号.另解:设x 0=2c o s θ,y0=s i n θ,θɪ0,π2æèöø,则S 四边形A E B F =2c o s θ+s i n θ=22s i n θ+π4æèöøɤ22.故四边形A E B F 的面积的最大值为22.ʌ例10.67ɔ㊀(2009㊃全国Ⅰ理,21)如图10-50所示,已知抛物线E :y 2=x 与圆M :x -4()2+y2=r 2r >0()相交于A ,B ,C ,D 四点.图㊀10-50(1)求r 的取值范围;(2)当四边形A B C D 的面积最大时,求对角线A C ,B D的交点P 的坐标.ʌ解析ɔ㊀(1)将y 2=x 代入x -4()2+y 2=r 2并化简得x 2-7x +16-r 2=0①.因为E 与M 有四个交点的充要条件是方程①有两个不等的正根x 1,x 2,由此得Δ=-7()2-416-r 2()>0x 1+x 2=7>0x 1x 2=16-r 2>0ìîí,解得154<r 2<16.又r >0,所以r 的取值范围是152,4æèöø.(2)不妨设E 与M 的四个交点坐标分别为A x 1,x 1(),B x 1,-x 1(),第十章 圆锥曲线方程㊀㊀㊀㊃175㊀㊃心得体会C x 2,-x 2(),D x 2,x 2(),则直线A C ,B D 的方程分别为y -x1=-x 2-x 1x 2-x 1㊃x -x 1(),y +x1=x 2+x 1x 2-x 1㊃x -x 1().解得点P 的坐标为x 1x 2,0().设t =x 1x 2,由t =16-r 2及(1)知0<t <72.由于四边形A B C D 为等腰梯形,因而其面积S =122x 1+2x 2()㊃x 2-x 1.即S 2=x 1+x 2+2x 1x 2()㊃x 1+x 2()2-4x 1x 2[].将x 1+x 2=7,x 1x 2=t 代入上式,并令f (t )=S 2,得f (t )=7+2t ()2㊃7-2t ()0<t <72æèöø.求导数得f ᶄ(t )=-22t +7()6t -7().令f ᶄ(t )=0,解得t =76,t =-72(舍去).显然当0<t <76时,fᶄ(t )>0,当76<t <72时,f ᶄ(t )<0.故当且仅当t =76时,f (t )有最大值,即四边形A B C D 的面积最大.故所求的点P 的坐标为76,0æèöø.ʌ评注ɔ㊀本题主要有两个考查点:一个是考查将曲线与曲线的交点问题转化为二次方程的根的个数问题,是较基本的问题;另一个是考查四边形A B C D 的面积最大值问题,是本题的核心点.要注意本题中表面上求点的坐标,实质上是求四边形A B C D 面积的最大值,而且在求目标函数最值的过程中,利用导数判断函数单调性的方法,从而使本题的综合性大大提高.ʌ变式1ɔ㊀(2011·湖南文,21)已知平面内一动点P 到点F (1,0)的距离与点P 到y 轴的距离的差等于1.(1)求动点P 的轨迹C 的方程;(2)过点F 作两条斜率存在且互相垂直的直线l 1,l 2,设l 1与轨迹C 相交于点A ,B ,l 2与轨迹C 相交于点D ,E ,求A D ң㊃E B ң的最小值.第十一章㊀算法初步考纲解读┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈1.了解算法的含义和思想.2.理解程序框图的3种基本逻辑结构:顺序㊁条件分支㊁循环.3.理解几种基本算法语句输入㊁输出㊁赋值㊁条件和循环语句的含义.命题趋势探究┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈㊀㊀预测在2012年高考中,本章知识仍为考查的热点,内容以程序框图为主.从形式上看,以选择题和填空题为主,以实际问题为背景,侧重知识应用能力的考查,要求考生具备一定的逻辑推理能力.本专题主要考查算法的逻辑结构,要求能够写出程序的运行结果㊁指明算法的功能㊁补充程序框图㊁求输入参量,并常将算法与其他版块知识(尤其是与数列)进行综合考查.一般来说,有关算法的试题属容易题目,分值稳定在5分.知识点精讲一㊁算法与程序框图1.算法算法通常是指可以用计算机来解决的某一类问题的程序或步骤,这些程序或步骤必须是确定的和能执行的,而且能够在有限步之内完成.2.程序框图(1)定义:程序框图又称流程图,是一种用程序框㊁流程线及文字说明来表示算法的图形.(2)说明:在程序框图中一个或几个程序框的组合表示算法中的一个步骤;带有方向的流程线将程序框连接起来,表示算法步骤的执行顺序.3.3种基本逻辑结构程序框图有3种基本的逻辑结构,如表11-1所示.第十一章 算法初步㊀㊀㊀㊃177㊀㊃心得体会表㊀11-1㊀㊀名称内容㊀㊀顺序结构条件结构循环结构定义顺序结构由若干个依次执行的步骤组成,是任何一个算法都离不开的基本结构算法的流程根据条件是否成立有不同的流向,条件结构就是处理这种过程的结构从某处开始,按照一定的条件反复执行某些步骤,反复执行的步骤称为循环体程序框图二㊁基本算法语句1.3种语句的一般格式和功能3种基本算法语句的一般格式和功能如表11-2所示.表㊀11-2语句一般格式功能输入语句I N P U T提示内容 ;变量输入信息输出语句P R I N T提示内容 ;表达式输出结果赋值语句变量=表达式将表达式的值赋给变量2.条件语句(1)算法中的条件结构由条件语句来表达.(2)条件语句的格式及框图如图11-1和图11-2所示.①I F T H E N 格式图㊀11-1②I F T H E N E L S E 格式图㊀11-2㊀㊀㊀㊀新课标高考数学题型全归纳㊃178㊀㊃心得体会3.循环语句(1)算法中的循环结构由循环语句来实现.(2)循环语句的形式及框图如图11-3和图11-4所示.①U N T I L语句图㊀11-3②WH I L E语句图㊀11-4(3)WH I L E 语句与U N T I L 语句之间的区别与联系如表11-3所示.表㊀11-3WH I L E 语句U N T I L 语句区别执行循环体前测试条件,当条件为真时执行循环体,当条件为假时终止循环,可能不执行循环体执行循环体后测试语句条件,当条件为假时执行循环体,当条件为真时终止循环,最少执行一次循环体联系可以相互转换,L O O PU N T I L (条件)相当于WH I L E (反条件)三㊁算法案例1.辗转相除法辗转相除法又叫欧几里得算法,是一种求最大公约数的古老而有效的算法,其步骤如下:(1)用两数中较大的数除以较小的数,求商和余数;(2)以除数和余数中较大的数除以较小的数;(3)重复上述两步,直到余数为0;(4)则较小的数是两数的最大公约数.2.更相减损术更相减损术是我国古代数学专著‘九章算术“中介绍的一种求两数最大公约数的算法,其基本过程为:对于任意给定的两个正整数,以大数减小数,接着把所得的差与较小的数比较,并以大数减小数,继续该操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数.第十一章 算法初步㊀㊀㊀㊃179㊀㊃心得体会3.秦九韶算法秦九韶算法是我国南宋数学家秦九韶在他的代表作‘数书九章“中提出的一种用于计算一元n 次多项式的值的方法.4.进位制进位制是人们为了计数和运算方便而约定的记数系统, 满k 进1 就是k 进制,k 进制的基数是k.题型归纳及思路提示┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈题型155㊀已知流程框图,求输出结果思路提示:分析条件结构,确定最后一步运算.ʌ例11.1ɔ㊀(2010㊃全国新课标理,7(文,8))如果执行如图11-5所示的框图,输入N =5,则输出的数等于(㊀㊀).图㊀11-5A .54㊀㊀㊀㊀B .45㊀㊀㊀㊀C .65㊀㊀㊀㊀D .56ʌ分析ɔ㊀解决这类算法问题时,一般有两种思路:一是把人看作计算机,程序执行哪一步,我们就计算哪一步,一直到程序终止,这类方法往往适用于步骤比较简单㊁循环次数不十分多的程序;另一种思路是分析程序的原理,了解程序实质要完成的目标,将其还原为数学模型,从而对数学模型进行求解.ʌ解析ɔ㊀解法一:S =0,k =1,S =0+11ˑ2=12,1<5,是ңk =2,S=12+12ˑ3=23,2<5,是ңk =3,S =23+13ˑ4=34,3<5,是ңk =4,S =34+14ˑ5=45,4<5,是ңk =5,S =45+15ˑ6=56,5<5,否,程序结束.解法二:本题实质上是求解ð5k =11k k +1(),故S =0+11ˑ2+12ˑ3+ +15ˑ6=1-12+12-13+ +15-16=56.故选D .ʌ变式1ɔ㊀(2010㊃沈阳监测理,2)执行如图11-6所示的程序框图,则输出的结果S 是㊀㊀㊀㊀.ʌ变式2ɔ㊀(2010㊃天津河西区调查)如图11-7所示,该程序框图的输出结果是㊀㊀㊀㊀.ʌ变式3ɔ㊀(2007㊃山东理,10)阅读如图11-8所示的流程框图,若输入的n 是100,则输出的变量S 和T 的值分别是(㊀㊀).A .2500,2500B .2550,2550C .2500,2550D .2550,2500ʌ变式4ɔ㊀(2011㊃课标全国理,3)执行如图11-9所示的程序框图,如果输入的N 是6,㊀㊀㊀㊀新课标高考数学题型全归纳㊃180㊀㊃心得体会则输出的p 是(㊀㊀).A.120B .720C .1440D .5040ʌ变式5ɔ㊀(2011㊃浙江理,12)若某程序框图如图11-10所示,则该程序运行后输出的k 的值是㊀㊀㊀㊀.㊀㊀㊀图㊀11-6㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀图㊀11-7㊀㊀㊀㊀㊀㊀㊀㊀图㊀11-8图㊀11-9图㊀11-10图㊀11-11ʌ例11.2ɔ㊀(2010㊃辽宁文,5)如果执行如图11-11所示的流程框图,输入n =6,m =4,那么输出的P 等于(㊀㊀)A .720B .360C .240D .120ʌ解析ɔ㊀k =1,P =1ˑ6-4+1()=3,1<4ңk =2,P =3ˑ6-4+2()=12,2<4ңk =3,P =12ˑ6-4+3()=60,3<4ңk =4,P =60ˑ6-4+4()=360,4=4程序结束ң输出P =360.故选B .ʌ变式1ɔ㊀(2010㊃辽宁理,4)如果执行如图11-11所示的程序框图,输入正整数n ,m ,㊃181㊀㊃心得体会满足n ȡm ,那么输出的P 等于(㊀㊀).A .C m -1nB .A m -1nC .C m nD .A mnʌ变式2ɔ㊀(2010㊃天津文,3)阅读图11-12所示的流程框图,则输出S 的值为(㊀㊀).A .-1B .0C .1D .3ʌ变式3ɔ㊀(2010㊃安徽文,13(理,14))如图11-13所示,流程框图(算法流程图)的输出值x =㊀㊀㊀㊀.图㊀11-12㊀㊀㊀㊀㊀㊀㊀㊀图11-13ʌ变式4ɔ㊀(2011㊃辽宁理,6)执行如图11-14所示的程序框图,如果输入的n 是4,则输出的p 是(㊀㊀).A .8B .5C .3D .2ʌ变式5ɔ㊀(2011㊃安徽理,11)如图11-15所示,程序框图(算法流程图)的输出结果是㊀㊀㊀㊀.图㊀11-14图㊀11-15图㊀11-16㊃182㊀㊃心得体会ʌ变式6ɔ㊀(2011㊃湖南理,13)若执行如图11-16所示的框图,输入x 1=1,x 2=2,x 3=3,x =2,则输出的数等于㊀㊀㊀㊀.┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈题型156㊀根据条件,填充不完整的流程图思路提示:程序框图缺失的不同,会导致不同的解决方法,如果缺少循环条件,那么程序主体是可以被理解的,因此转化为数学模型,然后根据初始值和输出值来计算循环了多少次从而得到循环条件;如果缺少循环主体中的一环,那么就要理解程序的目的是什么,然后补充起来.图㊀11-17ʌ例11.3ɔ㊀(2010㊃北京文,9)已知函数y =l o g 2x (x ȡ2)2-x (x <2){,如图11-17所示,表示的是给定x 的值,求其对应的函数值y 的程序框图.①处应填写㊀㊀㊀㊀;②处应填写㊀㊀㊀㊀.ʌ解析ɔ㊀依题意,①处应填写x <2?;②处应填写y =l o g 2x .ʌ变式1ɔ㊀(2010㊃陕西文,5)如图11-18所示是求x 1,x 2, ,x 10的乘积S 的程序框图,图中空白框中应填入的内容为(㊀㊀).A .S =S ∗n +1()B .S =S ∗x n +1C .S =S ∗nD .S =S ∗x n㊀㊀㊀图㊀11-18㊀㊀㊀㊀㊀图㊀11-19ʌ变式2ɔ㊀(2010㊃陕西理,6)如图11-19所示是求样本x 1,x 2, ,x 10平均数ʏx 的程序框图,图中空白框中应填入的内容为(㊀㊀).A .S =S +x nB .S =S +x nn C .S =S +n D .S =S +1nʌ例11.4ɔ㊀(2010㊃山东青岛质检,8)如图11-20所示的程序框图,输出的S 是126,则①应为㊀㊀㊀㊀.A .n ɤ5B .n ɤ6?C .n ɤ7?D .n ɤ8?㊃183㊀㊃心得体会图㊀11-20ʌ解析ɔ㊀S =0+21+22+ +2n=126⇒21-2n()1-2=126⇒n =6,所以根据流程图模拟分析,填入选择框的条件为n ɤ6.故选B .ʌ变式1ɔ㊀(2010㊃浙江嘉兴测试,2)一个算法的程序框图如图11-21所示,若该程序的输出结果为56,则判断框中应填入的条件是(㊀㊀).A .i <5B .i <6?C .i ȡ5D .i ȡ6?ʌ变式2ɔ㊀(2010㊃广州测试一,4)阅读如图11-22所示的程序框图,若输出的S 的值等于16,那么在程序框图中的判断框内应填写的条件是(㊀㊀).A .i >5B .i >6?C .i >7?D .i >8?ʌ变式3ɔ㊀阅读如图11-22所示的程序框图,若在程序框图中的判断框内填写的条件是i >m ,试问正整数m 的最小值为何值时,输出的S 的值超过1000?㊀㊀㊀图㊀11-21㊀㊀㊀㊀㊀㊀㊀㊀图㊀11-22图㊀11-23ʌ例11.5ɔ㊀(2010㊃浙江理,2(文,4))某程序框图如图11-23所示,若输出S =57,则判断框内为(㊀㊀).A .k >4㊀㊀B .k >5?㊀㊀C .k >6?㊀㊀D .k >7?ʌ解析ɔ㊀如表11-4所示,根据模拟分析,判断框内的条件为k >4?.故选A .表㊀11-4k k =1()S S =1()条件第1次22ˑ1+2=4否第2次32ˑ4+3=11否第3次42ˑ11+4=26否第4次52ˑ26+5=57是㊃184㊀㊃心得体会ʌ变式1ɔ㊀某程序框图如图11-23所示,若判断框内填入k >m ?,试问正整数m 最小为何值时,程序输出的S 值超过1000ʌ变式2ɔ㊀(2010㊃天津理,4)阅读如图11-24所示的程序框图,若输出S 的值为-7,则判断框内应填写(㊀㊀).A .i <3B .i <4?C .i <5?D .i <6?ʌ变式3ɔ㊀阅读如图11-24所示的程序框图,若判断框内的条件为i <m ?,当正整数m 的最小值为何值时,输出S 的值小于-1000ʌ变式4ɔ㊀设:1+12+13+14+15+16+17=m n ,如图11-25所示是计算分数m n中分子m 和分母n 的程序流程,试填入流程框图中所缺部分.①㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀;②㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀.㊀图㊀11-24㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀图㊀11-25┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈题型157㊀求输入参量ʌ例11.6ɔ㊀(1)执行如图11-26所示的程序框图,若输出的n 为4,则输入P 的取值范围为(㊀㊀).图㊀11-26A .0.75,0.875()B .0.75,0.875(]C .0.75,0.875[)D .0.75,0.875[](2)执行如图11-26所示的程序框图,若输出的n 为4,则输入P 可能为(㊀㊀).A .0.7㊀㊀B .0.75㊀㊀C .0.8㊀㊀D .0.9(3)(2008㊃山东理,13(文,14))执行如图11-26所示的程序框图,若P =0.8,则输出n =㊀㊀㊀㊀.ʌ解析ɔ㊀(1)产生 n =2 的条件为 P >0 ;产生 n =3的条件为 P >12 ;产生 n =4 的条件为 P >34;产生 n =5的条㊃185㊀㊃心得体会件为 P >78 .输出 n =4 的条件为产生 n =4 的条件,而不产生 n =5 ,即P >34且P ɤ78.故输入P 的取值范围为0.75,0.875(].故选B .(2)由(1)得,若输出n =4,则P ɪ0.75,0.875(],故选C .(3)依题意P =0.8,如表11-5所示,则输出n =4.表㊀11-5PS <P S S =0()n n =1()第1次0.8是122第2次0.8是12+122=343第3次0.8是34+123=784第4次0.8否ʌ变式1ɔ㊀(2010㊃丰台一模理,13)在如图11-27所示的程序框图中,若输出i 的值是4,则输入x 的取值范围是㊀㊀㊀㊀图㊀11-27图㊀11-28ʌ变式2ɔ㊀(2011㊃陕西理,8)如图11-28所示,x 1,x 2,x 3为某次考试三个评阅人对同一道题的独立评分,p 为该题的最终得分.当x 1=6,x 2=9,p =8.5时,x 3等于(㊀㊀).A .11B .10C .8D .7┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈题型158㊀算法综合思路提示:本题型是程序框图与其他知识的综合,它不仅要求学生能正确掌握程序框图,还要求学生对综合知识有较深的理解,是算法的难点.与程序框图进行综合的主要有函数㊁数列㊁三角㊁概率㊁统计㊁实际问题等,是高考命题的亮点.ʌ例11.7ɔ㊀(2009㊃广东)随机抽取某产品n 件,测得其长度分别为a 1,a 2, ,a n ,则如。
圆锥曲线是高中数学必考考点,13种常见大题题型及解题模板
总结
圆锥曲线历来都是高中数学必考的大考点!大部分要冲刺高分的学生都会再圆锥曲线丢分!其实圆锥曲线再怎么变形题目,都少不了基础的巩固和突破!
其中最需要巩固就算基础性质的总结!能够吃透好课本上每一个圆锥曲线的基础知识点,能灵活运用起来就能够很快掌握相关题型的考点考法,从而进行轻松解题!
而题型的总结是圆锥曲线最快的提升的方法,特别是这13种典型的圆锥曲线常见大题考法的题型!对其中的大题的考题的得分规律和解题的思维一定要多吃透一下,能够举一反三下来,就基本上突破好圆锥曲线了!
下面是洪老师高考必备资料库,高中数学圆锥曲线13种常见大题题型及解题模板总结!
完整版的圆锥曲线113种常见大题题型及解题模板总结,可关注一下后呢,然后嗯看下到下私信,那里回下:013。
圆锥曲线常见题型归纳一、基础题涉及圆锥曲线的基本概念、几何性质,如求圆锥曲线的标准方程,求准线或渐近线方程,求顶点或焦点坐标,求与有关的值,求与焦半径或长(短)轴或实(虚)轴有关的角和三角形面积。
此类题在考试中最常见,解此类题应注意:(1)熟练掌握圆锥曲线的图形结构,充分利用图形来解题;注意离心率与曲线形状的关系; (2)如未指明焦点位置,应考虑焦点在x 轴和y 轴的两种(或四种)情况;(3)注意2,2,a a a ,2,2,b b b ,2,2,c c c ,2,,2p p p 的区别及其几何背景、出现位置的不同,椭圆中222b a c -=,双曲线中222b a c +=,离心率a c e =,准线方程a x 2±=;例题:(1)已知定点)0,3(),0,3(21F F -,在满足下列条件的平面上动点P 的轨迹中是椭圆的是 ( )A .421=+PF PFB .621=+PF PF C .1021=+PF PF D .122221=+PF PF (答:C );(2)方程8=表示的曲线是_____ (答:双曲线的左支)(3)已知点)0,22(Q 及抛物线42x y =上一动点P (x ,y ),则y+|PQ|的最小值是_____ (答:2)(4)已知方程12322=-++k y k x 表示椭圆,则k 的取值范围为____ (答:11(3,)(,2)22---); (5)双曲线的离心率等于25,且与椭圆14922=+y x 有公共焦点,则该双曲线的方程_______(答:2214x y -=);(6)设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为_______(答:226x y -=)二、定义题对圆锥曲线的两个定义的考查,与动点到定点的距离(焦半径)和动点到定直线(准线)的距离有关,有时要用到圆的几何性质。
此类题常用平面几何的方法来解决,需要对圆锥曲线的(两个)定义有深入、细致、全面的理解和掌握。
题型一:弦的垂直平分线问题题型二:动弦过定点的问题题型三:过已知曲线上定点的弦的问题题型四:向量问题题型五:面积问题题型六:弦或弦长为定值、最值问题题型七:直线问题圆锥曲线九大题型归纳题型八:对称问题题型九:存在性问题:(存在点,存在直线y =kx +m ,存在实数,存在图形:三角形(等比、等腰、直角),四边形(矩形、菱形、正方形),圆)题型一:弦的垂直平分线问题1过点T (-1,0)作直线l 与曲线N :y 2=x 交于A 、B 两点,在x 轴上是否存在一点E (x 0,0),使得ΔABE 是等边三角形,若存在,求出x 0;若不存在,请说明理由。
2024年高考数学专项复习圆锥曲线九大题型归纳(解析版)【涉及到弦的垂直平分线问题】这种问题主要是需要用到弦AB 的垂直平分线L 的方程,往往是利用点差或者韦达定理产生弦AB 的中点坐标M ,结合弦AB 与它的垂直平分线L 的斜率互为负倒数,写出弦的垂直平分线L 的方程,然后解决相关问题,比如:求L 在x 轴y 轴上的截距的取值范围,求L 过某定点等等。
有时候题目的条件比较隐蔽,要分析后才能判定是有关弦AB 的中点问题,比如:弦与某定点D 构成以D 为顶点的等腰三角形(即D 在AB 的垂直平分线上)、曲线上存在两点AB 关于直线m 对称等等。
2例题分析1:已知抛物线y =-x 2+3上存在关于直线x +y =0对称的相异两点A 、B ,则|AB |等于题型二:动弦过定点的问题1已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,且在x 轴上的顶点分别为A 1(-2,0),A 2(2,0)。
(I )求椭圆的方程;(II )若直线l :x =t (t >2)与x 轴交于点T ,点P 为直线l 上异于点T 的任一点,直线PA 1,PA 2分别与椭圆交于M 、N 点,试问直线MN 是否通过椭圆的焦点?并证明你的结论题型三:过已知曲线上定点的弦的问题1已知点A 、B 、C 是椭圆E :x 2a 2+y 2b 2=1(a >b >0)上的三点,其中点A (23,0)是椭圆的右顶点,直线BC 过椭圆的中心O ,且AC ∙BC =0,BC =2AC ,如图。
完整版)圆锥曲线知识点归纳总结1.圆锥曲线的定义和构造圆锥曲线是在平面上由一个固定点(焦点)和一个固定直线(准线)决定的点集。
三种经典的圆锥曲线分别为椭圆、抛物线和双曲线。
构造圆锥曲线需要确定焦点和准线的位置以及确定参数值。
2.椭圆的特性椭圆是圆锥曲线中最常见的一种形式,由两个焦点和一个大于等于焦距的参数决定。
椭圆的离心率小于1,且离心率等于焦点到准线的距离除以准线长度。
椭圆的焦缩比为焦点到椭圆上某一点的距离与该点到准线的距离的比值。
重要公式:椭圆的标准方程为(x^2/a^2) + (y^2/b^2) = 1;焦缩比为e = c/a,其中c^2 = a^2 – b^2.3.抛物线的特性抛物线是圆锥曲线中的一种形式,由一个焦点和一个参数决定。
抛物线的离心率为1,焦缩比为1.抛物线的轴是准线,顶点是焦点和准线的交点。
重要公式:抛物线的标准方程为(x^2/4a) = y。
4.双曲线的特性双曲线是圆锥曲线中的一种形式,由两个焦点和一个焦距决定。
双曲线的离心率大于1,离心率等于焦点到准线的距离除以准线长度。
双曲线的焦缩比为c^2 = a^2 + b^2.重要公式:双曲线的标准方程为(x^2/a^2) – (y^2/b^2) = 1.5.圆锥曲线的应用圆锥曲线在数学和物理学中都有广泛的应用。
椭圆的应用包括轨道运动、天体力学以及密码学等领域。
抛物线的应用包括抛物面反射器、人工卫星的轨道设计等。
双曲线的应用包括电磁波的传播、双曲线钟的标定等。
6.圆锥曲线的性质圆锥曲线有许多共同的性质,如对称性、切线性质和焦点性质等。
对称性:椭圆和双曲线关于x轴和y轴都有对称性,抛物线关于y轴有对称性。
切线性质:圆锥曲线上任意一点的切线与焦点到该点的连线垂直。
焦点性质:圆锥曲线上的任意一点到焦点的距离与焦缩比成正比。
此文档总结了圆锥曲线的定义、特性、应用和性质等重要知识点,并提供了相关公式和图示。
熟悉了这些知识后,我们可以更加深入地理解和应用圆锥曲线的概念。
高考数学总复习题型分类汇《圆锥曲线》篇经典试题大汇总目录【题型归纳】题型一求曲线的方程 (3)题型二最值(范围)问题 (4)题型三定点定值与存在性 (6)【巩固训练】题型一求曲线的方程 (8)题型二最值(范围)问题 (9)题型三定点定值与存在性 (11)高考数学《圆锥曲线》题型归纳与训练【题型归纳】题型一 求曲线的方程例1 已知定点()0,3-G ,S 是圆()723:22=+-y x C (C 为圆心)上的动点,SG 的垂直平分线与SC 交于点E ,设点E 的轨迹为M . 求M 的方程. 【答案】见解析【解析】由题意知ES EG =,所以26=+=+EC ESEC EG ,又因为266<=GC .所以点E 的轨迹是以G ,C 为焦点,长轴长为26的椭圆,动点E 的轨迹方程为191822=+y x . 例2 设O 为坐标原点,动点M 在椭圆22:12x C y +=上,过点M 作x 轴的垂线,垂足为N , 点P 满足2NP NM =.求点P 的轨迹方程.【答案】见解析【解析】如图所示,设(),P x y ,(),0N x ,()1,M x y . 由2NP NM =知,12y y =,即12y =.又点M 在椭圆2212x y +=上,则有22122x y +=,即222x y +=.例3 如图,矩形ABCD 中, ()()()()2,0,2,0,2,2,2,2A B C D -- 且,AM AD DN DC λλ==,[]0,1,AN λ∈交BM 于点Q .若点Q 的轨迹是曲线P 的一部分,曲线P 关于x 轴、y 轴、原点都对称,求曲线P 的轨迹方程.【答案】Q 的轨迹为第二象限的14椭圆,由对称性可知曲线P 的轨迹方程为2214x y +=. 【解析】设(),Q x y ,由,AM AD DN DC λλ==,求得()()2,2,42,2M N λλ--, ∵1,22QA AN QB BM k k k k λλ====-,∴11224QA QB k k λλ⎛⎫⋅=⋅-=- ⎪⎝⎭, P x,y ()NM Oxy∴1224y y x x ⋅=-+-,整理得()22120,014x y x y +=-≤≤≤≤.可知点Q 的轨迹为第二象限的14椭圆,由对称性可知曲线P 的轨迹方程为2214x y +=. 【易错点】求轨迹问题学生容易忽视范围 【思维点拨】高考中常见的求轨迹方程的方法有:1.直译法与定义法:直译法求轨迹方程:题目给出的条件可以直接得到一个关于动点坐标的关系式,化简; 定义法求轨迹方程:轨迹方程问题中,若能得到与所学过的圆锥曲线定义相符的结论,可以根据相应圆锥曲线的定义求出相关的参数,从而得到方程.2.相关点法:找动点之间的转化关系(平移,伸缩,中点,垂直等),用要求的代替已知轨迹的,代入化简3.参数法:可用联立求得参数方程,消参.注意此种问题通常范围有限制.4.交轨法:联立求交点,变形的轨迹. 题型二 最值(范围)问题例1 已知F 为抛物线C :x y 42=的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则DE AB +的最小值为( )A. 16B. 14C. 12D. 10 【答案】A【解析】设()()()()11223344,,,,,,,A x y B x y D x y E x y ,直线1l 的方程为()11y k x =-,联立方程()214 1y xy k x ==-⎧⎪⎨⎪⎩,得2222111240k x k x x k --+=,∴21122124k x x k --+=- 212124k k +=, 同理直线2l 与抛物线的交点满足:22342224k x x k ++=, 由抛物线定义可知12342AB DE x x x x p +=++++=22122222121224244448816k k k k k k ++++=++≥=, 当且仅当121k k =-=(或1-)时,取等号.【易错点】本题考查抛物线的焦点弦长,利用抛物线的焦点弦长公式,表示出DE AB +,然后利用基本不等式求最值.对相关流程应有所熟练例2 已知点A (0,2)-,椭圆E :22221(0)x y a b a b+=>>的离心率为2,F 是椭圆E 的右焦点,直线AF,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于,P Q 两点,当OPQ ∆的面积最大时,求l 的方程. 【答案】见解析【解析】(1)2(c,0)F c c 设,由条件知,222=2, 1.c a b a c a ==-=又所以 22 1.4x E y +=故的方程为 (2)1122:=2,(,),(,).l x l y kx P x y Q x y ⊥-当轴时不合题意,故设22214x y kx y =-+=将代入得22(14)16120.k x kx +-+=221,23=16(43)0,4k k x ∆->>=当即时,12PQ x =-=从而O PQ d OPQ =∆又点到直线的距离所以的面积21=241OPQ S d PQ k ∆⋅=+244,0,.44OPQ t t t S t t t∆=>==++则44,20.2t t k t +≥==±∆>因为当且仅当,即OPQ ∆所以,当的面积最大时,l 的方程为2222y x y x =-=--或. 【思维点拨】 圆锥曲线中的取值范围问题常用的方法有以下几个:(1)利用已知参数的范围,求新参数的范围,解这类问题的关键是在两个参数之间建立等量关系;(2)利用基本不等式求出参数的取值范围;(3)利用函数的值域的求法(甚至求导),确定参数的取值范围. 题型三 定点定值与存在性问题例1 已知椭圆C :()222210x y a b a b +=>>上.(1)求C 的方程.(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .直线OM 的斜率与直线l 的斜率的乘积为定值. 【答案】见解析【解析】 (1=22421a b+=,解得28a =,24b =. 所以C 的方程为22184x y +=. (2)设直线l :()00y kx b kb =+≠≠,,()11A x y ,, ()22B x y ,,()M M M x y ,.将 y kx b =+代入22184x y +=得()22221+4280k x kbx b ++-=. 故1222221M x x kb x k +-==+,221M M by kx b k =+=+ . 于是直线OM 的斜率12M OM M y k x k ==-,即12OM k k ⋅=-. 所以直线OM 的斜率与直线l 的斜率的乘积为定值.【思维点拨】解析几何是高考必考内容之一,在命题时多从考查各种圆锥曲线方程中的基本量关系及运算,在直线与圆锥曲线关系中.一般用方程的思想和函数的观点来解决问题,并会结合中点坐标,方程根与函数关系来求解.例2 已知抛物线2:4C y x =,点()0,m M 在x 轴的正半轴上,过M 点的直线l 与抛物线C 相交于A ,B 两点,O 为坐标原点.(1) 若1=m ,且直线l 的斜率为1,求以AB 为直径的圆的方程;(2) 是否存在定点M ,使得不论直线:l x ky m =+绕点M 如何转动,2211AMBM+恒为定值?【答案】(1)()()223216x y -+-=. (2)存在定点M (2, 0). 【解析】(1)当1=m 时,()0,1M ,此时,点M 为抛物线C 的焦点,直线l 的方程为1-=x y ,设()()1122,,A x y B x y ,,联立24{ 1y xy x ==-,消去y 得, 2610x x -+=,∴126x x +=, 121224y y x x +=+-=,∴圆心坐标为(3, 2).又1228AB x x =++=,∴圆的半径为4,∴圆的方程为()()223216x y -+-=. (2)由题意可设直线l 的方程为x ky m =+,则直线l 的方程与抛物线2:4C y x =联立,消去x 得: 2440y ky m --=,则124y y m =-, 124y y k +=,()()22222211221111AMBMx m y x m y +=+-+-+()()()22122222222121211111y y k y k y k y y +=+=+++ ()()()()222121222222221221682111621y y y y k m k mky y k m m k +-++===+++ 对任意k R ∈恒为定值, 于是2=m ,此时221114AMBM+=. ∴存在定点()0,2M ,满足题意. 【易错点】定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果(取特殊位置或特殊值),因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.【思维点拨】定点、定值问题通常先假设存在,推证满足条件的结论,若结论正确,则存在;若结论不正确,则不存在.在求解中通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的.【巩固训练】题型一 求曲线的方程1.设圆222150x y x ++-=的圆心为A ,直线l 过点()0,1B 且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC的平行线交AD 于点E .证明EA EB +为定值,并写出点E 的轨迹方程.【答案】13422=+y x (0≠y ) 【解析】因为||||AC AD =,AC EB //,故ADC ACD EBD ∠=∠=∠, 所以||||ED EB =,故||||||||||AD ED EA EB EA =+=+.又圆A 的标准方程为16)1(22=++y x ,从而4||=AD ,所以4||||=+EB EA .由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为13422=+y x (0≠y ).2.已知动圆G 过定点()4,0F ,且在y 轴上截得的弦长为8.求动圆G 的圆心点G 的轨迹方程; 【答案】28y x =【解析】设动圆圆心(),G x y ,设圆交y 轴于,M N 两点,连接,GF GM , 则GF GM =,过点G 作GH MN ⊥,则点H 是MN 的中点, 显然()22224,4GM x GF x y =+=-+,于是()222244x y x -+=+,化简整理得28y x =,故的轨迹方程为28y x =.3.已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于A B ,两点,交C 的准线于P Q ,两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明AR FQ ∥;(2)若PQF △的面积是ABF △的面积的两倍,求AB 中点的轨迹方程.【答案】(1)见解析; (2)12-=x y .【解析】由题设)0,21(F .设b y l a y l ==:,:21,则0≠ab ,且记过B A ,两点的直线为l ,则l 的方程为0)(2=++-ab y b a x .(1)由于F 在线段AB 上,故01=+ab .记AR 的斜率为1k ,FQ 的斜率为2k ,则222111k b aaba ab a b a a b a k =-=-==--=+-=.所以FQ AR ∥. (2)设l 与x 轴的交点为)0,(1x D , 则1111,2222ABF PQF a b S b a FD b a x S -=-=--=△△. 由题设可得221211b a x a b -=--,所以01=x (舍去),11=x . 设满足条件的AB 的中点为),(y x E . 当AB 与x 轴不垂直时,由DE AB k k =可得)1(12≠-=+x x yb a . 而y b a =+2,所以)1(12≠-=x x y . 当AB 与x 轴垂直时,E 与D 重合.所以,所求轨迹方程为12-=x y .题型二 最值(范围)问题1.已知动点E 到点A ()2,0与点B ()2,0-的直线斜率之积为14-,点E 的轨迹为曲线C . (1)求C 的方程;(2)过点D ()1,0作直线l 与曲线C 交于P , Q 两点,求OP OQ ⋅的最大值.【答案】(1)()22124x y x +=≠±(2)14 【解析】(1)设(),E x y ,则2x ≠±.因为E 到点A ()2,0,与点B ()2,0-的斜率之积为14-,所以122y yx x ⋅=-+-,整理得C 的方程为()22124x y x +=≠±. (2)当l 垂直于轴时,l 的方程为1x =,代入2214x y +=得P ⎛ ⎝⎭,1,Q ⎛ ⎝⎭.11,4OP OQ ⎛⎛⋅=⋅= ⎝⎭⎝⎭. 当l 不垂直于x 轴时,依题意可设()()10y k x k =-≠,代入2214x y +=得 ()2222148440k xk x k +-+-=.因为()216130k ∆=+>,设()11,P x y , ()22,Q x y .则2122814k x x k +=+, 21224414k x x k -=+.()()21212121211OP OQ x x y y x x k x x ⋅=+=+-- ()()22212121k x x k x x k =+-++14+21174416k =-+ 14< 综上OP OQ ⋅ 14≤,当l 垂直于x 轴时等号成立,故OP OQ ⋅的最大值是14.2.设椭圆()2222:10x y M a b a b +=>>经过点12,,P F F ⎭是椭圆M 的左、右焦点,且12PF F ∆的面积为2. (1)求椭圆M 的方程;(2)设O 为坐标原点,过椭圆M 内的一点()0,t 作斜率为k 的直线l 与椭圆M 交于,A B 两点,直线,OA OB 的斜率分别为12,k k ,若对任意实数k ,存在实数m ,使得12k k mk +=,求实数m 的取值范围.【答案】(1)22143x y +=;(2)[)2,m ∈+∞. 【解析】(1)略(2)设直线l 的方程为y kx t =+,由221{ 43x y y kx t+==+,得()2223484120k x ktx t +++-=,设()()1122,,,A x y B x y ,则21212228412,3434kt t x x x x k k -+=-=++,()212121221212122223t x x y y t t kt k k k k k k x x x x x x t ++=+=+++=+=--, 由12k k mk +=对任意k 成立,得22223t m t =--,∴()232m t m-=,又()0,t 在椭圆内部中,∴203t ≤<,∴2m ≥,即[)2,m ∈+∞.题型三 定点定值与存在性问题1.已知12,F F 分别是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,离心率为12, ,M N 分别是椭圆的上、下顶点,22•2MF NF =-.(1)求椭圆E 的方程;(2)若直线y kx m =+与椭圆E 交于相异两点,A B ,且满足直线,MA MB 的斜率之积为14,证明:直线AB 恒过定点,并求定点的坐标.【答案】(1)22143x y +=(2)直线AB恒过定点(0,.【解析】(1)由题知()0,2c F ,()b M ,0,()b N -,0,22222-=-=⋅∴b c NF MF ①由21==a c e ,得c a 2= ② 又222cb a =- ③ 由①②③联立解得:42=a ,32=b ∴椭圆E 的方程为13422=+y x . (2)证明:由椭圆E 的方程得,上顶点()3,0M ,设()11,y x A ,()22,y x B ,由题意知,01≠x ,02≠x由⎪⎩⎪⎨⎧=++=13422y x m kx y 得:()()034843222=-+++m kmx x k∴221438kkmx x +-=+,()22214334k m x x +-=, 又111133x m kx x y k MA -+=-=,222233x m kx x y k MB -+=-=, 由41=⋅NB MA k k ,得()()2121334x x m kx m kx =-+-+, ()()()()()()0433483414342222=+-+--+--k m km m k k m ,化简得:06332=+-m m 解得:3=m 或32=m ,结合01≠x ,02≠x 知32=m ,即直线AB 恒过定点()32,0.2.已知椭圆C :22221(0)x y a b a b+=>>的离心率为2,(,0)A a ,(0,)B b ,(0,0)O ,ΔOAB 的面积为1.(1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:||||AN BM ⋅为定值.【答案】(1) 1422=+y x (2)见解析. 【解析】(1)由题意得⎪⎪⎪⎩⎪⎪⎪⎨⎧+===,,121,23222c b a ab a c 解得1,2==b a . 所以椭圆C 的方程为1422=+y x . (2)由(1)知,)1,0(),0,2(B A ,设),(00y x P ,则442020=+y x .当00≠x 时,直线PA 的方程为)2(200--=x x y y .令0=x ,得2200--=x y y M .从而221100-+=-=x y y BM M . 直线PB 的方程为110+-=x x y y . 令0=y ,得100--=y x x N .从而12200-+=-=y x x AN N . 所以221120000-+⋅-+=⋅x y y x BM AN 228844224844400000000000000002020+--+--=+--+--++=y x y x y x y x y x y x y x y x y x 4=.当00=x 时,10-=y ,,2,2==AN BM 所以4=⋅BM AN .综上,BM AN ⋅为定值.3. 在平面直角坐标系xOy 中,已知椭圆C :22221(0)x y a b a b+=>>的离心率e =C 上的点 到(0,2)Q 的距离的最大值为3. (1)求椭圆C 的方程;(2)在椭圆C 上,是否存在点(,)M m n 使得直线l :1mx ny +=与圆O :221x y += 相交于不同的两点,A B ,且OAB ∆的面积最大?若存在,求出点M 的坐标及相对应的OAB ∆的面积;若不存在,请说明理由.【答案】(1) 2213x y += (2)见解析【解析】(1)由2223c e c a a ==⇒=,所以222213b ac a =-= 设(,)P x y 是椭圆C 上任意一点,则22221x y a b+=,所以222222(1)3y x a a y b =-=-||PQ ===所以,当1y =-时,||PQ 3=,可得a =1,b c ==故椭圆C 的方程为:2213x y += (2)存在点M 满足要求,使OAB ∆得面积最大.假设直线:1l mx ny +=与圆22:1O x y +=相交于不同两点,A B , 则圆心O 到l的距离1d =<,∴221m n +> ①因为(,)M m n 在椭圆C 上,所以2213m n +=②,由①②得:203m <∵||AB ==所以1||2OABSAB d =⋅=2213m n =-代入上式得213221213OABmS m m ∆==+⋅,当且仅当22231(0,3]32m m =⇒=∈,∴2231,22m n ==,此时满足要求的点(M 有四个. 此时对应的OAB ∆的面积为12. 4.已知过抛物线()022>=p px y 的焦点F 的直线交抛物线于()()()112212,,,A x y B x y x x < 两点,且6AB =.(1)求该抛物线E 的方程;(2)过点F 任意作互相垂直的两条直线12,l l ,分别交曲线E 于点,C D 和,M N .设线段,CD MN 的中点分别为,P Q ,求证:直线PQ 恒过一个定点.【答案】(1)24y x = (2)直线PQ 恒过定点()3,0.【解析】(1)抛物线的焦点,02p F ⎛⎫⎪⎝⎭,∴直线AB 的方程为:2p y x ⎫=-⎪⎭联立方程组22{ 2y pxp y x =⎫=-⎪⎭,消元得: 22204p x px -+=, ∴212122,4px x p xx +==∴6AB ===,解得2p =±.∵0p >,∴抛物线E 的方程为:24y x =.(2)设,C D 两点坐标分别为()()1122,,,x y x y ,则点P 的坐标为1212,22x x y y ++⎛⎫⎪⎝⎭..由题意可设直线1l 的方程为()()10y k x k =-≠. 由()24{1y x y k x ==-,得()2222240k x k x k -++=.()24224416160k k k ∆=+-=+>因为直线1l 与曲线E 于,C D 两点,所以()1212122442,2x x y y k x x k k+=++=+-=. 所以点P 的坐标为2221,k k ⎛⎫+⎪⎝⎭. 由题知,直线2l 的斜率为1k-,同理可得点Q 的坐标为()212,2k k +-. 当1k ≠±时,有222112k k+≠+,此时直线PQ 的斜率2222221112PQ kk k k k k k+==-+--. 所以,直线PQ 的方程为()222121k y k x k k+=---,整理得()230yk x k y +--=. 于是,直线PQ 恒过定点()3,0; 当1k=±时,直线PQ 的方程为3x =,也过点()3,0.综上所述,直线PQ 恒过定点()3,0.新课程标准的内容与现形课标内容的对比如下表:与现形课标对比,必修3中的“算法初步”删掉了;删掉了必修5中的解三角形,不等式的大部分内容。
学霸整理丨高考数学圆锥曲线几何题型总结,手慢无,强烈建
议收藏
都说数学中的圆锥曲线高考难,大部分同学抱怨无从下手,计算能力跟不上,算错一次没有勇气从头再来。
今天学长就来说说圆锥曲线的事儿~
学好圆锥曲线的几个关键点
牢记核心知识
核心的知识点是基础,好多同学在做圆锥曲线题时,特别是小题,比如椭圆,双曲线离心率公式和范围记不清,焦点分别在x轴,y轴上的双曲线的渐近线方程也傻傻分不清,在做题时自然做不对。
计算能力与速度
计算能力强的同学学圆锥曲线相对轻松一些,计算能力是可以通过多做题来提升的。
后期可以尝试训练自己口算得到联立后的二次方程,然后得到判别式,两根之和,两根之积的整式。
当然也要掌握一些解题的小技巧,加快运算速度。
学长这里拿来了学霸整理了高中数学中圆锥曲线常用的几何性质集锦!对同学们的学习很有帮助!
建议同学家长打印出来方便学习!
文末附电子版领取方式!
真理真心不易,记得点赞收藏!
点击学长上方头头像私信发送:“圆锥”即可领取!
资料完全免费,同学家长可以放心。
圆锥曲线问题在高考的常见题型及解题技巧圆锥曲线是数学中的重要概念,也是高中数学中的重要内容之一。
在高考中,圆锥曲线问题往往是考查学生分析能力、解题技巧和数学理论应用能力的重要内容。
圆锥曲线问题包括了圆、椭圆、双曲线和抛物线等内容,这些问题在高考中的常见题型有很多,下面我们就来总结一下圆锥曲线问题在高考中的常见题型及解题技巧。
一、圆锥曲线的常见题型1. 求解圆锥曲线的焦点、直径等坐标问题2. 求圆锥曲线与坐标轴的交点3. 求圆锥曲线的参数方程4. 求解圆锥曲线的切线方程5. 求解圆锥曲线的渐近线方程6. 判断点是否在圆锥曲线内部或外部等问题这些都是高考中经常出现的圆锥曲线的题型,考查学生的代数计算、几何推理、参数方程应用等多方面的数学能力。
二、解题技巧1. 确定圆锥曲线的类型在解题时首先要明确圆锥曲线的类型,包括圆、椭圆、双曲线和抛物线等。
这样可以根据具体的类型选择相应的解题方法,避免盲目求解导致错误。
2. 利用几何的方法辅助求解对于椭圆、双曲线等圆锥曲线,可以利用几何的方法来辅助求解,比如通过图形性质来确定焦点、直径等坐标,利用图形的对称性质来求解切线方程等。
3. 转换坐标系有些圆锥曲线问题在直角坐标系中比较复杂,但是如果将坐标系进行适当的旋转、平移或变换,可能会使问题更易于求解。
将坐标系转换成合适的坐标系是解决问题的有效方法之一。
4. 参数化求解对于一些复杂的圆锥曲线问题,可以尝试使用参数方程来进行求解,将问题转化成参数方程的形式,有时会使问题变得更加简单。
5. 利用数学工具软件辅助求解在解题过程中,可以利用数学软件来辅助求解,比如利用计算机绘制图形、求解方程等,可以帮助理清思路、验证结果,并避免繁琐的计算错误。
三、举例分析以下举一个常见的圆锥曲线问题作为例子进行分析:已知椭圆的方程为:\[ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \]求椭圆的焦点坐标及渐近线方程。
第一章集合与常用逻辑用语第一节集合题型1-1 集合的基本概念题型1-2 集合间的基本关系题型1-3 集合的运算其次节命题与其关系、充分条件与必要条件题型1-4 四种命题与关系题型1-5 充分条件、必要条件、充要条件的推断与证明题型1-6 求解充分条件、必要条件、充要条件中的参数取值范围第三节简洁的逻辑联结词、全称量词与存在量词题型1-7 推断命题的真假题型1-8 含有一个量词的命题的否定题型1-9 结合命题真假求参数的取值范围其次章函数第一节映射与函数题型2-1 映射与函数的概念题型2-2 同一函数的推断题型2-3 函数解析式的求法其次节函数的定义域与值域(最值)题型2-4 函数定义域的求解题型2-5 函数定义域的应用题型2-6 函数值域的求解第三节函数的性质——奇偶性、单调性、周期性题型2-7 函数奇偶性的推断题型2-8 函数单调性(区间)的推断题型2-9 函数周期性的推断题型2-10 函数性质的综合应用第四节二次函数题型2-11 二次函数、一元二次方程、二次不等式的关系题型2-12 二次方程的实根分布与条件题型2-13 二次函数“动轴定区间”“定轴动区间”问题第五节指数与指数函数题型2-14 指数运算与指数方程、指数不等式题型2-15 指数函数的图象与性质题型2-16 指数函数中恒成立问题第六节对数与对数函数题型2-17 对数运算与对数方程、对数不等式题型2-18 对数函数的图象与性质题型2-19 对数函数中恒成立问题第七节幂函数题型2-20 求幂函数的定义域题型2-21 幂函数性质的综合应用第八节函数的图象题型2-22 推断函数的图象题型2-23 函数图象的应用第九节函数与方程题型2-24 求函数的零点或零点所在区间题型2-25 利用函数的零点确定参数的取值范围题型2-26 方程根的个数与函数零点的存在性问题第十节函数综合题型2-27 函数与数列的综合题型2-28 函数与不等式的综合题型2-29 函数中的信息题第三章导数与定积分第一节导数的概念与运算题型3-1 导数的定义题型3-2 求函数的导数其次节导数的应用题型3-3 利用原函数与导函数的关系推断图像题型3-4 利用导数求函数的单调性和单调区间题型3-5 函数的极值与最值的求解题型3-6 已知函数在区间上单调或不单调,求参数的取值范围题型3-7 探讨含参函数的单调区间题型3-8 利用导数探讨函数图象的交点和函数零点个数问题题型3-9 不等式恒成立与存在性问题题型3-10 利用导数证明不等式题型3-11 导数在实际问题中的应用第三节定积分和微积分基本定理题型3-12 定积分的计算题型3-13 求曲边梯形的面积第四章三角函数第一节三角函数概念、同角三角函数关系式和诱导公式题型4-1 终边相同角的集合的表示与识别题型4-2 α2是第几象限角题型4-3 弧长与扇形面积公式的计算题型4-4 三角函数定义题型4-5 三角函数线与其应用题型4-6 象限符号与坐标轴角的三角函数值题型4-7 同角求值——条件中出现的角和结论中出现的角是相同的题型4-8 诱导求值与变形其次节三角函数的图象与性质题型4-9 已知解析式确定函数性质题型4-10 依据条件确定解析式题型4-11 三角函数图象变换第三节三角恒等变换题型4-12 两角和与差公式的证明题型4-13 化简求值第四节解三角形题型4-14 正弦定理的应用题型4-15 余弦定理的应用题型4-16 推断三角形的形态题型4-17 正余弦定理与向量的综合题型4-18 解三角形的实际应用第五章平面对量第一节向量的线性运算题型5-1 平面对量的基本概念题型5-2 共线向量基本定理与应用题型5-3 平面对量的线性运算题型5-4 平面对量基本定理与应用题型5-5 向量与三角形的四心题型5-6 利用向量法解平面几何问题其次节向量的坐标运算与数量积题型5-7 向量的坐标运算题型5-8 向量平行(共线)、垂直充要条件的坐标表示题型5-9 平面对量的数量积题型5-10 平面对量的应用第六章数列第一节等差数列与等比数列题型6-1 等差、等比数列的通项与基本量的求解题型6-2 等差、等比数列的求和题型6-3 等差、等比数列的性质应用题型6-4 推断和证明数列是等差、等比数列题型6-5 等差数列与等比数列的综合其次节数列的通项公式与求和题型6-6 数列的通项公式的求解题型6-7 数列的求和第三节数列的综合题型6-8 数列与函数的综合题型6-9 数列与不等式综合第七章不等式第一节不等式的概念和性质题型7-1 不等式的性质题型7-2 比较数(式)的大小与比较法证明不等式其次节均值不等式和不等式的应用题型7-3 均值不等式与其应用题型7-4 利用均值不等式求函数最值题型7-5 利用均值不等式证明不等式题型7-6 不等式的证明第三节不等式的解法题型7-7 有理不等式的解法题型7-8 肯定值不等式的解法第四节二元一次不等式(组)与简洁的线性规划问题题型7-9 二元一次不等式组表示的平面区域题型7-10 平面区域的面积题型7-11 求解目标函数中参数的取值范围题型7-12 简洁线性规划问题的实际运用第五节不等式综合题型7-13 不等式恒成立问题中求参数的取值范围题型7-14 函数与不等式综合第八章立体几何第一节空间几何体的表面积与体积题型8-1 几何体的表面积与体积题型8-2 球的表面积、体积与球面距离题型8-3 几何体的外接球与内切球其次节空间几何体的直观图与三视图题型8-4 直观图与斜二测画法题型8-5 直观图、三视图题型8-6 三视图⟹直观图——简洁几何体基本量的计算题型8-7三视图⟹直观图——简洁组合体基本量的计算题型8-8 部分三视图⟹其余三视图第三节空间点、直线、平面之间的关系题型8-9 证明“线共面”、“点共面”或“点共线”题型8-10 异面直线的判定第四节直线、平面平行的判定与性质题型8-11 证明空间中直线、平面的平行关系第五节直线、平面垂直的判定与性质题型8-12证明空间中直线、平面的垂直关系第六节空间向量与其应用题型8-13 空间向量与其运算题型8-14 空间向量的立体几何中的应用第七节空间角与距离题型8-15 空间角的计算题型8-16 点到平面距离的计算第九章直线与圆的方程第一节直线的方程题型9-1 倾斜角与斜率的计算题型9-2 直线的方程其次节两条直线的位置关系题型9-3 两直线位置关系的判定题型9-4 有关距离的计算题型9-5 对称问题第三节圆的方程题型9-6 求圆的方程题型9-7 与圆有关的轨迹问题题型9-8 点与圆位置关系的推断题型9-9 圆的一般方程的充要条件题型9-10 与圆有关的最值问题题型9-11 数形结合思想的应用第四节直线与圆、圆与圆的位置关系题型9-12 直线与圆的位置关系的推断题型9-13 直线与圆的相交关系题型9-14 直线与圆的相切关系题型9-15 直线与圆的相离关系题型9-16 圆与圆的位置关系第十章圆锥曲线方程第一节椭圆题型10-1 椭圆的定义与标准方程题型10-2 离心率的值与取值范围题型10-3 焦点三角形其次节双曲线题型10-4 双曲线的标准方程题型10-5 双曲线离心率的求解与其取值范围问题题型10-6 双曲线的渐近线题型10-7 焦点三角形第三节抛物线题型10-8 抛物线方程的求解题型10-9 与抛物线有关的距离和最值问题题型10-10 抛物线中三角形、四边形的面积问题第四节曲线与方程题型10-11 求动点的轨迹方程第五节直线与圆锥曲线位置关系题型10-12 直线与圆锥曲线的位置关系题型10-13 中点弦问题题型10-14 弦长问题第六节圆锥曲线综合题型10-15 平面对量在解析几何中的应用题型10-16 定点问题题型10-17 定值问题题型10-18 最值问题第十一章算法初步题型11-1 已知流程图,求输出结果题型11-2 依据条件,填充不完整的流程图题型11-3 求输入参数题型11-4 算法综合第十二章计数原理第一节计数原理与简洁排列组合问题题型12-1 分类计数原理与分步计数原理题型12-2 排列数与组合数的推导、化简和计算题型12-3 基本计数原理和简洁排列组合问题的结合其次节排列问题题型12-4 特别元素或特别位置的排列问题题型12-5 元素相邻排列问题题型12-6 元素不相邻排列问题题型12-7 元素定序问题题型12-8 其他排列:双排列、同元素的排列第三节组合问题题型12-9 单纯组合应用问题题型12-10 分选问题和选排问题题型12-11 平均分组问题和安排问题第四节二项式定理题型12-12 证明二项式定理题型12-13 T r+1的系数与x幂指数的确定题型12-14 二项式定理中的系数和题型12-15 二项式绽开式的二项式系数与系数的最值题型12-16 二项式定理的综合应用第十三章排列与统计第一节概率与其计算题型13-1 古典概型题型13-2 几何概型的计算其次节概率与概率分布题型13-3 概率的计算题型13-4 离散型随机变量的数学期望与方差题型13-5 正态分布第三节统计与统计案例题型13-6 抽样方法题型13-7 样本分布题型13-8 频率分布直方图的解读题型13-9 线性回来方程题型13-10 独立性检验第十四章推理与证明第一节合情推理与演绎推理题型14-1 归纳猜想题型14-2 类比推理其次节干脆证明和间接证明题型14-3 综合法与分析法证明第三节数学归纳法题型14-4 数学归纳法的完善题型14-5 证明恒等式题型14-6 整除问题题型14-7 不等式证明题型14-8 递推公式导出{a n}通项公式的猜证与有关问题的证明第十五章复数题型15-1 复数的概念、代数运算和两个复数相等的条件题型15-2 复数的几何意义第十六章选讲内容第一节几何证明选讲(选修4-1)题型16-1 圆和直角三角形中长度和角的计算题型16-2 证明题题型16-3 空间图形问题转化为平面问题其次节坐标系与参数方程(选修4-4)题型16-4 参数方程化为一般方程题型16-5 一般方程化为参数方程题型16-6 极坐标方程化为直角坐标方程第三节不等式选讲(选修4-5)题型16-7含肯定值的不等式题型16-8 不等式的证明题型16-9 一般综合法和分析法(含比较法)题型16-10 数学归纳法。
高考数学圆锥曲线知识点归纳总结在高考数学中,圆锥曲线是一个重要的知识点,准确理解和掌握圆锥曲线的相关概念和性质对于解题至关重要。
本文将对圆锥曲线的知识进行归纳总结,帮助同学们更好地复习和应对高考数学考试。
一、圆锥曲线的基本概念在正式介绍圆锥曲线的各个具体曲线之前,我们首先需要了解圆锥曲线的基本概念。
圆锥曲线是由一个平面与一个圆锥相交而形成的曲线。
相交的平面可以与圆锥的两个交点、一条交线或者圆锥的某一侧相切,由此得到不同类型的圆锥曲线。
二、椭圆椭圆是圆锥曲线中最基础的一类曲线。
椭圆是一个闭合的曲线,其定义可以通过焦点和离心率进行描绘。
离心率小于1的椭圆称为狭椭圆,离心率等于1的椭圆称为圆形,离心率大于1的椭圆称为宽椭圆。
椭圆的一些性质和公式:1. 椭圆的离心率e满足0<e<1。
2. 椭圆的焦点到直径的距离之和等于常数2a,即F1F2 = 2a。
3. 椭圆的长半轴长度为a,短半轴长度为b,焦距为c。
满足a^2 =b^2 + c^2。
4. 椭圆的标准方程为(x^2/a^2) + (y^2/b^2) = 1。
三、双曲线双曲线是圆锥曲线中的另一类曲线。
与椭圆不同,双曲线是开放的曲线,其两个分支无限延伸。
同样可以通过焦点和离心率来定义双曲线。
双曲线的一些性质和公式:1. 双曲线的离心率e满足e大于1。
2. 双曲线的焦点到直归的距离之差等于常数2a,即F1F2 = 2a。
3. 双曲线的长轴长度为2a,短轴长度为2b,焦距为c。
满足a^2 =b^2 + c^2。
4. 双曲线的标准方程为(x^2/a^2) - (y^2/b^2) = 1。
四、抛物线抛物线也是圆锥曲线的一种,与椭圆和双曲线不同,抛物线是开放的曲线,其只有一个分支。
抛物线的形状类似于开口向上或向下的弓。
抛物线的一些性质和公式:1. 抛物线的离心率e等于1。
2. 抛物线的焦点与直线的距离相等,即F1F2 = PF。
3. 抛物线的焦点与顶点的距离为a,焦点的坐标为(a,0)。
圆锥曲线知识点与题型总结
圆锥曲线是解析几何中重要的一个概念,它包括椭圆、双曲线和抛物线。
以下是关于圆锥曲线的一些常见知识点和题型总结:
1. 椭圆:椭圆是一个闭合曲线,它的定义可以是平面上到两个定点的距离之和等于常数的点的轨迹。
常见的问题包括求椭圆的焦距、长轴和短轴的长度以及离心率等。
2. 双曲线:双曲线是一个开放曲线,它的定义可以是平面上到两个定点的距离之差等于常数的点的轨迹。
常见的问题包括求双曲线的焦点、焦距、渐近线的方程以及离心率等。
3. 抛物线:抛物线是一个开放曲线,它的定义可以是平面上到一个定点的距离等于到一个定直线的距离的点的轨迹。
常见的问题包括求抛物线的焦点、方程、顶点和焦距等。
4. 焦点和直线的关系:对于椭圆和双曲线来说,焦点与直线的关系是他们的轨迹定义的一部分。
对于抛物线来说,焦点和直线的关系可以通过求解焦点和直线的交点来确定。
5. 图像的性质:不同类型的圆锥曲线具有不同的性质,包括对称性、离心率、渐近线、焦点和顶点等。
这些性质可以用来解决与图像相关的问题。
6. 解析几何的应用:圆锥曲线在解析几何中有广泛的应用,如椭球和椭圆柱体的表面积和体积计算、抛物线在物理学、工程学和天文学中的应用等。
总之,掌握圆锥曲线的定义、性质和应用是解析几何的重要内容。
通过熟练掌握各类型曲线的公式和相关知识,能够解决与圆锥曲线相关的各种问题。