2012中考数学圆综合题(武汉)1
- 格式:doc
- 大小:2.39 MB
- 文档页数:12
2012年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)2.(2012•武汉)若在实数范围内有意义,则x的取值范围是()27.(2012•武汉)如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC的点F处.若AE=5,BF=3,则CD的长是()BE===48.(2012•武汉)如图,是由4个相同小正方体组合而成的几何体,它的左视图是( )9.(2012•武汉)一列数a 1,a 2,a 3,…,其中a 1=,a n =(n为不小于2的整数),则a 4的值为( )代入==代入=,代入=.10.(2012•武汉)对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是()=2.9511.(2012•武汉)甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是()12.(2012•武汉)在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线11+11+﹣11+1+如图:AE=代入求出BE=DF=3﹣,BE=DF=3CF=5+3CE+CF=11+二、填空题(共4小题,每小题3分,共12分)下列各题不需要写出解答过程,请将结果直接写在答题卡指定的位置13.tan60°=.的值为故答案为:.14.(2012•武汉)某校九(1)班8名学生的体重(单位:kg)分别是39,40,43,43,43,45,45,46.这组数据的众数是43.15.(2012•武汉)如图,点A在双曲线y=的第一象限的那一支上,AB垂直于x轴与点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为k=.BD=OD=b得a×b+4+××b ab=BD=OD=(a×b+4+×bab=,k=ab=故答案为.16.(2012•武汉)在平面直角坐标系中,点A的坐标为(3.0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是m≥.,BOC=,.三、解答题(共9小题,共72分)下列各题需要在答题卡上指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(2012•武汉)解方程:.18.(2012•武汉)在平面直角坐标系中,直线y=kx+3经过点(﹣1,1),求不等式kx+3<0的解集.﹣<﹣19.(2012•武汉)如图CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.20.(2012•武汉)一个口袋中有4个相同的小球,分别与写有字母A,B,C,D,随机地抽出一个小球后放回,再随机地抽出一个小球.(1)使用列表法或树形法中的一种,列举出两次抽出的球上字母的所有可能结果;(2)求两次抽出的球上字母相同的概率.)由树形图可以看出两次字母相同的概率为=21.(2012•武汉)如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,3),(﹣4,1),先将线段AB沿一确定方向平移得到线段A1B1,点A的对应点为A1,点B1的坐标为(0,2),在将线段A1B1绕远点O顺时针旋转90°得到线段A2B2,点A1的对应点为点A2.(1)画出线段A1B1,A2B2;(2)直接写出在这两次变换过程中,点A经过A1到达A2的路径长.,=的路径长为:+22.(2012•武汉)在锐角三角形ABC中,BC=4,sinA=,(1)如图1,求三角形ABC外接圆的直径;(2)如图2,点I为三角形ABC的内心,BA=BC,求AI的长.R+R=×,求出A=,D==A==,,,AB R+R+AC R=R+××,R=IF=AI=的长是23.(2012•武汉)如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED的距离是11米,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.(1)求抛物线的解析式;(2)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时)的变化满足函数关系h=﹣(t﹣19)2+8(0≤t≤40),且当水面到顶点C的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?﹣﹣﹣24.(2012•武汉)已知△ABC中,AB=,AC=,BC=6(1)如图1,点M为AB的中点,在线段AC上取点M,使△AMN与△ABC相似,求线段MN的长;(2)如图2,是由100个边长为1的小正方形组成的10×10的正方形网格,设顶点在这些小正方形顶点的三角形为格点三角形.①请你在所给的网格中画出格点△A1B1C1与△ABC全等(画出一个即可,不需证明)②试直接写出所给的网格中与△ABC相似且面积最大的格点三角形的个数,并画出其中一个(不需证明).为两直角边长为=AB=2AM==AM=25.(2012•武汉)如图1,点A为抛物线C1:y=x2﹣2的顶点,点B的坐标为(1,0)直线AB交抛物线C1于另一点C(1)求点C的坐标;(2)如图1,平行于y轴的直线x=3交直线AB于点D,交抛物线C1于点E,平行于y轴的直线x=a交直线AB于F,交抛物线C1于G,若FG:DE=4:3,求a的值;(3)如图2,将抛物线C1向下平移m(m>0)个单位得到抛物线C2,且抛物线C2的顶点为点P,交x轴于点M,交射线BC于点N.NQ⊥x轴于点Q,当NP平分∠MNQ时,求m的值.,解得x,解得、,∴.aa2+2.x ﹣﹣x t,﹣y=﹣,解得,t+tt+t=,﹣(﹣2参与本试卷答题和审题的老师有:lantin;zhxl;zjx111;MMCH;lanchong;caicl;gsls;CJX;sd2011;星期八;sjzx。
2012年武汉市中考数学试卷与答案(完整清晰版)一.选择题(1—15题,每小题只有一个正确选项,每题2分,共30分。
)1.下列金属材料的冶炼和应用体现了人类社会不断发展、进步的是()2.小明同学用氯化钠固体配制一定溶质质量分数的氯化钠溶液,操作步骤如下图所示,请你帮小明同学选择正确的操作顺序,并指出在哪一步操作中存在着错误()A.④⑤①②③;② B.④①②③⑤;⑤C.③④①②⑤;① D.②①④③⑤;③3.金属是人类生活和生产中的重要材料,下列图示所体现金属的用途与金属材料不相匹配的是()A.黄金做饰品 B.钛合金做人造骨C.球墨铸铁做钢轨 D.青铜做铜币4.如图所示是一把铁质剪刀。
它的下列自述中一定涉及化学变化的是()A.我的造型及特殊又美观B.我能剪出各式各样的服饰C.我经过磨砺会更加锋利D.我惧怕潮湿的空气,在那里我会变得十分难看5.下列说法中不正确的是()A.用柠檬酸、果汁、白糖、水、小苏打自制汽水B.被雨水淋湿的自行车,先用干布擦净后才能用带油的布擦C.宝石中由于含有某些金属离子,才使它们变得更加绚丽多彩D.喝了汽水后常常会打嗝,说明气体的溶解度随着压强的减小而减小6.苹果公司使用正己烷清洗液晶显示屏造成了多名员工的身体受到不同程度的毒害,正己烷的分子结构如图所示,下列关于正已烷的叙述错误的是( )A.正己烷的分子是有毒的B.正己烷分子由碳、氢两种元素质量比为36:7C.正己烷的化学式为C6H14D.正己烷是由多原子分子构成的化合物7.下列生产、生活中的做法正确的是()A.用钢刷来擦洗铝制品 B.用铁桶盛装农药波尔多液C.用铁矿石与焦炭在高炉内炼钢D.用洗涤剂的洗去碗筷表面的油污89.下列说法不正确的是()A.我国是世界上已知矿物种类比较齐全的少量国家之一B. 回收一个铝制饮料罐比新饮料罐要节约95%的能源C. 人体中含量最高的金属元素是钙D.在冷水中加洗涤剂与在热水中加洗涤剂清洗餐具,再用等量的少量净水漂洗,餐具都一样干净。
2012年湖北省武汉市中考数学试卷一、选择题共12小题,每小题3分,满分36分1.2012•武汉在,﹣,0,3这四个数种,最小的数是A.B.﹣C. 0 D. 32.2012•武汉若在实数范围内有意义,则x的取值范围是A. x<3 B. x≤3 C. x>3 D. x≥33.2012•武汉在数轴上表示不等式x﹣1<0的解集,正确的是A.B.C.D.4.2012•武汉从标号分别为1,2,3,4,5的5张卡片中,随机抽取1张.下列事件中,必然事件是A.标号小于6 B.标号大于6 C.标号是奇数D.标号是35.2012•武汉若x1,x2是一元二次方程x2﹣3x+2=0的两根,则x1+x2的值是A.﹣2 B. 2 C. 3 D. 16.2012•武汉某市2012年在校初中生的人数约为23万.数230000用科学记数法表示为A.23×104B.×105C.×103D.×1067.2012•武汉如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC的点F处.若AE=5,BF=3,则CD的长是A. 7 B. 8 C. 9 D. 108.2012•武汉如图,是由4个相同小正方体组合而成的几何体,它的左视图是A.B.C.D.9.2012•武汉一列数a1,a2,a3,…,其中a1=,a n=n为不小于2的整数,则a4的值为A.B.C.D.10.2012•武汉对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是A.B.C.D. 311.2012•武汉甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y米与乙出发的时间t秒之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是A.①②③B.仅有①②C.仅有①③D.仅有②③12.2012•武汉在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为A.11+B.11﹣C.11+或11﹣D.11+或1+二、填空题共4小题,每小题3分,共12分下列各题不需要写出解答过程,请将结果直接写在答题卡指定的位置13.tan60°=_________.14.2012•武汉某校九1班8名学生的体重单位:kg分别是39,40,43,43,43,45,45,46.这组数据的众数是_________.15.2012•武汉如图,点A在双曲线y=的第一象限的那一支上,AB垂直于x轴与点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为_________.16.2012•武汉在平面直角坐标系中,点A的坐标为,点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是_________.三、解答题共9小题,共72分下列各题需要在答题卡上指定位置写出文字说明、证明过程、演算步骤或画出图形.17.2012•武汉解方程:.18.2012•武汉在平面直角坐标系中,直线y=kx+3经过点﹣1,1,求不等式kx+3<0的解集.19.2012•武汉如图CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.20.2012•武汉一个口袋中有4个相同的小球,分别与写有字母A,B,C,D,随机地抽出一个小球后放回,再随机地抽出一个小球.1使用列表法或树形法中的一种,列举出两次抽出的球上字母的所有可能结果;2求两次抽出的球上字母相同的概率.21.2012•武汉如图,在平面直角坐标系中,点A,B的坐标分别为﹣1,3,﹣4,1,先将线段AB沿一确定方向平移得到线段A1B1,点A的对应点为A1,点B1的坐标为0,2,在将线段A1B1绕远点O顺时针旋转90°得到线段A2B2,点A1的对应点为点A2.1画出线段A1B1,A2B2;2直接写出在这两次变换过程中,点A经过A1到达A2的路径长.22.2012•武汉在锐角三角形ABC中,BC=4,sinA=,1如图1,求三角形ABC外接圆的直径;2如图2,点I为三角形ABC的内心,BA=BC,求AI的长.23.2012•武汉如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED的距离是11米,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.1求抛物线的解析式;2已知从某时刻开始的40小时内,水面与河底ED的距离h单位:米随时间t单位:时的变化满足函数关系h=﹣t﹣192+80≤t≤40,且当水面到顶点C的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行24.2012•武汉已知△ABC中,AB=,AC=,BC=61如图1,点M为AB的中点,在线段AC上取点M,使△AMN与△ABC相似,求线段MN的长;2如图2,是由100个边长为1的小正方形组成的10×10的正方形网格,设顶点在这些小正方形顶点的三角形为格点三角形.①请你在所给的网格中画出格点△A1B1C1与△ABC全等画出一个即可,不需证明②试直接写出所给的网格中与△ABC相似且面积最大的格点三角形的个数,并画出其中一个不需证明.25.2012•武汉如图1,点A为抛物线C1:y=x2﹣2的顶点,点B的坐标为1,0直线AB交抛物线C1于另一点C1求点C的坐标;2如图1,平行于y轴的直线x=3交直线AB于点D,交抛物线C1于点E,平行于y轴的直线x=a交直线AB于F,交抛物线C1于G,若FG:DE=4:3,求a的值;3如图2,将抛物线C1向下平移mm>0个单位得到抛物线C2,且抛物线C2的顶点为点P,交x轴于点M,交射线BC于点N.NQ⊥x轴于点Q,当NP平分∠MNQ时,求m的值.2012年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题共12小题,每小题3分,满分36分1.2012•武汉考点:有理数大小比较;分析:根据有理数的大小比较法则是负数都小于0,正数都大于0,正数大于一切负数进行比较即可.解答:解:∵﹣<0<<3,∴最小的数是﹣,故选B.点评:本题考查了有理数的大小比较法则的应用,有理数的大小比较法则是:负数都小于0,正数都大于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.2.2012•武汉考点:二次根式有意义的条件;专题:常规题型;分析:根据被开方数大于等于0列式计算即可得解.解答:解:根据题意得,x﹣3≥0,解得x≥3.故选D.点评:本题考查的知识点为:二次根式的被开方数是非负数.3.2012•武汉考点:在数轴上表示不等式的解集;解一元一次不等式;专题:推理填空题;分析:求出不等式的解集,在数轴上表示出不等式的解集,即可选出答案.解答:解:x﹣1<0,∴x<1,在数轴上表示不等式的解集为:,故选B.点评:本题考查了解一元一次不等式和在数轴上表示不等式的解集的应用,注意:在数轴上,右边表示的数总比左边表示的数大,不包括该点时,用“圆圈”,包括时用“黑点”.考点:随机事件;分析:必然事件就是一定发生的事件,根据定义即可判断.解答:解:A、是一定发生的事件,是必然事件,故选项正确;B、是不可能发生的事件,故选项错误;C、是随机事件,故选项错误;D、是随机事件,故选项错误.故选A.点评:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.2012•武汉考点:根与系数的关系;分析:由一元二次方程x2﹣3x+2=0,根据根与系数的关系即可得出答案.解答:解:由一元二次方程x2﹣3x+2=0,∴x1+x2=3,故选C.点评:本题考查了根与系数的关系,属于基础题,关键掌握x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.6.2012•武汉考点:科学记数法—表示较大的数;专题:常规题型;分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于23万有6位,所以可以确定n=6﹣1=5.解答:解:23万=230 000=×105.故选B.点评:此题考查科学记数法表示较大的数的方法,准确确定n值是关键.7.2012•武汉考点:翻折变换折叠问题;专题:探究型;分析:先根据翻折变换的性质得出EF=AE=5,在Rt△BEF中利用勾股定理求出BE的长,再根据AB=AE+BE求出AB 的长,再由矩形的性质即可得出结论.解答:解:∵△DEF由△DEA翻折而成,∴EF=AE=5,在Rt△BEF中,∵EF=5,BF=3,∴BE===4,∴AB=AE+BE=5+4=9,∵四边形ABCD是矩形,∴CD=AB=9.故选C.点评:本题考查的是图形的翻折变换,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.8.2012•武汉考点:简单组合体的三视图;专题:常规题型;分析:左视图是从左边看得出的图形,结合所给图形及选项即可得出答案.解答:解:从左边看得到的是两个叠在一起的正方形.故选D.点评:此题考查了简单几何体的三视图,属于基础题,解答本题的关键是掌握左视图的观察位置.9.2012•武汉考点:规律型:数字的变化类;专题:探究型;分析:将a1=代入a n=得到a2的值,将a2的值代入,a n=得到a3的值,将a3的值代入,a n=得到a4的值.解答:解:将a1=代入a n=得到a2==,将a2=代入a n=得到a3==,将a3=代入a n=得到a4==.故选A.点评:本题考查了数列的变化规律,重点强调了后项与前项的关系,能理解通项公式并根据通项公式算出具体数.10.2012•武汉考点:加权平均数;扇形统计图;条形统计图;分析:首先求得每个小组的人数,然后求平均分即可.解答:解:总人数为12÷30%=40人,∴3分的有40×%=17人2分的有8人∴平均分为:=故选C.点评:本题考查了加权平均数即统计图的知识,解题的关键是观察图形并求的各个小组的人数.11.2012•武汉考点:一次函数的应用;专题:行程问题;分析:易得乙出发时,两人相距8m,除以时间2即为甲的速度;由于出现两人距离为0的情况,那么乙的速度较快.乙100s跑完总路程500可得乙的速度,进而求得100s时两人相距的距离可得b的值,同法求得两人距离为0时,相应的时间,让两人相距的距离除以甲的速度,再加上100即为c的值.解答:解:甲的速度为:8÷2=4米/秒;乙的速度为:500÷100=5米/秒;b=5×100﹣4×100+2=92米;5a﹣4×a+2=0,解得a=8,c=100+92÷4=123,∴正确的有①②③.故选A.点评:考查一次函数的应用;得到甲乙两人的速度是解决本题的突破点;得到相应行程的关系式是解决本题的关键.12.2012•武汉考点:平行四边形的性质;勾股定理;相似三角形的判定与性质;专题:计算题;分类讨论;分析:根据平行四边形面积求出AE和AF,有两种情况,求出BE、DF的值,求出CE和CF的值,相加即可得出答案.解答:解:∵四边形ABCD是平行四边形,∴AB=CD=5,BC=AD=6,①如图:由平行四边形面积公式地:BC×AE=CD×AF=15,求出AE=,AF=3,在Rt△ABE和Rt△ADF中,由勾股定理得:AB2=AE2+BE2,把AB=5,AE=代入求出BE=,同理DF=3>5,即F在DC的延长线上如上图,∴CE=6﹣,CF=3﹣5,即CE+CF=1+,②如图:∵AB=5,AE=,在△ABE中,由勾股定理得:BE=,同理DF=3,由①知:CE=6+,CF=5+3,∴CE+CF=11+,故选D.点评:本题考查了平行四边形性质,勾股定理的应用,主要培养学生的理解能力和计算能力,注意:要分类讨论啊.二、填空题共4小题,每小题3分,共12分下列各题不需要写出解答过程,请将结果直接写在答题卡指定的位置13.考点:特殊角的三角函数值;分析:根据特殊角的三角函数值直接得出答案即可.解答:解:tan60°的值为.故答案为:.点评:本题考查的是特殊角的三角函数值,熟记各特殊角的三角函数值是解答此题的关键.14.2012•武汉考点:众数;分析:众数是一组数据中出现次数最多的数,根据定义就可以求解.解答:解:在这一组数据中43是出现了3次,次数最多,故众数是43.故答案为:43.点评:此题考查众数的意义,众数是一组数据中出现次数最多的数,注意众数有时不止一个.15.2012•武汉考点:反比例函数综合题;专题:综合题;分析:由AE=3EC,△ADE的面积为3,得到△CDE的面积为1,则△ADC的面积为4,设A点坐标为a,b,则k=ab,AB=a,OC=2AB=2a,BD=OD=b,利用S梯形OBAC=S△ABO+S△ADC+S△ODC得a+2a×b=a×b+4+×2a×b,整理可得ab=,即可得到k的值.解答:解:连DC,如图,∵AE=3EC,△ADE的面积为3,∴△CDE的面积为1,∴△ADC的面积为4,设A点坐标为a,b,则AB=a,OC=2AB=2a,而点D为OB的中点,∴BD=OD=b,∵S梯形OBAC=S△ABO+S△ADC+S△ODC,∴a+2a×b=a×b+4+×2a×b,∴ab=,把Aa,b代入双曲线y=,∴k=ab=.故答案为.点评:本题考查了反比例函数综合题:点在反比例函数图象上,则点的横纵坐标满足其解析式;利用三角形的面积公式和梯形的面积公式建立等量关系.16.2012•武汉考点:切线的性质;坐标与图形性质;勾股定理;锐角三角函数的定义;专题:计算题;分析:当OC与圆A相切即到C′点时,∠BOC最小,根据勾股定理求出此时的OC,求出∠BOC=∠CAO,根据解直角三角形求出此时的值,根据tan∠BOC的增减性,即可求出答案.解答:解:当OC与圆A相切即到C′点时,∠BOC最小,AC′=2,OA=3,由勾股定理得:OC′=,∵∠BOA=∠AC′O=90°,∴∠BOC′+∠AOC′=90°,∠C′AO+∠AOC′=90°,∴∠BOC′=∠OAC′,tan∠BOC==,随着C的移动,∠BOC越来越大,但不到E点,即∠BOC<90°,∴tan∠BOC≥,故答案为:≥.点评:本题考查了解直角三角形,勾股定理,切线的性质等知识点的应用,能确定∠BOC的变化范围是解此题的关键,题型比较好,但是有一定的难度.三、解答题共9小题,共72分下列各题需要在答题卡上指定位置写出文字说明、证明过程、演算步骤或画出图形.17.2012•武汉考点:解分式方程;专题:计算题;分析:方程两边都乘以最简公分母3xx+5把分式方程化为整式方程求解,然后进行检验.解答:解:方程两边都乘以3xx+5得,6x=x+5,解得x=1,检验:当x=1时,3xx+5=3×1×1+5=18≠0,所以x=1是方程的根,因此,原分式方程的解是x=1.点评:本题考查了解分式方程,1解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.2解分式方程一定注意要验根.18.2012•武汉考点:一次函数与一元一次不等式;分析:把﹣1,1代入解析式,求出k,画出一次函数的图象,根据图象和一次函数与x轴的交点即可得出答案.解答:解:如图,∵将﹣1,1代入y=kx+3得1=﹣k+3,∴k=2,即y=2x+3,当y=0时,x=﹣,即与x轴的交点坐标是﹣,0,由图象可知:不等式kx+3<0的解集是x<﹣.点评:本题考查了一次函数与一元一次不等式的关系的应用,主要考查学生的理解能力和观察图象的能力,能把语言和图形结合起来解决问题是解此题的关键.19.2012•武汉考点:全等三角形的判定与性质;专题:证明题;分析:求出∠DCE=∠ACB,根据SAS证△DCE≌△ACB,根据全等三角形的性质即可推出答案.解答:证明:∵∠DCA=∠ECB,∴∠DCA+∠ACE=∠BCE+∠ACE,∴∠DCE=∠ACB,∵在△DCE和△ACB中,∴△DCE≌△ACB,∴DE=AB.点评:本题考查了全等三角形的性质和判定的应用,主要考查学生能否运用全等三角形的性质和判定进行推理,题目比较典型,难度适中.20.2012•武汉考点:列表法与树状图法;分析: 1根据题意画出树形图,观察可发现共有16种情况;2由1中的树形图可以发现两次取的小球的标号相同的情况有4种,再计算概率;解答:解:1如图所示:则共有16种等可能的结果;2由树形图可以看出两次字母相同的概率为=.点评:此题主要考查了考查概率和树状图,解题的关键是正确画出树状图,注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.考点:作图-旋转变换;弧长的计算;专题:作图题;分析: 1先在坐标系中找出点B1的位置,然后根据平移前后对应点连线平行可找到点A1的位置,连接即可得出A1B1,按照题意所属旋转三要素找到A1、B1的对应点连接可得出A2B2.2先计算出AA1的距离,然后求出弧AA1的长度,继而可得出答案.解答:解:1所作图形如下:2由图形可得:AA1=,==,故点A经过A1到达A2的路径长为:+.点评:此题考查了旋转作图的知识及弧长的计算,解答本题的关键是掌握旋转及平移变换的特点,另外要熟练记忆弧长公式,及公式中各字母的含义.22.2012•武汉考点:三角形的内切圆与内心;三角形的面积;勾股定理;圆周角定理;解直角三角形;专题:计算题;分析: 1作直径CD,连接BD,求出∠DBC=90°,∠A=∠D,根据sin∠A的值求出即可;2连接IC、BI,且延长BI交AC于F,过I作IE⊥AB于E,求出BF⊥AC,AF=CF,根据sin∠A求出BF,求出AF,求出AC,根据△ABI、△ACI、△BCI的面积之和等于△ABC的面积,得出4×R+4×R+×R=×,求出R,在△AIF中,由勾股定理求出AI即可.解答: 1解:作直径CD,连接BD,∵CD是直径,∴∠DBC=90°,∠A=∠D,∵BC=4,sin∠A=,∴sin∠D==,∴CD=5,答:三角形ABC外接圆的直径是5.2解:连接IC、BI,且延长BI交AC于F,过I作IE⊥AB于E,∵AB=BC=4,I为△ABC内心,∴BF⊥AC,AF=CF,∵sin∠A==,∴BF=,在Rt△ABF中,由勾股定理得:AF=CF=,AC=2AF=,∵I是△ABC内心,IE⊥AB,IF⊥AC,IG⊥BC,∴IE=IF=IG,设IE=IF=IG=R,∵△ABI、△ACI、△BCI的面积之和等于△ABC的面积,∴AB×R+BC×R+AC×R=AC×BF,即4×R+4×R+×R=×,∴R=,在△AIF中,AF=,IF=,由勾股定理得:AI=.答:AI的长是.点评:本题考查了三角形的面积公式,三角形的内切圆和内心,勾股定理,等腰三角形的性质,圆周角定理等知识点的应用,主要考查学生运用性质进行推理和计算的能力,题目综合性比较强,有一定的难度.23.2012•武汉考点:二次函数的应用;专题:应用题;分析: 1根据抛物线特点设出二次函数解析式,把B坐标代入即可求解;2水面到顶点C的距离不大于5米时,即水面与河底ED的距离h至多为6,把6代入所给二次函数关系式,求得t的值,相减即可得到禁止船只通行的时间.解答:解:1设抛物线的为y=ax2+11,由题意得B8,8,∴64a+11=8,解得a=﹣,∴y=﹣x2+11;2水面到顶点C的距离不大于5米时,即水面与河底ED的距离h至多为6,∴6=﹣t﹣192+8,解得t1=35,t2=3,∴35﹣3=32小时.答:需32小时禁止船只通行.点评:考查二次函数的应用;判断出所求二次函数的形式是解决本题的关键;注意结合1得到h的最大高度.24.2012•武汉考点:作图—相似变换;专题:作图题;分析: 1作MN∥BC交AC于点N,利用三角形的中位线定理可得MN的长;作∠AMN=∠B,利用相似可得MN的长;2①AB为两直角边长为4,8的直角三角形的斜边,2为两直角边长为2,4的两直角三角形的斜边;②以所给网格的对角线作为原三角形中最长的边,可得每条对角线处可作4个三角形与原三角形相似,那么共有8个.解答:解:1①△AMN∽△ABC,∴=∵M为AB中点,AB=2,∴AM=,∵BC=6,∴MN=3;②△AMN∽△ACB,=,∵BC=6,AC=4,AM=,∴MN=;2①如图所示:②每条对角线处可作4个三角形与原三角形相似,那么共有8个.点评:主要考查相似作图和全等作图;注意相似作图及解答有多种情况.考点:二次函数综合题;专题:压轴题;分析: 1已知抛物线C1的解析式,易得顶点A的坐标,利用待定系数法可求得直线BC的解析式,联立抛物线C1的解析式后可求得C点坐标.2将x=3代入直线AB、抛物线C1的解析式中,先求出点D、E的坐标及DE的长,根据FG、DE的比例关系,可求出线段FG的长.同理,先用a表示线段FG的长,然后结合FG的长列出关于a的方程,由此求出a的值.3根据二次函数的平移规律,先求出抛物线C2的解析式和顶点P的坐标,联立直线AB的解析式可得到点N的坐标.结合N、Q、M三点坐标,易发现△MNQ是等腰直角三角形,过N作NH⊥y轴于H,设MN交y轴于T,那么△MOT、△NHT也是等腰直角三角形,由此求出OT、HT、PT的长;NP是∠MNQ的角平分线,且NQ∥y 轴,能证得△NTP是等腰三角形,即NT=TP,由此求出P点的坐标,结合抛物线C2的解析式,即可确定m的值.解答:解:1当x=0时,y=﹣2;∴A0,﹣2.设直线AB的解析式为y=kx+b,则:,解得∴直线AB解析式为y=2x﹣2.∵点C为直线y=2x﹣2与抛物线y=x2﹣2的交点,则点C的横、纵坐标满足:,解得、舍∴点C的坐标为4,6.2直线x=3分别交直线AB和抛物线C1于D、E两点.∴y D=4,y E=,∴DE=.∵FG=DE=4:3,∴FG=2.∵直线x=a分别交直线AB和抛物线C1于F、G两点.∴y F=2a﹣2,y G=a2﹣2∴FG=|2a﹣a2|=2,解得:a1=2,a2=﹣2+2,a3=2﹣2.3设直线MN交y轴于T,过点N做NH⊥y轴于点H;设点M的坐标为t,0,抛物线C2的解析式为y=x2﹣2﹣m;∴0=﹣t2﹣2﹣m,∴﹣2﹣m=﹣t2.∴y=x2﹣t2,∴点P坐标为0,﹣t2.∵点N是直线AB与抛物线y=x2﹣t2的交点,则点N的横、纵坐标满足:,解得、舍∴N2﹣t,2﹣2t.NQ=2﹣2t,MQ=2﹣2t,∴MQ=NQ,∴∠MNQ=45°.∴△MOT、△NHT均为等腰直角三角形,∴MO=OT,HT=HN∴OT=4,NT=﹣,NH=2﹣t,PT=﹣t+t2.∵PN平分∠MNQ,∴PT=NT,∴﹣t+t2=2﹣t,∴t1=﹣2,t2=2舍﹣2﹣m=﹣t2=﹣﹣22,∴m=2.点评:该二次函数综合题涉及到函数图象交点坐标的求法、等腰三角形的判定与性质等知识.3题的难度较大,找到特殊角是解题的关键.。
标准文档2012年省市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(2012•)在2.5,﹣2.5,0,3这四个数种,最小的数是()A. 2.5 B.﹣2.5 C. 0 D. 32.(2012•)若在实数围有意义,则x的取值围是()A. x<3 B. x≤3 C. x>3 D. x≥33.(2012•)在数轴上表示不等式x﹣1<0的解集,正确的是()A.B.C.D.4.(2012•)从标号分别为1,2,3,4,5的5卡片中,随机抽取1.下列事件中,必然事件是() A.标号小于6 B.标号大于6 C.标号是奇数D.标号是35.(2012•)若x1,x2是一元二次方程x2﹣3x+2=0的两根,则x1+x2的值是()A.﹣2 B. 2 C. 3 D. 16.(2012•)某市2012年在校初中生的人数约为23万.数230000用科学记数法表示为()A.23×104B.2.3×105C.0.23×103D.0.×1067.(2012•)如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC的点F 处.若AE=5,BF=3,则CD的长是()A. 7 B. 8 C. 9 D. 108.(2012•)如图,是由4个相同小体组合而成的几何体,它的左视图是()A.B.C.D.9.(2012•)一列数a1,a2,a3,…,其中a1=,a n=(n为不小于2的整数),则a4的值为()A.B.C.D.10.(2012•)对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图息,这些学生的平均分数是()A. 2.25 B. 2.5 C. 2.95 D. 311.(2012•)甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是()A.①②③B.仅有①②C.仅有①③D.仅有②③12.(2012•)在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于A.11+B.11﹣C.11+或11﹣D.11+或1+二、填空题(共4小题,每小题3分,共12分)下列各题不需要写出解答过程,请将结果直接写在答题卡指定的位置13.tan60°=_________.14.(2012•)某校九(1)班8名学生的体重(单位:kg)分别是39,40,43,43,43,45,45,46.这组数据的众数是_________.15.(2012•)如图,点A在双曲线y=的第一象限的那一支上,AB垂直于x轴与点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为_________.16.(2012•)在平面直角坐标系中,点A的坐标为(3.0),点B为y轴正半轴上的一点,点C是第一象限一点,且AC=2.设tan∠BOC=m,则m的取值围是_________.三、解答题(共9小题,共72分)下列各题需要在答题卡上指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(2012•)解方程:.18.(2012•)在平面直角坐标系中,直线y=kx+3经过点(﹣1,1),求不等式kx+3<0的解集.19.(2012•)如图CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.20.(2012•)一个口袋中有4个相同的小球,分别与写有字母A,B,C,D,随机地抽出一个小球后放回,再随机地抽出一个小球.(1)使用列表法或树形法中的一种,列举出两次抽出的球上字母的所有可能结果;(2)求两次抽出的球上字母相同的概率.21.(2012•)如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,3),(﹣4,1),先将线段AB沿一确定方向平移得到线段A1B1,点A的对应点为A1,点B1的坐标为(0,2),在将线段A1B1绕远点O顺时针旋转90°得到线段A2B2,点A1的对应点为点A2.(1)画出线段A1B1,A2B2;(2)直接写出在这两次变换过程中,点A经过A1到达A2的路径长.22.(2012•)在锐角三角形ABC中,BC=4,sinA=,(1)如图1,求三角形ABC外接圆的直径;(2)如图2,点I为三角形ABC的心,BA=BC,求AI的长.23.(2012•)如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED的距离是11米,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.(1)求抛物线的解析式;(2)已知从某时刻开始的40小时,水面与河底ED的距离h(单位:米)随时间t(单位:时)的变化满足函数关系h=﹣(t﹣19)2+8(0≤t≤40),且当水面到顶点C的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段,需多少小时禁止船只通行?24.(2012•)已知△ABC中,AB=,AC=,BC=6(1)如图1,点M为AB的中点,在线段AC上取点M,使△AMN与△ABC相似,求线段MN的长;(2)如图2,是由100个边长为1的小形组成的10×10的形网格,设顶点在这些小形顶点的三角形为格点三角形.①请你在所给的网格中画出格点△A1B1C1与△ABC全等(画出一个即可,不需证明)②试直接写出所给的网格中与△ABC相似且面积最大的格点三角形的个数,并画出其中一个(不需证明).25.(2012•)如图1,点A为抛物线C1:y=x2﹣2的顶点,点B的坐标为(1,0)直线AB交抛物线C1于另一点C(1)求点C的坐标;(2)如图1,平行于y轴的直线x=3交直线AB于点D,交抛物线C1于点E,平行于y轴的直线x=a交直线AB 于F,交抛物线C1于G,若FG:DE=4:3,求a的值;(3)如图2,将抛物线C1向下平移m(m>0)个单位得到抛物线C2,且抛物线C2的顶点为点P,交x轴于点M,交射线BC于点N.NQ⊥x轴于点Q,当NP平分∠MNQ时,求m的值.2012年省市中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)考点:有理数大小比较。
2012武汉市中考数学答案一.选择题1.B2.D3.B4.A5.C 6.B 7.C 8.D 9.A 10.C 11.A12.D详解:3.根式有意义,则x-3≥07.EF=AE=5在△BEF中∠B=90°BF=3 EF=5所以根据勾股定理BE=√(5︿2-3︿2)=4所以CD=AE+EB=5+4=910.得4分有12人占30%则得1分有3人占30%/4=7.5%所以得2分有100%-30%-42.5%-7.5%=20%所以平均分为4X30%+3X42.5%+2X20%+1X7.5%=2.9511.乙出发时甲行了2秒,相距8m,所以甲的速度为8/2=4m/S100秒后乙开始休息.所以乙的速度是500/100=5m/Sa秒后甲乙相遇所以a=8/(5-4)=8秒那么①正确100秒后乙到达终点,甲走了,4X(100+2)=408米所以b=500-408=92米那么②正确甲走到终点一共需耗时500/4=125秒所以c=125-2=123秒那么③正确终上所述选Axk b 1.co m二.填空题13.√314.43 15.k=16/3 16.m≥(√5)/2三.解答题17.解:去分母可得6x=x+5所以x=1经检验x=1确为方程的跟所以x=118.解:将(-1,1)代入y=kx+3得1=-k+3所以k=2所以2x+3<0解得x<-3/219.证明:∠DCA=∠ECB所以:∠DCE=∠ACB又CD=CA CE=CB所以:△CDE≌△CAB所以:DE=AB20.解(1)第一次A(A B C D)B(A B C D)第二次C(A B C D)D(A B C D)(2)由树形图可以看出两次字母相同的概率为4/16=1/4。
2012年湖北省武汉市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)在2.5,﹣2.5,0,3这四个数中,最小的数是()A.2.5 B.﹣2.5 C.0 D.32.(3分)若在实数范围内有意义,则x的取值范围是()A.x<3 B.x≤3 C.x>3 D.x≥33.(3分)在数轴上表示不等式x﹣1<0的解集,正确的是()A.B.C.D.4.(3分)从标号分别为1,2,3,4,5的5张卡片中,随机抽取1张.下列事件中,必然事件是()A.标号小于6 B.标号大于6 C.标号是奇数D.标号是35.(3分)若x1,x2是一元二次方程x2﹣3x+2=0的两根,则x1+x2的值是()A.﹣2 B.2 C.3 D.16.(3分)某市2012年在校初中生的人数约为23万.数230000用科学记数法表示为()A.23×104 B.2.3×105C.0.23×103D.0.023×1067.(3分)如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC的点F处.若AE=5,BF=3,则CD的长是()A.7 B.8 C.9 D.108.(3分)如图,是由4个相同小正方体组合而成的几何体,它的左视图是()A. B.C.D.9.(3分)一列数a1,a2,a3,…,其中a1=,a n=(n为不小于2的整数),则a4的值为()A.B.C.D.10.(3分)对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是()A.2.25 B.2.5 C.2.95 D.311.(3分)甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是()A.①②③B.仅有①②C.仅有①③D.仅有②③12.(3分)在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为()A.11+B.11﹣C.11+或11﹣D.11+或1+二、填空题(共4小题,每小题3分,共12分)下列各题不需要写出解答过程,请将结果直接写在答题卡指定的位置13.(3分)tan60°=.14.(3分)某校九(1)班8名学生的体重(单位:kg)分别是39,40,43,43,43,45,45,46.这组数据的众数是.15.(3分)如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴于点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为.16.(3分)在平面直角坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是.三、解答题(共9小题,共72分)下列各题需要在答题卡上指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(6分)解方程:.18.(6分)在平面直角坐标系中,直线y=kx+3经过点(﹣1,1),求不等式kx+3<0的解集.19.(6分)如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.20.(7分)一个口袋中有4个相同的小球,分别与写有字母A,B,C,D,随机地抽出一个小球后放回,再随机地抽出一个小球.(1)使用列表法或树形法中的一种,列举出两次抽出的球上字母的所有可能结果;(2)求两次抽出的球上字母相同的概率.21.(7分)如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,3),(﹣4,1),先将线段AB沿一确定方向平移得到线段A1B1,点A的对应点为A1,点B1的坐标为(0,2),再将线段A1B1绕原点O 顺时针旋转90°得到线段A2B2,点A1的对应点为点A2.(1)画出线段A1B1,A2B2;(2)直接写出在这两次变换过程中点A经过A1到达A2的路径长.22.(8分)在锐角三角形ABC中,BC=5,sinA=,(1)如图1,求三角形ABC外接圆的直径;(2)如图2,点I为三角形ABC的内心,BA=BC,求AI的长.23.(10分)如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED的距离是11米,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.(1)求抛物线的解析式;(2)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时)的变化满足函数关系h=﹣(t﹣19)2+8(0≤t≤40),且当水面到顶点C的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?24.(10分)已知△ABC中,AB=,AC=,BC=6(1)如图1,点M为AB的中点,在线段AC上取点N,使△AMN与△ABC相似,求线段MN的长;(2)如图2,是由100个边长为1的小正方形组成的10×10的正方形网格,设顶点在这些小正方形顶点的三角形为格点三角形.①请你在所给的网格中画出格点△A1B1C1与△ABC全等(画出一个即可,不需证明)②试直接写出所给的网格中与△ABC相似且面积最大的格点三角形的个数,并画出其中一个(不需证明).25.(12分)如图1,点A为抛物线C1:y=x2﹣2的顶点,点B的坐标为(1,0)直线AB交抛物线C1于另一点C(1)求点C的坐标;(2)如图1,平行于y轴的直线x=3交直线AB于点D,交抛物线C1于点E,平行于y轴的直线x=a交直线AB于F,交抛物线C1于G,若FG:DE=4:3,求a的值;(3)如图2,将抛物线C1向下平移m(m>0)个单位得到抛物线C2,且抛物线C2的顶点为点P,交x 轴于点M,交射线BC于点N.NQ⊥x轴于点Q,当NP平分∠MNQ时,求m的值.2012年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2012•武汉)在2.5,﹣2.5,0,3这四个数中,最小的数是()A.2.5 B.﹣2.5 C.0 D.3【分析】根据有理数的大小比较法则是负数都小于0,正数都大于0,正数大于一切负数进行比较即可.【解答】解:∵﹣2.5<0<2.5<3,∴最小的数是﹣2.5,故选B.【点评】本题考查了有理数的大小比较法则的应用,有理数的大小比较法则是:负数都小于0,正数都大于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.2.(3分)(2012•武汉)若在实数范围内有意义,则x的取值范围是()A.x<3 B.x≤3 C.x>3 D.x≥3【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:根据题意得,x﹣3≥0,解得x≥3.故选D.【点评】本题考查的知识点为:二次根式的被开方数是非负数.3.(3分)(2012•武汉)在数轴上表示不等式x﹣1<0的解集,正确的是()A.B.C.D.【分析】求出不等式的解集,在数轴上表示出不等式的解集,即可选出答案.【解答】解:x﹣1<0,∴x<1,在数轴上表示不等式的解集为:,故选B.【点评】本题考查了解一元一次不等式和在数轴上表示不等式的解集的应用,注意:在数轴上,右边表示的数总比左边表示的数大,不包括该点时,用“圆圈”,包括时用“黑点”.4.(3分)(2012•武汉)从标号分别为1,2,3,4,5的5张卡片中,随机抽取1张.下列事件中,必然事件是()A.标号小于6 B.标号大于6 C.标号是奇数D.标号是3【分析】必然事件就是一定发生的事件,根据定义即可判断.【解答】解:A、是一定发生的事件,是必然事件,故选项正确;B、是不可能发生的事件,故选项错误;C、是随机事件,故选项错误;D、是随机事件,故选项错误.故选A.【点评】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(3分)(2012•武汉)若x1,x2是一元二次方程x2﹣3x+2=0的两根,则x1+x2的值是()A.﹣2 B.2 C.3 D.1【分析】由一元二次方程x2﹣3x+2=0,根据根与系数的关系即可得出答案.【解答】解:由一元二次方程x2﹣3x+2=0,∴x1+x2=3,故选C.【点评】本题考查了根与系数的关系,属于基础题,关键掌握x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.6.(3分)(2012•武汉)某市2012年在校初中生的人数约为23万.数230000用科学记数法表示为()A.23×104 B.2.3×105C.0.23×103D.0.023×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于23万有6位,所以可以确定n=6﹣1=5.【解答】解:23万=230 000=2.3×105.故选B.【点评】此题考查科学记数法表示较大的数的方法,准确确定n值是关键.7.(3分)(2012•武汉)如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC的点F处.若AE=5,BF=3,则CD的长是()A.7 B.8 C.9 D.10【分析】先根据翻折变换的性质得出EF=AE=5,在Rt△BEF中利用勾股定理求出BE的长,再根据AB=AE+BE 求出AB的长,再由矩形的性质即可得出结论.【解答】解:∵△DEF由△DEA翻折而成,∴EF=AE=5,在Rt△BEF中,∵EF=5,BF=3,∴BE===4,∴AB=AE+BE=5+4=9,∵四边形ABCD是矩形,∴CD=AB=9.故选C.【点评】本题考查的是图形的翻折变换,即折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.8.(3分)(2012•武汉)如图,是由4个相同小正方体组合而成的几何体,它的左视图是()A. B.C.D.【分析】左视图是从左边看得出的图形,结合所给图形及选项即可得出答案.【解答】解:从左边看得到的是两个叠在一起的正方形.故选D.【点评】此题考查了简单几何体的三视图,属于基础题,解答本题的关键是掌握左视图的观察位置.9.(3分)(2012•武汉)一列数a1,a2,a3,…,其中a1=,a n=(n为不小于2的整数),则a4的值为()A.B.C.D.【分析】将a1=代入a n=得到a2的值,将a2的值代入,a n=得到a3的值,将a3的值代入,a n=得到a4的值.【解答】解:将a1=代入a n=得到a2==,将a2=代入a n=得到a3==,将a3=代入a n=得到a4==.故选A.【点评】本题考查了数列的变化规律,重点强调了后项与前项的关系,能理解通项公式并根据通项公式算出具体数.10.(3分)(2012•武汉)对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是()A.2.25 B.2.5 C.2.95 D.3【分析】首先求得每个小组的人数,然后求平均分即可.【解答】解:总人数为12÷30%=40人,∴3分的有40×42.5%=17人2分的有8人∴平均分为:=2.95故选C.【点评】本题考查了加权平均数即统计图的知识,解题的关键是观察图形并求出各个小组的人数.11.(3分)(2014•黔西南州)甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t (秒)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是()A.①②③B.仅有①②C.仅有①③D.仅有②③【分析】易得乙出发时,两人相距8m,除以时间2即为甲的速度;由于出现两人距离为0的情况,那么乙的速度较快.乙100s跑完总路程500可得乙的速度,进而求得100s时两人相距的距离可得b的值,同法求得两人距离为0时,相应的时间,让两人相距的距离除以甲的速度,再加上100即为c的值.【解答】解:甲的速度为:8÷2=4(米/秒);乙的速度为:500÷100=5(米/秒);b=5×100﹣4×(100+2)=92(米);5a﹣4×(a+2)=0,解得a=8,c=100+92÷4=123(秒),∴正确的有①②③.故选:A.【点评】考查一次函数的应用;得到甲乙两人的速度是解决本题的突破点;得到相应行程的关系式是解决本题的关键.12.(3分)(2012•武汉)在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为()A.11+B.11﹣C.11+或11﹣D.11+或1+【分析】根据平行四边形面积求出AE和AF,有两种情况,求出BE、DF的值,求出CE和CF的值,相加即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD=5,BC=AD=6,①如图:过点A作AE⊥BC垂足为E,过点A作AF⊥DC垂足为F,由平行四边形面积公式得:BC×AE=CD×AF=15,求出AE=,AF=3,在Rt△ABE和Rt△ADF中,由勾股定理得:AB2=AE2+BE2,把AB=5,AE=代入求出BE=,同理DF=3>5,即F在DC的延长线上(如上图),∴CE=6﹣,CF=3﹣5,即CE+CF=1+,②如图:过点A作AF⊥DC垂足为F,过点A作AE⊥BC垂足为E,∵AB=5,AE=,在△ABE中,由勾股定理得:BE=,同理DF=3,由①知:CE=6+,CF=5+3,∴CE+CF=11+.故选D.【点评】本题考查了平行四边形性质,勾股定理的应用,主要培养学生的理解能力和计算能力,注意:要分类讨论啊.二、填空题(共4小题,每小题3分,共12分)下列各题不需要写出解答过程,请将结果直接写在答题卡指定的位置13.(3分)(2016•黔东南州)tan60°=.【分析】根据特殊角的三角函数值直接得出答案即可.【解答】解:tan60°的值为.故答案为:.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角的三角函数值是解答此题的关键.14.(3分)(2012•武汉)某校九(1)班8名学生的体重(单位:kg)分别是39,40,43,43,43,45,45,46.这组数据的众数是43.【分析】众数是一组数据中出现次数最多的数,根据定义就可以求解.【解答】解:在这一组数据中43是出现了3次,次数最多,故众数是43.故答案为:43.【点评】此题考查众数的意义,众数是一组数据中出现次数最多的数,注意众数有时不止一个.15.(3分)(2012•武汉)如图,点A在双曲线y=的第一象限的那一支上,AB垂直于y轴于点B,点C 在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为.【分析】由AE=3EC,△ADE的面积为3,得到△CDE的面积为1,则△ADC的面积为4,设A点坐标为=S△ABD+S△ADC+S△ODC得(a+2a)×b=(a,b),则k=ab,AB=a,OC=2AB=2a,BD=OD=b,利用S梯形OBACa×b+4+×2a×b,整理可得ab=,即可得到k的值.【解答】解:连DC,如图,∵AE=3EC,△ADE的面积为3,∴△CDE的面积为1,∴△ADC的面积为4,设A点坐标为(a,b),则AB=a,OC=2AB=2a,而点D为OB的中点,∴BD=OD=b,∵S=S△ABD+S△ADC+S△ODC,梯形OBAC∴(a+2a)×b=a×b+4+×2a×b,∴ab=,把A(a,b)代入双曲线y=,∴k=ab=.故答案为:.【点评】本题考查了反比例函数综合题:点在反比例函数图象上,则点的横纵坐标满足其解析式;利用三角形的面积公式和梯形的面积公式建立等量关系.16.(3分)(2012•武汉)在平面直角坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是m≥.【分析】C在以A为圆心,以2为半径的圆周上,只有当OC与圆A相切(即到C点)时,∠BOC最小,根据勾股定理求出此时的OC,求出∠BOC=∠CAO,根据解直角三角形求出此时的值,根据tan∠BOC的增减性,即可求出答案.【解答】解:C在以A为圆心,以2为半径作圆周上,只有当OC与圆A相切(即到C点)时,∠BOC最小,AC=2,OA=3,由勾股定理得:OC=,∵∠BOA=∠ACO=90°,∴∠BOC+∠AOC=90°,∠CAO+∠AOC=90°,∴∠BOC=∠OAC,tan∠BOC=tan∠OAC==,随着C的移动,∠BOC越来越大,∵C在第一象限,∴C不到x轴点,即∠BOC<90°,∴tan∠BOC≥,故答案为:m≥.【点评】本题考查了解直角三角形,勾股定理,切线的性质等知识点的应用,能确定∠BOC的变化范围是解此题的关键,题型比较好,但是有一定的难度.三、解答题(共9小题,共72分)下列各题需要在答题卡上指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(6分)(2012•武汉)解方程:.【分析】方程两边都乘以最简公分母3x(x+5)把分式方程化为整式方程求解,然后进行检验.【解答】解:方程两边都乘以3x(x+5)得,6x=x+5,解得x=1,检验:当x=1时,3x(x+5)=3×1×(1+5)=18≠0,所以x=1是方程的根,因此,原分式方程的解是x=1.【点评】本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.18.(6分)(2012•武汉)在平面直角坐标系中,直线y=kx+3经过点(﹣1,1),求不等式kx+3<0的解集.【分析】把(﹣1,1)代入解析式,求出k,代入后求出不等式的解集即可.【解答】解:∵将(﹣1,1)代入y=kx+3得1=﹣k+3,∴k=2,即把k=2代入y=kx+3得:y=2x+3,∴2x+3<0,∴x<﹣,即不等式kx+3<0的解集是x<﹣.【点评】本题考查了一次函数与一元一次不等式的关系的应用.19.(6分)(2012•武汉)如图,CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.【分析】求出∠DCE=∠ACB,根据SAS证△DCE≌△ACB,根据全等三角形的性质即可推出答案.【解答】证明:∵∠DCA=∠ECB,∴∠DCA+∠ACE=∠BCE+∠ACE,∴∠DCE=∠ACB,∵在△DCE和△ACB中,∴△DCE≌△ACB,∴DE=AB.【点评】本题考查了全等三角形的性质和判定的应用,主要考查学生能否运用全等三角形的性质和判定进行推理,题目比较典型,难度适中.20.(7分)(2012•武汉)一个口袋中有4个相同的小球,分别与写有字母A,B,C,D,随机地抽出一个小球后放回,再随机地抽出一个小球.(1)使用列表法或树形法中的一种,列举出两次抽出的球上字母的所有可能结果;(2)求两次抽出的球上字母相同的概率.【分析】(1)根据题意画出树形图,观察可发现共有16种情况;(2)由(1)中的树形图可以发现两次取的小球的标号相同的情况有4种,再计算概率;【解答】解:(1)如图所示:则共有16种等可能的结果;(2)由树形图可以看出两次字母相同的概率为=.【点评】此题主要考查了考查概率和树状图,解题的关键是正确画出树状图,注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.21.(7分)(2012•武汉)如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,3),(﹣4,1),先将线段AB沿一确定方向平移得到线段A1B1,点A的对应点为A1,点B1的坐标为(0,2),再将线段A1B1绕原点O顺时针旋转90°得到线段A2B2,点A1的对应点为点A2.(1)画出线段A1B1,A2B2;(2)直接写出在这两次变换过程中点A经过A1到达A2的路径长.【分析】(1)先在坐标系中找出点B1的位置,然后根据平移前后对应点连线平行可找到点A1的位置,连接即可得出A1B1,按照题意所属旋转三要素找到A1、B1的对应点连接可得出A2B2.(2)先计算出AA1的距离,然后求出弧A1A2的长度,继而可得出答案.【解答】解:(1)所作图形如下:(2)由图形可得:AA1=,==,故点A经过A1到达A2的路径长为:+.【点评】此题考查了旋转作图的知识及弧长的计算,解答本题的关键是掌握旋转及平移变换的特点,另外要熟练记忆弧长公式,及公式中各字母的含义.22.(8分)(2012•武汉)在锐角三角形ABC中,BC=5,sinA=,(1)如图1,求三角形ABC外接圆的直径;(2)如图2,点I为三角形ABC的内心,BA=BC,求AI的长.【分析】(1)作DB垂直于BC,连DC,求出∠DBC=90°,∠A=∠D,根据sinA的值求出即可;(2)连接IC、BI,且延长BI交AC于F,过I作IE⊥AB于E,求出BF⊥AC,AF=CF,根据sinA求出BF/AB,求出AC,根据三角形的面积公式得出5×R+5×R+6×R=6×4,求出R,在△AIF中,由勾股定理求出AI 即可.【解答】(1)解:作DB垂直于BC,连DC,∵∠DBC=90°,∴DC为直径.∵∠A=∠D,BC=5,sinA=,∴sinD==,∴CD=,答:三角形ABC外接圆的直径是.(2)解:连接IC、BI,且延长BI交AC于F,过点I作IG⊥BC于点G,过I作IE⊥AB于E,∵AB=BC=5,I为△ABC内心,∴BF⊥AC,AF=CF,∵sinA==,∴BF=4,在Rt△ABF中,由勾股定理得:AF=3,∵BA=BC,I是内心,即BF是∠ABC的角平分线,∴AC=2AF=6,∵I是△ABC内心,IE⊥AB,IF⊥AC,IG⊥BC,∴IE=IF=IG,设IE=IF=IG=R,∵△ABI、△ACI、△BCI的面积之和等于△ABC的面积,∴AB×R+BC×R+AC×R=AC×BF,即5×R+5×R+6×R=6×4,∴R=,在△AIF中,AF=3,IF=,由勾股定理得:AI=.答:AI的长是.【点评】本题考查了三角形的面积公式,三角形的内切圆和内心,勾股定理,等腰三角形的性质,圆周角定理等知识点的应用,主要考查学生运用性质进行推理和计算的能力,题目综合性比较强,有一定的难度.23.(10分)(2012•武汉)如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16米,AE=8米,抛物线的顶点C到ED的距离是11米,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.(1)求抛物线的解析式;(2)已知从某时刻开始的40小时内,水面与河底ED的距离h(单位:米)随时间t(单位:时)的变化满足函数关系h=﹣(t﹣19)2+8(0≤t≤40),且当水面到顶点C的距离不大于5米时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?【分析】(1)根据抛物线特点设出二次函数解析式,把B坐标代入即可求解;(2)水面到顶点C的距离不大于5米时,即水面与河底ED的距离h至多为6,把6代入所给二次函数关系式,求得t的值,相减即可得到禁止船只通行的时间.【解答】解:(1)∵点C到ED的距离是11米,∴OC=11,设抛物线的解析式为y=ax2+11,由题意得B(8,8),∴64a+11=8,解得a=﹣,∴y=﹣x2+11;(2)水面到顶点C的距离不大于5米时,即水面与河底ED的距离h至多为11﹣5=6(米),∴6=﹣(t﹣19)2+8,∴(t﹣19)2=256,∴t﹣19=±16,解得t1=35,t2=3,∴35﹣3=32(小时).答:需32小时禁止船只通行.【点评】考查二次函数的应用;判断出所求二次函数的形式是解决本题的关键;注意结合(1)得到h 的最大高度.24.(10分)(2012•武汉)已知△ABC中,AB=,AC=,BC=6(1)如图1,点M为AB的中点,在线段AC上取点N,使△AMN与△ABC相似,求线段MN的长;(2)如图2,是由100个边长为1的小正方形组成的10×10的正方形网格,设顶点在这些小正方形顶点的三角形为格点三角形.①请你在所给的网格中画出格点△A1B1C1与△ABC全等(画出一个即可,不需证明)②试直接写出所给的网格中与△ABC相似且面积最大的格点三角形的个数,并画出其中一个(不需证明).【分析】(1)作MN∥BC交AC于点N,利用三角形的中位线定理可得MN的长;作∠ANM=∠B,利用相似可得MN的长;(2)①AC为两直角边长为4,8的直角三角形的斜边,2为两直角边长为2,4的两直角三角形的斜边;②以所给网格的对角线作为原三角形中最长的边,可得每条对角线处可作4个三角形与原三角形相似,那么共有8个.【解答】解:(1)①∵△AMN∽△ABC,∴=∵M为AB中点,AB=2,∴AM=,∵BC=6,∴MN=3;②∵△AMN∽△ACB,∴=,∵BC=6,AC=4,AM=,∴MN=1.5;(2)①如图所示:②每条对角线处可作4个三角形与原三角形相似,那么共有8个.【点评】主要考查相似作图和全等作图;注意相似作图及解答有多种情况.25.(12分)(2012•武汉)如图1,点A为抛物线C1:y=x2﹣2的顶点,点B的坐标为(1,0)直线AB交抛物线C1于另一点C(1)求点C的坐标;(2)如图1,平行于y轴的直线x=3交直线AB于点D,交抛物线C1于点E,平行于y轴的直线x=a交直线AB于F,交抛物线C1于G,若FG:DE=4:3,求a的值;(3)如图2,将抛物线C1向下平移m(m>0)个单位得到抛物线C2,且抛物线C2的顶点为点P,交x 轴于点M,交射线BC于点N.NQ⊥x轴于点Q,当NP平分∠MNQ时,求m的值.【分析】(1)已知抛物线C1的解析式,易得顶点A的坐标,利用待定系数法可求得直线BC的解析式,联立抛物线C1的解析式后可求得C点坐标.(2)将x=3代入直线AB、抛物线C1的解析式中,先求出点D、E的坐标及DE的长,根据FG、DE的比例关系,可求出线段FG的长.同理,先用a表示线段FG的长,然后结合FG的长列出关于a的方程,由此求出a的值.(3)根据二次函数的平移规律,先求出抛物线C2的解析式和顶点P的坐标,联立直线AB的解析式可得到点N的坐标.结合N、Q、M三点坐标,易发现△MNQ是等腰直角三角形,过N作NH⊥y轴于H,设MN交y轴于T,那么△MOT、△NHT也是等腰直角三角形,由此求出OT、HT、PT的长;NP是∠MNQ 的角平分线,且NQ∥y轴,能证得△NTP是等腰三角形,即NT=TP,由此求出P点的坐标,结合抛物线C2的解析式,即可确定m的值.【解答】解:(1)∵当x=0时,y=﹣2;∴A(0,﹣2).设直线AB的解析式为y=kx+b,则:,解得∴直线AB解析式为y=2x﹣2.∵点C为直线y=2x﹣2与抛物线y=x2﹣2的交点,则点C的横、纵坐标满足:,解得、(舍)∴点C的坐标为(4,6).(2)直线x=3分别交直线AB和抛物线C1于D、E两点.∴y D=4,y E=,∴DE=.∵FG:DE=4:3,∴FG=2.∵直线x=a分别交直线AB和抛物线C1于F、G两点.∴y F=2a﹣2,y G=a2﹣2∴FG=|2a﹣a2|=2,解得:a1=2,a2=2+2,a3=2﹣2.(3)设直线MN交y轴于T,过点N做NH⊥y轴于点H;设点M的坐标为(t,0),抛物线C2的解析式为y=x2﹣2﹣m;∴0=t2﹣2﹣m,∴﹣2﹣m=﹣t2.∴y=x2﹣t2,∴点P坐标为(0,﹣t2).∵点N是直线AB与抛物线y=x2﹣t2的交点,则点N的横、纵坐标满足:,解得或(舍).∴N(2﹣t,2﹣2t).NQ=2﹣2t,MQ=2﹣2t,∴MQ=NQ,∴∠MNQ=45°.∴△MOT、△NHT均为等腰直角三角形,∴MO=OT,HT=HN∴OT=﹣t,NT=(2﹣t),PT=﹣t+t2.∵PN平分∠MNQ,∴∠MNP=∠PNQ,∵NQ∥PT,∴∠NPT=∠PNQ,∴∠MNP=∠NPT,∴PT=NT,∴﹣t+t2=(2﹣t),∴t1=﹣2,t2=2(舍)﹣2﹣m=﹣t2=﹣(﹣2)2,∴m=2.【点评】该二次函数综合题涉及到函数图象交点坐标的求法、等腰三角形的判定与性质等知识.。
2012年湖北省武汉市中考数学试卷一、选择题(共12小题)1.(2012武汉)在2.5,-2.5,0,3这四个数种,最小的数是()A. 2.5 B.-2.5 C. 0 D. 3 考点:有理数大小比较。
解答:解:∵-2.5<0<2.5<3,∴最小的数是-2.5,故选B.2.(2012武汉)若在实数范围内有意义,则x的取值范围是()A.x<3 B.x≤3C.x>3 D.x≥3考点:二次根式有意义的条件。
解答:解:根据题意得,x-3≥0,解得x≥3.故选D.3.(2012武汉)在数轴上表示不等式x-1<0的解集,正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;解一元一次不等式。
解答:解:x-1<0,∴x<1,在数轴上表示不等式的解集为:,故选B.4.(2012武汉)从标号分别为1,2,3,4,5的5张卡片中,随机抽取1张.下列事件中,必然事件是() A.标号小于6 B.标号大于6 C.标号是奇数D.标号是3考点:随机事件。
解答:解:A.是一定发生的事件,是必然事件,故选项正确;B.是不可能发生的事件,故选项错误;C.是随机事件,故选项错误;D.是随机事件,故选项错误.故选A.5.(2012武汉)若x1,x2是一元二次方程x2-3x+2=0的两根,则x1+x2的值是()A.-2 B. 2 C. 3 D. 1考点:根与系数的关系。
解答:解:由一元二次方程x2-3x+2=0,∴x1+x2=3,故选C.6.(2012武汉)某市2012年在校初中生的人数约为23万.数230000用科学记数法表示为()A. 23×104B. 2.3×105C. 0.23×103D. 0.023×106考点:科学记数法—表示较大的数。
解答:解:23万=230 000=2.3×105.故选B.7.(2012武汉)如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC的点F处.若AE=5,BF=3,则CD的长是()A. 7 B. 8 C. 9 D. 10考点:翻折变换(折叠问题)。
2012武汉市中考数学试题一、选择题(共12小题,每小题3分,共36分)1.在2.5,-2.5,0,3这四个数中,最小的数是【】A.2.5 B.-2.5 C.0 D.32.若x-3在实数范围内有意义,则x的取值范围是【】A.x<3 B.x≤3 C.x>3 D.≥33.在数轴上表示不等式x-1<0的解集,正确的是【】4.从标号分别为1,2,3,4,5的5张卡片中,随机抽取1张.下列事件中,必然事件是【】A.标号小于6 B.标号大于6 C.标号是奇数D.标号是35.若x1、x2是一元二次方程x2-3x+2=0的两根,则x1+x2的值是【】A.-2 B.2 C.3 D.16.某校2012年在校初中生的人数约为23万.数230000用科学计数法表示为【】A.23×104B.2.3×105C.0.23×103D.0.023×1067.如图,矩形ABCD中,点E在边AB上,将矩形ABCD沿直线DE折叠,点A恰好落在边BC的点F处.若AE=5,BF=3,则CD的长是【】A.7 B.8 C.9 D.108.如图,是由4个相同小正方体组合而成的几何体,它的左视图是【】9.一列数a1,a2,a3,…,其中a1=12,a n=11+a n-1(n为不小于2的整数),则a4=【】A.58B.85C.138D.81310.对某校八年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分,4分共4个等级,将调查结果绘制成如下条形统计图和扇形统计图.根据图中信息,这些学生的平均分数是【】A.2.25 B.2.5 C.2.95 D.311.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m,先到终点的人原地休息.已知甲先出发2s.在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是【】A.①②③B.仅有①②C.仅有①③D.仅有②③12.在面积为15的平行四边形ABCD中,过点A作AE垂直于直线BC于点E,作AF垂直于直线CD于点F,若AB=5,BC=6,则CE+CF的值为【】A.11+1132B.11-1132C.11+1132或11-1132D.11-1132或1+32二、填空题(共4小题,每小题3分,共12分)13.tan60°=__________.14.某校九(1)班8名学生的体重(单位:kg)分别是39,40,43,43,43,45,45,46.这组数据的众数是__________.15.如图,点A在双曲线y=kx的第一象限的那一支上,AB垂直于x轴与点B,点C在x轴正半轴上,且OC=2AB,点E在线段AC上,且AE=3EC,点D为OB的中点,若△ADE的面积为3,则k的值为________.16.在平面直角坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是__________.三、解答题(共9小题,共72分)17.(6分)解方程2x+5=13x.18.(6分)在平面直角坐标系中,直线y=kx+3经过点(-1,1),求不等式kx+3<0的解集.19.(6分)如图CE=CB,CD=CA,∠DCA=∠ECB,求证:DE=AB.20.(7分)一个口袋中有4个相同的小球,分别与写有字母A、B、C、D,随机地抽出一个小球后放回,再随机地抽出一个小球.(1)使用列表法或树形法中的一种,列举出两次抽出的球上字母的所有可能结果;(2)求两次抽出的球上字母相同的概率.21.(7分)如图,在平面直角坐标系中,点A、B的坐标分别为(-1,3)、(-4,1),先将线段AB沿一确定方向平移得到线段A1B1,点A的对应点为A1,点B1的坐标为(0,2),在将线段A1B1绕远点O顺时针旋转90°得到线段A2B2,点A1的对应点为点A2.(1)画出线段A1B1、A2B2;(2)直接写出在这两次变换过程中,点A经过A1到达A2的路径长.22.(8分)在锐角△ABC中,BC=4,sin A=4 5.(1)如图1,求△ABC外接圆的直径;(2)如图2,点I为△ABC的内心,BA=BC,求AI的长?23.(10分)如图,小河上有一拱桥,拱桥及河道的截面轮廓线由抛物线的一部分ACB和矩形的三边AE,ED,DB组成,已知河底ED是水平的,ED=16m,AE=8m,抛物线的顶点C到ED的距离是11m,以ED所在的直线为x轴,抛物线的对称轴为y轴建立平面直角坐标系.(1)求抛物线的解析式;(2)已知从某时刻开始的40h内,水面与河底ED的距离h(单位:m)随时间t(单位:h)的变化满足函数关系h=-1128(t-19)2+8(0≤t≤40)且当水面到顶点C的距离不大于5m时,需禁止船只通行,请通过计算说明:在这一时段内,需多少小时禁止船只通行?24.(10分)已知△ABC中,AB=25,AC=45,BC=6.(1)如图1,点M为AB的中点,在线段AC上取点M,使△AMN与△ABC相似,求线段MN的长;(2)如图2,是由100个边长为1的小正方形组成的10×10的正方形网格,设顶点在这些小正方形顶点的三角形为格点三角形.①请你在所给的网格中画出格点△A1B1C1与△ABC全等(画出一个即可,不需证明);②试直接写出所给的网格中与△ABC相似且面积最大的格点三角形的个数,并画出其中一个(不需证明).25.(12分)如图1,点A为抛物线C1:y=12x2-2的顶点,点B的坐标为(1,0),直线AB交抛物线C1于另一点C.(1)求点C的坐标;(2)如图1,平行于y轴的直线x=3交直线AB于点D,交抛物线C1于点E,平行于y轴的直线x=a交直线AB于F,交抛物线C1于G,若FGE=4∶3,求a的值;(3)如图2,将抛物线C1向下平移m(m>0)个单位得到抛物线C2,且抛物线C2的顶点为点P,交x轴于点M,交射线BC于点N,NQ⊥x轴于点Q,当NP平分∠MNQ 时,求m的值.参考答案一.选择题1.B2.D3.B4.A5.C 6.B 7.C 8.D 9.A 10.C 11.A12.D详解:3.根式有意义,则x-3≥07.EF=AE=5在△BEF中∠B=90°BF=3 EF=5所以根据勾股定理BE=√(5︿2-3︿2)=4所以CD=AE+EB=5+4=910.得4分有12人占30%则得1分有3人占30%/4=7.5%所以得2分有100%-30%-42.5%-7.5%=20%所以平均分为4X30%+3X42.5%+2X20%+1X7.5%=2.9511.乙出发时甲行了2秒,相距8m,所以甲的速度为8/2=4m/S100秒后乙开始休息.所以乙的速度是500/100=5m/Sa秒后甲乙相遇所以a=8/(5-4)=8秒那么①正确100秒后乙到达终点,甲走了,4X(100+2)=408米所以b=500-408=92米那么②正确甲走到终点一共需耗时500/4=125秒所以c=125-2=123秒那么③正确终上所述选A二.填空题13.√314.43 15.k=16/3 16.m≥(√5)/2三.解答题17.解:去分母可得6x=x+5所以x=1经检验x=1确为方程的跟所以x=118.解:将(-1,1)代入y=kx+3得1=-k+3所以k=2所以2x+3<0解得x<-3/219.证明:∠DCA=∠ECB所以:∠DCE=∠ACB又CD=CA CE=CB所以:△CDE≌△CAB所以:DE=AB20.解(1)第一次A(A B C D)B(A B C D)第二次C(A B C D)D(A B C D)(2)由树形图可以看出两次字母相同的概率为4/16=1/4。
2012数学中考圆综合题.如图,△ABC 中,以BC 为直径的圆交AB 于点D ,∠ACD =∠ABC . (1)求证:CA 是圆的切线;(2)若点E 是BC 上一点,已知BE =6,tan ∠ABC =32,tan ∠AEC =35,求圆的直径.如图,已知AB 是⊙O 的弦,OB =2,∠B =30°,C 是弦AB 上的任意一点(不与点A 、B 重合),连接CO 并延长CO 交于⊙O 于点D ,连接AD .(1)弦长AB 等于 ▲ (结果保留根号); (2)当∠D =20°时,求∠BOD 的度数;(3)当AC 的长度为多少时,以A 、C 、D 为顶点的三角形与以B 、C 、O 为顶点的三角形相似?请写出解答过程.1. 如图右,已知直线PA 交⊙0于A 、B 两点,AE 是⊙0的直径.点C 为⊙0上一点,且AC 平分∠PAE ,过C 作CD ⊥PA ,垂足为D 。
(1)求证:CD 为⊙0的切线;(2)若DC+DA=6,⊙0的直径为l0,求AB 的长度.1. (1)证明:连接OC,∵点C 在⊙0上,0A=OC,∴∠OCA=∠OAC ,∵CD ⊥PA ,∴∠CDA=90°, 有∠CAD+∠DCA=90°,∵AC 平分∠PAE ,∴∠DAC=∠CAO 。
∴∠DC0=∠DCA+∠ACO=∠DCA+∠CAO=∠DCA+∠DAC=90°。
又∵点C 在⊙O 上,OC 为⊙0的半径,∴CD 为⊙0的切线.(2)解:过0作0F ⊥AB ,垂足为F ,∴∠OCA=∠CDA=∠OFD=90°, ∴四边形OCDF 为矩形,∴0C=FD ,OF=CD.∵DC+DA=6,设AD=x ,则OF=CD=6-x ,∵⊙O 的直径为10,∴DF=OC=5,∴AF=5-x ,在Rt △AOF 中,由勾股定理得222AF +OF =OA .即22(5)(6)25x x -+-=,化简得:211180x x -+=解得2x =或9x =。
由AD<DF ,知05x <<,故2x =。
从而AD=2, AF=5-2=3.∵OF ⊥AB ,由垂径定理知,F 为AB 的中点,∴AB=2AF=6. 27.(已知四边形ABCD 是边长为4的正方形,以AB 为直径在正方形内作半圆,P 是半圆上的动点(不与点A 、B 重合),连接PA 、PB 、PC 、PD .(1)如图①,当PA 的长度等于 ▲ 时,∠PAB =60°; 当PA 的长度等于 ▲ 时,△PAD 是等腰三角形;(2)如图②,以AB 边所在直线为x 轴、AD 边所在直线为y 轴,建立如图所示的直角坐标系(点A 即为原点O ),把△PAD 、△PAB 、△PBC 的面积分别记为S 1、S 2、S 3.坐标为(a ,b ),试求2 S 1 S 3-S 22的最大值,并求出此时a ,b 的值.9、12、(11金华)如图,在平面直角坐标系中,点A (10,0),以OA 为直径在第一象限内作半圆C ,点B 是该半圆周上一动点,连结OB 、AB ,并延长AB 至点D ,使DB=AB ,过点D 作x 轴垂线,分别交x 轴、直线OB 于点E 、F ,点E 为垂足,连结CF .(1)当∠AOB =30°时,求弧AB 的长度; (2)当DE =8时,求线段EF 的长;(3)在点B 运动过程中,是否存在以点E 、C 、F 为顶点的三角形与△AOB 相似,若存在,请求出此 时点E 的坐标;若不存在,请说明理由. (1)连结BC ,∵A (10,0), ∴OA =10 ,CA =5, ∵∠AOB =30°,∴∠ACB =2∠AOB =60°,∴弧AB 的长=35180560ππ=⨯⨯; ……4分 (2)连结OD,∵OA 是⊙C 直径, ∴∠OBA =90°,又∵AB =BD,∴OB 是AD 的垂直平分线, ∴OD =OA =10, 在Rt △ODE 中,OE ==-22DEOD 681022=-,∴AE =AO -OE=10-6=4,由 ∠AOB =∠ADE =90°-∠OAB ,∠OEF =∠DEA , 得△OEF ∽△DEA,∴OEEF DE AE =,即684EF =,∴EF =3;……4分 (3)设OE =x ,①当交点E 在O ,C 之间时,由以点E 、C 、F 为顶点的三角形与△AOB 相似,有∠ECF =∠BOA 或∠ECF =∠OAB ,第24题图OB DEC Fxy AOB DE C FxyAOBDF CEA xy当∠ECF =∠BOA 时,此时△OCF 为等腰三角形,点E 为OC中点,即OE =25,∴E 1(25,0); 当∠ECF =∠OAB 时,有CE =5-x , AE =10-x ,∴CF ∥AB ,有CF =12AB , ∵△ECF ∽△EAD,∴AD CF AE CE =,即51104x x -=-,解得:310=x ,∴E 2(310,0);②当交点E 在点C 的右侧时,∵∠ECF >∠BOA ,∴要使△ECF 与△BAO 相似,只能使∠ECF =∠BAO , 连结BE ,∵BE 为Rt △ADE 斜边上的中线, ∴BE =AB =BD, ∴∠BEA =∠BAO,∴∠BEA =∠ECF ,∴CF ∥BE, ∴OEOCBE CF =, ∵∠ECF =∠BAO , ∠FEC =∠DEA =Rt ∠, ∴△CEF ∽△AED, ∴CF CE AD AE =,而AD =2BE , ∴2OC CEOE AE=, 即55210x x x-=-, 解得417551+=x , 417552-=x <0(舍去),∴E 3(41755+,0); ③当交点E 在点O 的左侧时,∵∠BOA =∠EOF >∠ECF .∴要使△ECF 与△BAO 相似,只能使∠ECF =∠BAO连结BE ,得BE =AD 21=AB ,∠BEA =∠BAO ∴∠ECF =∠BEA,∴CF ∥BE,∴OEOCBE CF =, 又∵∠ECF =∠BAO , ∠FEC =∠DEA =Rt ∠, ∴△CEF ∽△AED, ∴ADCFAE CE =, 而AD =2BE , ∴2OC CE OE AE =,∴5+5210+x x x=, 解得417551+-=x , 417552--=x <0(舍去), ∵点E 在x 轴负半轴上, ∴E 4(41755-,0), 综上所述:存在以点E 、C 、F 为顶点的三角形与△AOB 相似,此时点E 坐标为:1E (25,0)、2E (310,0)、3E (41755+,0)、4E (41755-,0).……4分O BDF CEA xyOB DFC EA xyOBDFCE A xy15.(11金华)如图,射线PG 平分∠EPF ,O 为射线PG 上一点,以O 为圆心,10为半径作⊙O ,分别与∠EPF 的两边相交于A 、B 和C 、D ,连结OA ,此时有OA//PE . (1)求证:AP =AO ; (2)若tan ∠OPB =12,求弦AB 的长; (3)若以图中已标明的点(即P 、A 、B 、C 、D 、O )构造四边形,则能构成菱形的四个点为 ▲ ,能构成等腰梯形的四个点为 ▲ 或 ▲ 或 ▲ .(1)∵PG 平分∠EPF ,∴∠DPO =∠BPO ,∵OA//PE ,∴∠DPO =∠POA ,∴∠BPO =∠POA ,∴P A =OA ; ……2分 (2)过点O 作OH ⊥AB 于点H ,则AH =HB =12AB , (1)分∵ tan ∠OPB =12OH PH =,∴PH =2OH , ……1分 设OH =x ,则PH =2x ,由(1)可知P A =OA = 10 ,∴AH =PH -P A =2x -10, ∵222AH OH OA +=, ∴222(210)10x x -+=, ……1分 解得10x =(不合题意,舍去),28x =,∴AH =6, ∴AB=2AH=12; ……1分(3)P 、A 、O 、C ;A 、B 、D 、C 或 P 、A 、O 、D 或P 、C 、O 、B . 23.(芜湖市)(本小题满分12分)如图,BD 是⊙O 的直径,OA ⊥OB ,M 是劣弧AB ⌒上一点,过点M 点作⊙O 的切线MP 交OA 的延长线于P 点,MD 与OA 交于N 点.(1)求证:PM =PN ;(2)若BD =4,P A = 32AO ,过点B 作BC ∥MP 交⊙O 于C 点,求BC 的长.20.(黄冈市)(6分)如图,点P 为△ABC 的内心,延长AP 交△ABC 的外接圆于D ,在AC 延长线上有一点E ,满足AD 2=AB ·AE ,求证:DE 是⊙O 的切线.P A B CO D EFG第21题图H PABC O DE FG(证明:连结DO ,∵AD 2=AB ·AE ,∠BAD =∠DAE ,∴△BAD ∽△DAE , ∴∠ADB =∠E. 又∵∠ADB =∠ACB ,∴∠ACB =∠E ,BC ∥DE , 又∵OD ⊥BC ,∴OD ⊥DE ,故DE 是⊙O 的切线)21.(义乌市)如图,以线段AB 为直径的⊙O 交线段AC 于点E ,点M 是 AE 的中点,OM 交AC 于点D ,60BOE ∠=°,1cos 2C =,23BC =.(1)求A ∠的度数;(2)求证:BC 是⊙O 的切线;(3)求 MD 的长度. (解:(1)∵∠BOE =60° ∴∠A =12∠BOE = 30°(2)在△ABC 中 ∵1cos 2C = ∴∠C =60°…1分 又∵∠A =30°∴∠ABC =90°∴AB BC ⊥……2分 ∴BC 是⊙O 的切线(3)∵点M 是 AE 的中点 ∴OM ⊥AE 在Rt △ABC 中 ∵23BC = ∴AB =tan 60233BC ︒=⨯= 6∴OA =32AB = ∴OD =12OA =32 ∴MD =32)26. (兰州市)(本题满分10分)如图,已知AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 的延长线交于点P ,AC=PC ,∠COB=2∠PCB.(1)求证:PC 是⊙O 的切线; (2)求证:BC=21AB ;(3)点M 是弧AB 的中点,CM 交AB 于点N ,若AB=4,求MN ·MC 的值. 26.解:(1)∵OA=OC,∴∠A=∠ACO ∵∠COB=2∠A ,∠COB=2∠PCB ∴∠A=∠ACO=∠PCB∵AB 是⊙O 的直径 ∴∠ACO+∠OCB=90° ∴∠PCB+∠OCB=90°,即OC ⊥CP ∵OC 是⊙O 的半径 ∴PC 是⊙O 的切线(2)∵PC=AC ∴∠A=∠P ∴∠A=∠ACO=∠PCB=∠P∵∠COB=∠A+∠ACO,∠CBO=∠P+∠PCB ∴∠CBO=∠COB∴BC=OC ∴BC=21AB(3)连接MA,MB∵点M 是弧AB 的中点 ∴弧AM=弧BM ∴∠ACM=∠BCM∵∠ACM=∠ABM ∴∠BCM=∠ABM∵∠BMC=∠BMN ∴△MBN ∽△MCB∴BMMNMC BM =∴BM 2=MC ·MN∵AB 是⊙O 的直径,弧AM=弧BM ∴∠AMB=90°,AM=BM∵AB=4 ∴BM=22 ∴MC ·MN=BM 2=8(08辽宁沈阳)1.如图所示,AB 是O 的一条弦,OD AB ⊥,垂足为C ,交O 于点D ,点E 在O 上.(1)若52AOD ∠=,求DEB ∠的度数;(2)若3OC =,5OA =,求AB 的长.1.解:(1)OD AB ⊥ ,AD DB ∴=11522622DEB AOD ∴∠=∠=⨯= (2)OD AB ⊥ ,AC BC ∴=,AOC △为直角三角形,3OC = ,5OA =,由勾股定理可得2222534AC OA OC =-=-=集 28AB AC ∴==2.如图10,AB 为O 的直径,D 为弦BE 的中点,连接OD 并延长交O 于点F ,与过B 点的切线相交于点C .若点E 为AF 的中点,连接AE . 求证:ABE OCB △≌△. OB ACE M DE B D CAO第21题图CA BE F MN 图① CABE F M N 图②2.解:(1)证明:如图2.AB 是O 的直径.90E ∴∠=又BC 是O 的切线,90OBC ∴∠=E OBC ∴∠=∠OD 过圆心,BD DE =,EF FB ∴=BOC A ∴∠=∠. E 为 AF 中点, EF BF AE ∴==30ABE ∴∠=90E ∠=12A E AB O B ∴== ABE OCB ∴△≌△.已知Rt △ABC 中,︒=∠90ACB ,CB CA =,有一个圆心角为︒45,半径的长等于CA 的扇形CEF 绕点C 旋转,且直线CE ,CF 分别与直线AB 交于点M ,N .(Ⅰ)当扇形CEF 绕点C 在ACB ∠的内部旋转时,如图①,求证:222BN AM MN +=;思路点拨:考虑222BN AM MN +=符合勾股定理的形式,需转化为在直角三角形中解决.可将△ACM 沿直线CE 对折,得△DCM ,连DN ,只需证BN DN =,︒=∠90MDN 就可以了. 3. (Ⅰ)证明 将△ACM 沿直线CE 对折,得△DCM ,连DN ,则△DCM ≌△ACM . 有CA CD =,AM DM =,ACM DCM ∠=∠,A CDM ∠=∠. 又由CB CA =,得 CB CD =.由DCM DCM ECF DCN ∠-︒=∠-∠=∠45,ACM ECF ACB BCN ∠-∠-∠=∠ ACM ACM ∠-︒=∠-︒-︒=454590,得BCN DCN ∠=∠. 又CN CN =,∴△CDN ≌△CBN . 有BN DN =,B CDN ∠=∠. ∴︒=∠+∠=∠+∠=∠90B A CDN CDM MDN .∴在Rt △MDN 中,由勾股定理,得222DN DM MN +=.即222BN AM MN +=.(Ⅱ)当扇形CEF 绕点C 旋转至图②的位置时,关系式222BN AM MN +=是否仍然成立?若成立,请证明;若不成立,请说明理由.(Ⅱ)关系式222BN AM MN +=仍然成立.证明 将△ACM 沿直线CE 对折,得△GCM ,连GN ,则△GCM ≌△ACM . 有CA CG =,AM GM =,ACM GCM ∠=∠,CAM CGM ∠=∠. 又由CB CA =,得 CB CG =.由︒+∠=∠+∠=∠45GCM ECF GCM GCN ,ACM ACM ECF ACN ACB BCN ∠+︒=∠-∠-︒=∠-∠=∠45)(90.得BCN GCN ∠=∠. 又CN CN =,∴△CGN ≌△CBN .有BN GN =, 45=∠=∠B CGN ,︒=∠-︒=∠=∠135180CAB CAM CGM , ∴9045135=-=∠-∠=∠CGN CGM MGN . ∴在Rt △MGN 中,由勾股定理, 得222GN GM MN +=.即222BN AM MN +=.图2ODBCF EACA BEFDMNCAB EFMN G4.(本题满分14分)如图(1),两半径为r 的等圆1O 和2O 相交于M N ,两点,且2O 过点1O .过M 点作直线AB 垂直于MN ,分别交1O 和2O 于A B ,两点,连结NA NB ,. (1)猜想点2O 与1O 有什么位置关系,并给出证明;(2)猜想NAB △的形状,并给出证明; (3)如图(2),若过M 的点所在的直线AB 不垂直于MN ,且点A B ,在点M 的两侧,那么(2)中的结论是否成立,若成立请给出证明.4. (1)2O 在1O 上证明:2O 过点1O ,12O O r ∴=.又1O 的半径也是r ,∴点2O 在1O 上. (2)NAB △是等边三角形 证明:MN AB ⊥ ,90NMB NMA ∴∠=∠=.BN ∴是2O 的直径,AN 是1O 的直径,即2BN AN r ==,2O 在BN 上,1O 在AN 上.连结12O O ,则12O O 是NAB △的中位线.1222AB O O r ∴==.AB BN AN ∴==,则NAB △是等边三角形.(3)仍然成立.证明:由(2)得在1O 中 MN所对的圆周角为60 . 在2O 中 MN 所对的圆周角为60 .∴当点A B ,在点M 的两侧时, 在1O 中 MN 所对的圆周角60MAN ∠= ,在2O 中 MN 所对的圆周角60MBN ∠= , NAB ∴△是等边三角形.5.如图12,已知:边长为1的圆内接正方形ABCD 中,P 为边CD 的中点,直线AP 交圆于E 点. (1)求弦DE 的长.(2)若Q 是线段BC 上一动点,当BQ 长为何值时,三角形ADP 与以Q C P ,,为顶点的三角形相似. 1)如图1.过D 点作DF AE ⊥于F 点.在Rt ADP △中, 2252AP AD DP =+=又1122ADP S AD DP AP DF == △ 55DF ∴=AD 的度数为90 45DEA ∴∠= 1025DE DF ∴==(2)如图2.当Rt Rt ADP QCP △∽△时有AD DP QCCP=得:1QC =.即点Q 与点B 重合,0BQ ∴=如图3,当Rt Rt ADP PCQ △∽△时,有AD PD PCQC=得14QC =,即34BQ BC CQ =-=O 2O 1NMBA 图(1) O 2O 1NMBA图(2)BADEPC图12B AD E P C5题图1FBADEPC5题图2Q BADE PC5题图3(Q第1题图AB DEOF C∴当0BQ =或34BQ =时,三角形ADP 与以点Q C P ,,为顶点的三角形相似.(08湖北荆门26题)6.(本小题满分10分)如图,⊙O 是Rt △ABC 的外接圆,AB 为直径,∠ABC =30°,CD 是⊙O 的切线,ED ⊥AB 于F ,(1)判断△DCE 的形状;(2)设⊙O 的半径为1,且OF =213-,求证△DCE ≌△OCB . 6. 解:(1)∵∠ABC =30°,∴∠BAC =60°.又∵OA =OC , ∴△AOC 是正三角形.又∵CD 是切线,∴∠OCD =90°,∴∠DCE =180°-60°-90°=30°.而ED ⊥AB 于F ,∴∠CED =90°-∠BAC =30°.故△CDE 为等腰三角形. (2)证明:在△ABC 中,∵AB =2,AC =AO =1,∴BC =2212-=3.OF =213-,∴AF =AO +OF =213+. 又∵∠AEF =30°,∴AE =2AF =3+1. ∴CE =AE -AC =3=BC .而∠OCB =∠ACB -∠ACO =90°-60°=30°=∠ABC ,故△CDE ≌△COB .(08湖北襄樊24题)8.(本小题满分10分)如图14,直线AB 经过O 上的点C ,并且OA OB =,CA CB =,O 交直线OB 于E D ,,连接EC CD ,. (1)求证:直线AB 是O 的切线;(2)试猜想BC BD BE ,,三者之间的等量关系,并加以证明;(3)若1tan 2CED ∠=,O 的半径为3,求OA 的长. (1)证明:如图3,连接OC . OA OB = ,CA CB =,OC AB ∴⊥. AB ∴是O 的切线.(2)2BC BD BE = . ED 是直径,90ECD ∴∠=. 90E EDC ∴∠+∠=. 又90BCD OCD ∠+∠=,OCD ODC ∠=∠, BCD E ∴∠=∠.又CBD EBC ∠=∠ ,BCD BEC ∴△∽△ B C B D B E B C∴=.2BC BD BE ∴= . (3)1tan 2CED ∠= ,12CD EC ∴=. BCD BEC △∽△,12BD CD BC EC ∴==. 设BD x =,则2BC x =. 又2BC BD BE = ,2(2)(6)x x x ∴=+. 解之,得10x =,22x =.0BD x => ,2BD ∴=. 325OA OB BD OD ∴==+=+=.1 如图,⊙O 是Rt△ABC 的外接圆,AB 为直径,∠ABC =30°,CD 是⊙O 的切线,ED ⊥AB 于F , (1)判断△DCE 的形状;(2)设⊙O 的半径为1,且OF =213-, 求证△DCE ≌△OCB .解:(1)∵∠ABC =30°,∴∠BAC =60°.又∵OA =OC , ∴△AOC 是正三角形.又∵CD 是切线,∴∠OCD =90°, ∴∠DCE =180°-60°-90°=30°.而ED ⊥AB 于F ,∴∠CED =90°-∠BAC =30°.故△CDE 为等腰三角形.(2)证明:在△ABC 中,∵AB =2,AC =AO =1,∴BC =2212-=3. OF =213-,∴AF =AO +OF =213+. 第6题图A B DEOF C(5题) P E D K H GC AB FO又∵∠AEF =30°,∴AE =2AF =3+1. ∴CE =AE -AC =3=BC .而∠OCB =∠ACB -∠ACO =90°-60°=30°=∠ABC ,故△CDE ≌△COB . 4 如图14,直线AB 经过O 上的点C ,并且OA OB =,CA CB =,O 交直线OB 于E D ,,连接EC CD ,. (1)求证:直线AB 是O 的切线;(2)试猜想BC BD BE ,,三者之间的等量关系,并加以证明;(3)若1tan 2CED ∠=,O 的半径为3,求OA 的长. 4 解:(1)证明:如图3,连接OC . OA OB = ,CA CB =,OC AB ∴⊥.AB ∴是O 的切线.(2)2BC BD BE = . ED 是直径,90ECD ∴∠=.90E EDC ∴∠+∠=. 又90BCD OCD ∠+∠=,OCD ODC ∠=∠,BCD E ∴∠=∠.又CBD EBC ∠=∠ ,BCD BEC ∴△∽△.BC BD BE BC∴=.2BC BD BE ∴= . (3)1tan 2CED ∠= ,12CD EC ∴=.BCD BEC △∽△,12BD CD BC EC ∴==. 设BD x =,则2BC x =.又2BC BD BE = ,2(2)(6)x x x ∴=+. 解之,得10x =,22x =.0BD x => ,2BD ∴=.325OA OB BD OD ∴==+=+=.5 ⊙O 的半径OD 经过弦AB (不是直径)的中点C ,过AB 的延长线上一点P 作⊙O 的切线PE ,E 为切点,PE ∥OD ;延长直径AG 交PE 于点H ;直线DG 交OE 于点F ,交PE 于点K .(1)求证:四边形OCPE 是矩形;(2)求证:HK =HG ; (3)若EF =2,FO =1,求KE 的长.5 解:(1)∵AC =BC ,AB 不是直径,∴OD ⊥AB ,∠PCO =90°(1分)∵PE ∥OD ,∴∠P =90°,∵PE 是切线,∴∠PEO =90°,(2分)∴四边形OCPE 是矩形.(3分)(2)∵OG =OD ,∴∠OGD =∠ODG .∵PE ∥OD ,∴∠K =∠ODG .(4分)∵∠OGD =∠HGK ,∴∠K =∠HGK ,∴HK =HG .(5分) (3)∵EF =2,OF =1,∴EO =DO =3.(6分)∵PE ∥OD , ∴∠KEO =∠DOE ,∠K =∠ODG .∴△OFD ∽△EFK ,(7分)∴EF ∶OF =KE ∶OD =2∶1,∴KE =6.(8分)6 如图,直角坐标系中,已知两点O(0,0) A(2,0),点B 在第一象限且△OAB 为正三角形,△OAB 的外接圆交y 轴的正半轴于点C ,过点C 的圆的切线交X 轴于点D . (1)求B C ,两点的坐标;(2)求直线CD 的函数解析式;(3)设E F ,分别是线段AB AD ,上的两个动点,且EF 平分四边形ABCD 的周长. 试探究:AEF △的最大面积?6 (1)(20)A ,,2OA ∴=.作BG OA ⊥于G ,OAB △为正三角形,1OG∴=,3BG =.(13)B ∴,.连AC ,90AOC ∠= ,60ACO ABO ∠=∠= ,23tan 303OC OA ∴==.2303C ⎛⎫∴ ⎪ ⎪⎝⎭,.(2)90AOC ∠=,AC ∴是圆的直径,又CD 是圆的切线,CD AC ∴⊥.30OCD ∴∠= ,2tan 303OD OC == .203D ⎛⎫∴- ⎪⎝⎭,.6题(第6题)设直线CD 的函数解析式为(0)y kx b k =+≠,则233203b k b ⎧=⎪⎪⎨⎪=-+⎪⎩,解得3233k b ⎧=⎪⎨=⎪⎩.∴直线CD 的函数解析式为2333y x =+. (3)2AB OA == ,23OD =,423CD OD ==,233BC OC ==,∴四边形ABCD 的周长2363+.设AE t =,AEF △的面积为S ,则333AF t =+-,133sin 603243S AF AE t t ⎛⎫==+- ⎪ ⎪⎝⎭. 233393733434632S t t t ⎡⎤⎛⎫⎛⎫+⎢⎥=+-=--++ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.∴当936t +=时,max733128S =+. 点E F ,分别在线段AB AD ,上,023203233t t ⎧⎪∴⎨+-+⎪⎩≤≤≤≤,解得1323t +≤≤. 936t +=满足1323t +≤≤,AEF ∴△的最大面积为733128+. 7 如图(18),在平面直角坐标系中,ABC △的边AB 在x 轴上,且OA OB >,以AB 为直径的圆过点C .若点C 的坐标为(02),,5AB =,A 、B 两点的横坐标A x ,B x 是关于x 的方程2(2)10x m x n -++-=的两根.(1)求m 、n 的值;(2)若ACB ∠平分线所在的直线l 交x 轴于点D ,试求直线l 对应的一次函数解析式; (3)过点D 任作一直线l '分别交射线CA 、CB (点C 除外)于点M 、N .则11CM CN+的是否为定值?若是,求出该定值;若不是,请说明理由.7 解:(1) 以AB 为直径的圆过点C ,90ACB ∴∠= ,而点C 的坐标为(02),,由CO AB ⊥易知AOC COB △∽△,2CO AO BO ∴= ,即:4(5)AO AO =- ,解之得:4AO =或1AO =.OA OB > ,4AO ∴=,即41A B x x =-=,.由根与系数关系有:21A B A Bx x m x x n +=+⎧⎨=-⎩ ,解之5m =-,3n =-.(2)如图(3),过点D 作DE BC ∥,交AC 于点E ,易知DE AC ⊥,且45ECD EDC ∠=∠= ,在ABC △中,易得255AC BC ==,,AD AE DE BC DB EC∴=∥,, AD AEDE EC BD DE =∴= ,, 又AED ACB △∽△,有AE AC ED BC =,2AD ACDB BC∴==,yx图(3)NB AC O DMEF (0,2) l l '553AB DB == ,,则23OD =,即203D ⎛⎫- ⎪⎝⎭,,易求得直线l 对应的一次函数解析式为:32y x =+. 解法二:过D 作DE AC ⊥于E ,DF CN ⊥于F ,由ACD BCD ABC S S S +=△△△,求得253DE = 又1122BCD S BD CO BC DF == △求得5233BD DO ==,.即203D ⎛⎫- ⎪⎝⎭,,易求直线l 解析式为:32y x =+. (3)过点D 作DE AC ⊥于E ,DF CN ⊥于F .CD 为ACB ∠的平分线,DE DF ∴=. 由MDE MNC △∽△,有DE MDCN MN=由DNF MNC △∽△, 有DF DN CM MN =1DE DF MD DNCN CM MN MN∴+=+=, 即1113510CM CN DE +== 8 如图,在ABC △中90ACB ∠=,D 是AB 的中点,以DC 为直径的O 交ABC △的三边,交点分别是G F E ,,点.GE CD ,的交点为M ,且46ME =,:2:5MD CO =.(1)求证:GEF A ∠=∠. (2)求O 的直径CD 的长.8 (1)连接DF CD 是圆直径,90CFD ∴∠=,即DF BC ⊥90ACB ∠= ,DF AC ∴∥. BDF A ∴∠=∠. 在O 中BDF GEF ∠=∠,GEF A ∴∠=∠. 2分(2)D 是Rt ABC △斜边AB 的中点,DC DA ∴=,DCA A ∴∠=∠, 又由(1)知GEF A ∠=∠,DCA GEF ∴∠=∠. 又OME EMC ∠=∠ ,OME ∴△与EMC △相似OM ME ME MC∴=2ME OM MC ∴=⨯4分 又46ME = ,2(46)96OM MC ∴⨯==:2:5MD CO = ,:3:2OM MD ∴=,:3:8OM MC ∴=设3OM x =,8MC x =,3896x x ∴⨯=,2x ∴= ∴直径1020CD x ==.EADGBFCOM 第25题图。