8年级数学二次根式必考题
- 格式:pdf
- 大小:174.63 KB
- 文档页数:4
一、选择题1.是同类二次根式的是( )A B C D 2.下列各式中,正确的是( )A .3=B 3=±C 3=-D 3= 3.下列计算正确的是( )A =±B .=C =D 2=4. )A .1B .2C .3D .45.下列计算正确的是( )A 2=B 1=C .22=D =6.下列计算正确的是( )A . 3B .1122+=C .3=D 37. )A .3BC D8. ) A .1个 B .2个 C .3个D .4个 9.下列各式中,错误的是( )A .2(3=B .3=-C .23=D 3=- 10.设a b 0>>,2240a b ab +-=,则a b b a +-的值是( )A .2B .-3C .D .11.已知三个数2,4如果再添加一个数,使这四个数成比例,则添加的数是( ).A .B .或2C .D .2或12.下列根式是最简二次根式的是( )A B C D 13.下列二次根式中,最简二次根式是( )AB C D14.估计- )A .0到1之间B .1到2之间C .2到3之间D .3到4之间 15.已知a =,b =,则a 与b 的大小关系是( ).A .a b >B .a b <C .a b =D .无法确定二、填空题16.对于实数a 、b 作新定义:@a b ab =,b a b a =※,在此定义下,计算:-2=※________.17.计算:2=___________.18.4y =,则y x =________.19.与-a 可以等于___________.(写出一个即可)20.23()a -=______(a≠0),2-=______,1-=______.21.已知1x =,求229x x ++=______.22.=______;23.计算:21|2|2-⎛⎫--= ⎪⎝⎭_________.24.比较大小:“>”、“<”或“=”).25.已知2160x x -=,则x 的值为________.26.20y =,则x y +=________.三、解答题27.先化简,再求值:2232()111x x x x x x +÷---,其中1x =-.28.(1)计算2011(20181978)|242-⎛⎛⎫-⨯----- ⎪ ⎝⎭⎝⎭(2)先化简,再求值:2256111x x x x -+⎛⎫-÷ ⎪--⎝⎭,x 从0,1,2,3四个数中适当选取. 29.计算(1) (2)22)-30.观察,计算,判断:(只填写符号:>,<,=)(1)①当2a =,2b =时,2a b +②当3a =,3b =时,2a b +;③当4a =,1b =时,2a b +④当5a =,3b =时,2a b +(2)写出关于2a b +______探究证明:(提示:20≥)(3)实践应用:要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,写出镜框周长的最小值为______.。
初二数学二次根式试题答案及解析1.(6分)化简:(+)-(+6)÷.【答案】.【解析】分别利用二次根式的乘除运算法则化简,进而合并得出即可.试题解析:(+)-(+6)÷=2+3﹣3﹣=.【考点】二次根式的混合运算.2.规定用符号[m]表示一个实数m的整数部分. 例如:[]="0" ,[3.14]="3" ,按此规定[]的值为_________ .【答案】4.【解析】∵9<10<16,∴. ∴.试题解析:【考点】1.新定义;2.估计无理数的大小.3.当时,二次根式的值为【答案】5.【解析】当时,.【考点】二次根式求值.4.下列变形中,正确的是………()A.(2)2=2×3=6B.C.D.【答案】D.【解析】A、(2)2=4×3=12,故本选项错误;B、,故本选项错误;C、,故本选项错误;D、,正确.故选D.【考点】二次根式的化简与计算.5.计算:【答案】3【解析】先进行乘方、分母有理化及负整数指数幂,最后合并同类二次根式即可求解.原式=【考点】实数的混合运算.6.若,则。
A.B.C.0D.2【答案】A.【解析】∵∴x+y=2,x-y=2∴原式=(x+y)(x-y)=2×2=4.故选A.考点: 二次根式的化简求值.7.若,则的取值范围是。
【答案】x≥0.【解析】根据(a≥0),可得答案.试题解析:解;∵,∴2x≥0,∴x≥0.考点: 二次根式的性质与化简.8.计算()(+++…+)【答案】2013.【解析】根据分母有理化的计算,把括号内各项分母有理化,计算后再利用平方差公式进行计算即可得解.试题解析:()(+++…+)=()(-1+-+-+…+-)=()()=2014-1=2013.考点: 分母有理化.9.已知+,那么 .【答案】8【解析】由+,得,所以.10.已知、b为两个连续的整数,且,则= .【答案】11【解析】∵,、b为两个连续的整数,又<<,∴ =6,b=5,∴.11.的平方根是.【答案】±2.【解析】的算术平方根是4,4的平方根是±2.【考点】1.算术平方根;2. 平方根.12.下列说法正确的是……()A.0的平方根是0B.1的平方根是1C.-1的平方根是-1D.的平方根是-1【答案】A.【解析】根据平方根的定义即可判定A.0的平方根是0,故说法正确;B.1的平方根是±1,故说法错误;C.-1的平方根是-1,负数没有平方根,故说法错误;D.(-1)2=1,1的平方根为±1,故说法错误【考点】平方根.13.设S=+++…+,则不大于S的最大整数[S]等于()A.98B.99C.100D.101【答案】B.【解析】,,…,所以所以不大于S的最大整数[S]等于99.【考点】规律型.14.计算:【答案】5【解析】解:原式【考点】实数运算点评:本题难度较低,主要考查学生对实数运算知识点的额掌握,为中考常考题型,要求学生牢固掌握。
初中数学人教新版八年级期末必刷常考题之二次根式的乘除一.选择题(共6小题)1.(2022秋•南关区期末)二次根式在实数范围内有意义,则x的取值范围是()A.x≤﹣3B.x>﹣3C.x≥﹣3D.x≥32.(2022秋•南安市期末)当a>0时,=()A.±a B.a C.﹣a D.03.(2022秋•香坊区期末)下列二次根式中属于最简二次根式的是()A.B.C.D.4.(2022秋•海口期末)若二次根式在实数范围内有意义,则x的取值范围是()A.x≤3B.x≥3C.x<3D.x≠35.(2022秋•开福区校级期末)下列式子一定是二次根式的是()A.B.C.D.6.(2022秋•临淄区期末)下列计算正确的是()A.B.C.D.二.填空题(共6小题)7.(2023春•拱墅区期末)若二次根式在实数范围内有意义,则x的取值范围是.8.(2022秋•宁德期末)已知a是正整数,是整数,则a的最小值是2.那么若b是正整数,是大于1的整数,则b的最大值与最小值的差是.9.(2022秋•射洪市期末)若代数式有意义,则实数x的取值范围是.10.(2022秋•汉寿县期末)化简二次根式的结果为.11.(2022秋•思明区校级期末)计算下列各题:化简:①50=;②3﹣2=;③(﹣2a)2=;④=;⑤=;⑥=;⑦=;⑧(x﹣1)(x+2)=.12.(2022秋•南关区期末)将化为最简二次根式的结果是.三.解答题(共3小题)13.(2022秋•东平县期末)计算与求值:(1)(x﹣1)2=25;(2)(x+3)3=﹣27;(3)已知x、y都是实数,且,求y x的值.14.(2022秋•鲤城区校级期末)定义:若两个二次根式a,b满足ab=c,且c是有理数,则称a与b是关于c的共轭(è)二次根式.问题解决:(1)若a与2是关于6的共轭二次根式,则a=;(2)若4+与8﹣m是关于26的共轭二次根式,求m的值.15.(2022秋•丰城市校级期末)若x,y是实数,且y=++3,求3的值.2022-2023学年下学期初中数学人教新版八年级期末必刷常考题之二次根式的乘除参考答案与试题解析一.选择题(共6小题)1.(2022秋•南关区期末)二次根式在实数范围内有意义,则x的取值范围是()A.x≤﹣3B.x>﹣3C.x≥﹣3D.x≥3【考点】二次根式有意义的条件.【专题】二次根式;运算能力.【答案】C【分析】直接利用二次根式的定义得出x+3≥0,进而得出答案.【解答】解:∵二次根式在实数范围内有意义,∴x+3≥0,解得:x≥﹣3.故选:C.【点评】此题主要考查了二次根式有意义的条件,正确掌握二次根式的定义是解题关键.2.(2022秋•南安市期末)当a>0时,=()A.±a B.a C.﹣a D.0【考点】二次根式的性质与化简.【专题】二次根式;运算能力.【答案】B【分析】根据即可求解.【解答】解:当a>0时,.故选:B.【点评】本题考查二次根式的性质,掌握是解题的关键3.(2022秋•香坊区期末)下列二次根式中属于最简二次根式的是()A.B.C.D.【考点】最简二次根式.【答案】C【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A.=2,被开方数含有开方开得尽的因式,故不符合题意;B.=4,被开方数是完全平方数,故不符合题意;C.是最简二次根式,故符合题意;D.=,被开方数是小数,故不符合题意.故选:C.【点评】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.4.(2022秋•海口期末)若二次根式在实数范围内有意义,则x的取值范围是()A.x≤3B.x≥3C.x<3D.x≠3【考点】二次根式有意义的条件.【专题】二次根式;运算能力.【答案】B【分析】根据二次根式有意义的条件可得2x﹣6≥0,再解不等式即可.【解答】解:由题意得:2x﹣6≥0,解得:x≥3,故选:B.【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.5.(2022秋•开福区校级期末)下列式子一定是二次根式的是()A.B.C.D.【考点】二次根式的定义.【专题】二次根式;运算能力.【答案】C【分析】直接利用二次根式的定义,一般地,形如的代数式叫做二次根式进行判断即可.【解答】解:∵x2≥0,∴x2+2≥2,∴一定是二次根式,而、和中的被开方数均不能保证大于等于0,故不一定是二次根式,故选:C.【点评】此题主要考查了二次根式的定义,正确把握定义是解题关键.6.(2022秋•临淄区期末)下列计算正确的是()A.B.C.D.【考点】二次根式的性质与化简;立方根.【专题】二次根式;运算能力.【答案】C【分析】根据算术平方根的非负性、二次根式的性质、立方根逐项判断即可.【解答】解:A、,原式计算错误,不符合题意;B、,原式计算错误,不符合题意;C、,原式计算正确,符合题意;D、,原式计算错误,不符合题意.故选:C.【点评】本题主要考查了二次根式的性质、算术平方根的非负性、立方根等知识,掌握二次根式的性质、算术平方根的非负性是解本题的关键.二.填空题(共6小题)7.(2023春•拱墅区期末)若二次根式在实数范围内有意义,则x的取值范围是x <5.【考点】二次根式有意义的条件.【专题】二次根式;运算能力.【答案】x<5.【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.【解答】解:由题意得:5﹣x>0,解得:x<5,故答案为:x<5.【点评】本题考查的是二次根式有意义的条件,熟记二次根式的被开方数是非负数、分母不为0是解题的关键.8.(2022秋•宁德期末)已知a是正整数,是整数,则a的最小值是2.那么若b是正整数,是大于1的整数,则b的最大值与最小值的差是45.【考点】二次根式的定义.【专题】二次根式;运算能力.【答案】45.【分析】由,结合b是正整数,是大于1的整数,可得b是15的倍数,从而可得答案.【解答】解:∵,又∵b是正整数且是大于1的整数,∴当b=15时,的整数值最大为4,此时b的值最小,当b=60时,的整数值最小为2,此时b的值最大,∴b的最大值与最小值的差是60﹣15=45.故答案为:45.【点评】本题考查的是算术平方根的含义与估算,理解题意是解本题的关键.9.(2022秋•射洪市期末)若代数式有意义,则实数x的取值范围是x≥﹣3且x ≠0.【考点】二次根式有意义的条件;分式有意义的条件.【专题】分式;二次根式;运算能力.【答案】x≥﹣3且x≠0.【分析】根据二次根式的被开方数是非负数、分母不为0列出不等式,解不等式即可.【解答】解:由题意得:x+3≥0且x≠0,解得:x≥﹣3且x≠0,故答案为:x≥﹣3且x≠0.【点评】本题考查的是二次根式有意义的条件、分式有意义的条件,掌握二次根式的被开方数是非负数、分母不为0是解题的关键.10.(2022秋•汉寿县期末)化简二次根式的结果为.【考点】二次根式的性质与化简.【专题】二次根式;运算能力.【答案】.【分析】根据二次根式的分母有理化计算即可.【解答】解:.故答案为:.【点评】本题考查了二次根式的化简,熟记分母有理化方法是解题关键.11.(2022秋•思明区校级期末)计算下列各题:化简:①50=1;②3﹣2=;③(﹣2a)2=4a2;④=﹣1;⑤=;⑥=2;⑦=;⑧(x﹣1)(x+2)=x2+x﹣2.【考点】二次根式的性质与化简;幂的乘方与积的乘方;多项式乘多项式;分式的混合运算;零指数幂;负整数指数幂.【专题】实数;整式;分式;二次根式;运算能力.【答案】①1.②.③4a2.④﹣1.⑤.⑥2.⑦.⑧x2+x﹣2.【分析】①根据零指数幂的意义即可求出答案.②根据负整数指数幂的意义即可求出答案.③根据积的乘方运算即可求出答案.④根据分式的加减运算法则即可求出答案.⑤根据积的乘方运算即可求出答案.⑥根据二次根式的性质即可求出答案.⑦根据二次根式的性质即可求出答案.⑧根据多项式乘多项式法则即可求出答案.【解答】解:①原式=1.②原式=.③原式=4a2.④原式==﹣1.⑤原式=.⑥原式=2.⑦原式=.⑧原式=x2+2x﹣x﹣2=x2+x﹣2.故答案为:①1.②.③4a2.④﹣1.⑤.⑥2.⑦.⑧x2+x﹣2.【点评】本题考查零指数幂的意义、负整数指数幂的意义、积的乘方运算、二次根式的性质、多项式乘多项式法则,本题属于基础题型.12.(2022秋•南关区期末)将化为最简二次根式的结果是.【考点】最简二次根式.【专题】二次根式;运算能力.【答案】.【分析】被开方数的分子分母乘以2,然后再开方即可.【解答】解:==,故答案为:.【点评】此题主要考查了最简二次根式,关键是掌握最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.把满足上述两个条件的二次根式,叫做最简二次根式.三.解答题(共3小题)13.(2022秋•东平县期末)计算与求值:(1)(x﹣1)2=25;(2)(x+3)3=﹣27;(3)已知x、y都是实数,且,求y x的值.【考点】二次根式有意义的条件;平方根;立方根;实数的运算.【专题】实数;运算能力.【答案】(1)x=﹣4或x=6;(2)x=﹣6;(3)9.【分析】(1)根据平方根的概念计算;(2)根据立方根的概念计算;(3)根据二次根式有意义的条件求出x,进而求出y,根据有理数的乘方法则计算即可.【解答】解:(1)∵(x﹣1)2=25,∴x﹣1=±5,∴x=﹣4或x=6;(2)∵(x+3)3=﹣27,∴x+3=﹣3,∴x=﹣6;(3)由题意得:x﹣2≥0,x﹣2≤0,∴x=2,∴y=3,∴y x=32=9.【点评】本题考查的是二次根式有意义的条件、平方根、立方根的概念,掌握二次根式的被开方数是非负数是解题的关键.14.(2022秋•鲤城区校级期末)定义:若两个二次根式a,b满足ab=c,且c是有理数,则称a与b是关于c的共轭(è)二次根式.问题解决:(1)若a与2是关于6的共轭二次根式,则a=;(2)若4+与8﹣m是关于26的共轭二次根式,求m的值.【考点】二次根式的定义.【专题】二次根式;运算能力.【答案】(1);(2)2.【分析】(1)根据共轭二次根式的定义列等式可得a的值;(2)根据共轭二次根式的定义列等式可得m的值.【解答】解:(1)∵a与2是关于6的共轭二次根式,∴2a=6,∴a==,故答案为:;(2)∵4+与8﹣m是关于26的共轭二次根式,∴(4+)(8﹣m)=26,∴8﹣m===8﹣2,∴m=2.【点评】本题考查了新定义共轭二次根式的理解和应用,并会用二次根据的性质进行计算.15.(2022秋•丰城市校级期末)若x,y是实数,且y=++3,求3的值.【考点】二次根式有意义的条件.【答案】见试题解答内容【分析】根据二次根式有意义的条件列出不等式,解不等式求出x、y的值,根据二次根式的性质计算即可.【解答】解:由题意得,4x﹣1≥0,1﹣4x≥0,解得,x=,则y=3,则3=3×=.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.考点卡片1.平方根(1)定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.(2)求一个数a的平方根的运算,叫做开平方.一个正数a的正的平方根表示为“”,负的平方根表示为“﹣”.正数a的正的平方根,叫做a的算术平方根,记作.零的算术平方根仍旧是零.平方根和立方根的性质1.平方根的性质:正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.立方根的性质:一个数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0.2.立方根(1)定义:如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果x3=a,那么x叫做a的立方根.记作:.(2)正数的立方根是正数,0的立方根是0,负数的立方根是负数.即任意数都有立方根.(3)求一个数a的立方根的运算叫开立方,其中a叫做被开方数.注意:符号中的根指数“3”不能省略;对于立方根,被开方数没有限制,正数、零、负数都有唯一一个立方根.【规律方法】平方根和立方根的性质1.平方根的性质:正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.立方根的性质:一个数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0.3.实数的运算(1)实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.(2)在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.【规律方法】实数运算的“三个关键”1.运算法则:乘方和开方运算、幂的运算、指数(特别是负整数指数,0指数)运算、根式运算、特殊三角函数值的计算以及绝对值的化简等.2.运算顺序:先乘方,再乘除,后加减,有括号的先算括号里面的,在同一级运算中要从左到右依次运算,无论何种运算,都要注意先定符号后运算.3.运算律的使用:使用运算律可以简化运算,提高运算速度和准确度.4.幂的乘方与积的乘方(1)幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n是正整数)注意:①幂的乘方的底数指的是幂的底数;②性质中“指数相乘”指的是幂的指数与乘方的指数相乘,这里注意与同底数幂的乘法中“指数相加”的区别.(2)积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘.(ab)n=a n b n(n是正整数)注意:①因式是三个或三个以上积的乘方,法则仍适用;②运用时数字因数的乘方应根据乘方的意义,计算出最后的结果.5.多项式乘多项式(1)多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.(2)运用法则时应注意以下两点:①相乘时,按一定的顺序进行,必须做到不重不漏;②多项式与多项式相乘,仍得多项式,在合并同类项之前,积的项数应等于原多项式的项数之积.6.分式有意义的条件(1)分式有意义的条件是分母不等于零.(2)分式无意义的条件是分母等于零.(3)分式的值为正数的条件是分子、分母同号.(4)分式的值为负数的条件是分子、分母异号.7.分式的混合运算(1)分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.(2)最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.(3)分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律进行灵活运算.【规律方法】分式的混合运算顺序及注意问题1.注意运算顺序:分式的混合运算,先乘方,再乘除,然后加减,有括号的先算括号里面的.2.注意化简结果:运算的结果要化成最简分式或整式.分子、分母中有公因式的要进行约分化为最简分式或整式.3.注意运算律的应用:分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律运算,会简化运算过程.8.零指数幂零指数幂:a0=1(a≠0)由a m÷a m=1,a m÷a m=a m﹣m=a0可推出a0=1(a≠0)注意:00≠1.9.负整数指数幂负整数指数幂:a﹣p=(a≠0,p为正整数)注意:①a≠0;②计算负整数指数幂时,一定要根据负整数指数幂的意义计算,避免出现(﹣3)﹣2=(﹣3)×(﹣2)的错误.③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.④在混合运算中,始终要注意运算的顺序.10.二次根式的定义二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式.①“”称为二次根号②a(a≥0)是一个非负数;学习要求:理解被开方数是非负数,给出一个式子能准确的判断其是否为二次根式,并能根据二次根式的定义确定被开方数中的字母取值范围.11.二次根式有意义的条件判断二次根式有意义的条件:(1)二次根式的概念.形如(a≥0)的式子叫做二次根式.(2)二次根式中被开方数的取值范围.二次根式中的被开方数是非负数.(3)二次根式具有非负性.(a≥0)是一个非负数.学习要求:能根据二次根式中的被开方数是非负数来确定二次根式被开方数中字母的取值范围,并能利用二次根式的非负性解决相关问题.【规律方法】二次根式有无意义的条件1.如果一个式子中含有多个二次根式,那么它们有意义的条件是:各个二次根式中的被开方数都必须是非负数.2.如果所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零.12.二次根式的性质与化简(1)二次根式的基本性质:①≥0;a≥0(双重非负性).②()2=a(a≥0)(任何一个非负数都可以写成一个数的平方的形式).③=|a|=(算术平方根的意义)(2)二次根式的化简:①利用二次根式的基本性质进行化简;②利用积的算术平方根的性质和商的算术平方根的性质进行化简.=•(a≥0,b≥0)=(a≥0,b>0)(3)化简二次根式的步骤:①把被开方数分解因式;②利用积的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.【规律方法】二次根式的化简求值的常见题型及方法1.常见题型:与分式的化简求值相结合.2.解题方法:(1)化简分式:按照分式的运算法则,将所给的分式进行化简.(2)代入求值:将含有二次根式的值代入,求出结果.(3)检验结果:所得结果为最简二次根式或整式.13.最简二次根式最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式.最简二次根式的条件:(1)被开方数的因数是整数或字母,因式是整式;(2)被开方数中不含有可化为平方数或平方式的因数或因式.如:不含有可化为平方数或平方式的因数或因式的有2、3、a(a≥0)、x+y等;含有可化为平方数或平方式的因数或因式的有4、9、a2、(x+y)2、x2+2xy+y2等.。
初二数学二次根式试题答案及解析1.要使代数式有意义,则x的取值范围是( )A.x≥2B.x≥-2C.x≤-2D.x≤2【答案】A.【解析】根据题意,得x-2≥0,解得,x≥2;故选A.【考点】二次根式有意义的条件.2.下列计算正确的是()A.B.C.D.【答案】B.【解析】A. 不能计算,故A选项错误;B. ,故B选项正确;C. ,故C选项错误;D. ,故D选项错误.故选B.【考点】二次根式的混合运算.3.下列各式是最简二次根式的是()A.B.C.D.【答案】B.【解析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件:(1)被开方数的因数是整数,因式是整式; (2)被开方数中不含能开得尽方的因数或因式是否同时满足,同时满足的就是最简二次根式,否则就不是.因此,A、=3,不是最简二次根式,故A选项错误;B、是最简二次根式,符合题意,故B选项正确;C、,不是最简二次根式,故C选项错误;D、,不是最简二次根式,故D选项错误;故选B.【考点】最简二次根式.4.化简的结果是()A.-3B.3C.±3D.【答案】B.【解析】.故选B.【考点】二次根式化简.5.下列说法正确的是()A.带根号的数都是无理数B.无理数都是无限小数C.是无理数D.无限小数都是无理数【答案】B.【解析】A、如,是有理数不是无理数,故本选项错误;B、无理数都是无限小数,故本选项正确;C、是有理数,故本选项错误;D、无限不循环小数是无理数,故本选项错误.故选B.考点: 无理数.6.(1)计算: (2)解方程组:【答案】(1);(2)方程组的解为:.【解析】(1)根据二次根式混合运算的运算顺序计算即可;(2)先用加减消元法求出x的值,再用代入消元法求出y的值即可.试题解析:(1);(2)②-①×3得x=5,把x=5代入①得,10﹣y=5,解得y=5,故此方程组的解为:.【考点】1.二次根式的运算,2.解方程组.7.已知实数满足,则代数式的值为()A.B.C.D.【答案】B【解析】由,知所以8.有一个数值转换器,原理如图所示:当输入的=64时,输出的y等于()A.2B.8C.3D.2【答案】D【解析】由图表得,64的算术平方根是8,8的算术平方根是2.故选D.9.下列计算中,正确的有()①=±2 ②=2 ③=±25 ④a=-A.0个B.1个C.2个D.3个【答案】C.【解析】A、任何数的立方根只有一个;B、负数的奇次幂是负数,负数的立方根也是负数;C、非负数的平方根有两个,且互为相反数;D、二次根式的意义可知a<0,再根据二次根式的性质求解据此作答,进行判断.A、=2,此选项错误;B、=-2,此选项错误;C、=±25,此选项正确;D、a=-故选C.【考点】1.立方根;2.平方根;3.算术平方根.10.若,则的值为()A.6B.2C.-2D.8【答案】B【解析】由题,得(x-2)2="0," =0,x=2,y=4,故==2,选B.非负数和等于零,要求每一项都要等于零,由题,得(x-2)2="0," =0,x=2,y=4,故==2,选B.【考点】非负数和等于零.11.计算:(1);(2)sin30°+cos30°•tan60°.【答案】(1);(2)2【解析】(1)根据二次根式的乘除法法则计算即可;(2)根据特殊角的锐角三角函数值计算即可.解:(1)原式;(2)原式.【考点】实数的运算点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.12.若x、y为正实数,且x+y=12那么的最小值为 .【答案】13【解析】若x、y为正实数,且x+y=12,那么y=12-x;因此=;设S=,则==;所以S【考点】最值点评:本题考查最值,解答本题的关键是掌握求代数式最值的方法,本题难度较大,计算量比较13.计算:3÷的结果是()A.B.C.D.【答案】A【解析】,选A【考点】实数运算点评:本题难度较低,主要考查学生对实数运算知识点的掌握。
初二数学二次根式基础练习和常考题与简单题(含解析)一•选择题(共7小题)1 •若式子.有意义,则x的取值范围为()x-3A. x>2B. X M3C. x> 2 或X M3D. x>2 且X M32 •下列二次根式中属于最简二次根式的是()A.三B.产C.上D.3•如果■、. ’•二;,那么X取值范围是()A. X<2B. x v2C. X>2D. x>24. 若1v x v 2,则|—卜:「的值为()A. 2X- 4B.- 2C. 4- 2XD. 25. 下列各式计算正确的是()A.匚+ 二二二B. 4 二-3 二=1C. 2 二X 3 二=6 二D. =十二=36. 若.T订是正整数,最小的整数门是()A. 6B. 3C. 48D. 27. 下列根式中,不能与=合并的是()二.填空题(共7小题)8. 计算"•'的结果是—.V39. _______________________________________________________ 三角形的三边长分别为3、m、5,化简{(卜™)'-心旷对星= _____________________ .10 .若实数a、b、c在数轴的位置,如图所示,则化简:.ii .- [--= ------------ . - -11. __________________________________________________ 若二次根式是最简二次根式,则最小的正整数a= _____________________________ .第2页(共24页)12. 计算:(匚+1)(二-1)= ______13 .已知x、y都是实数,且y= •- 1-' +4,则y X= ____解答题(共26小题) 计算:—_.计算:(占-1)(弋二+1) — (— ) 2+| 1 - :| —( n- 2) °+七.32 - - 先化简,再求值:-亠?亠-亠,其中a=二+1. ,-1 丁 1计算:一^+「(「- _) + -.V2-1当x=wL''」时,求代数式x 2+5x - 6的值. 化简求值::「'七,求歸的值.已知a , b , c 在数轴上如图所示,化简:“丁 - ^+卜,+ . I. I| b0 c-J ------------- 1 ----- 1—>计算3- 9.;.二+3 =(~+不)+ (九上-7)计算:匚+ (- 2013) °-(石)-1+| - 3|二二-」x r +.三.先化简,再求值:(「一+「)宁「,其中a=^+1.aT a 2-2a+La-1已知 a= (*) -1,,c= (2014- n)d=|1-走|,15. 16. 17.18. 19. 20. 21.aI22. (1) (2)23.(1) (2)24. 25.(1) (2)26. 27.14.如果厂〔+ . . — =0,那么第2页(共24页)化简这四个数;把这四个数,通过适当运算后使得结果为2.请列式并写出运算过程.先化简:(2x+1) 2+ (x+2) (x- 2) - 4x (x+1),再求值,其中x=-^p-.£先化简,再求值,其中■■- ;.x+2 x+228•若a 、b 为实数,且b 二•「•+4,求a+b 的值.a+729•计算:(二―二)2-(二+ 二)2. 30. 计算: (1)4 三一叨汁4 .:(2) (- 2.r )J(〒 +3 了 - J) 31. 计算:(1)4- ■ . : - I(2)]汁.| T _ : I ' -•-]32. 计算:(-3) °- =+| 1 -二|+ -.V3+V236. 计算与化简(1),二1_ !一 (2)_ 「 _ .37. (1) 一个正数的平方根是2a - 3与5 -a ,求这个正数.(2)已知x 、y 都是实数,且■ ■-> ■-,求y 的值.38. 若x ,y ,a ,b 满足关系式〒-+ =丄;,二〔丨心 •,试求x , y 的值.39. 已知a, b 为等腰三角形的两条边长,且 a ,b 满足b=「+仁】】+4,求此 三角形的周长. 40.已知 a , b , c ABC 的三边长,且( =+ ) 2=3 (甘二二+!汇+ ■),试说明这个三角形是什么三角形.42•计算:("-1)(甘.:■+〔)—(—一) 2+| 1 -计—(冗―2) 0+ ■:. 33.先化简,,其中x=' ,34.已知:._汁1「.二,工.41.计算:343• (1)计算:Tx - 4X ■ X(1- ") °;2 k2 k2 ’___ (2)先化简,再求值:(_:_- +「)宁,其中a, b满足-■ +|ba2-2ab+ b2a2-ab-1 =°.244•先化简,再求值:---------- ----- ,其中a= =+1.a2-l a-145 .计算:一+ (二-二)+ 匚.V2~l46•计算:5 +•不-「X ;+.〒- =初二数学二次根式基础练习和常考题与简单题(含解析)参考答案与试题解析一•选择题(共7小题)1. (2016?乐亭县一模)若式子::有意义,则x的取值范围为()x-3A. x>2B. X M3C. x> 2 或X M3D. x>2 且X M3【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解. 【解答】解:根据二次根式有意义,分式有意义得:x-2>0且x- 3M 0,解得:X>2且X M 3.故选D.【点评】本题考查了二次根式有意义的条件和分式的意义. 考查的知识点为:分式有意义,分母不为0; 二次根式的被开方数是非负数.2. (2015?锦州)下列二次根式中属于最简二次根式的是()A、 B.三C. - D.【分析】A、B选项的被开方数中含有未开尽方的因数或因式;C选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.【解答】解:A、不是最简二次根式,故本选项错误;B、不是最简二次根式,故本选项错误;C、不是最简二次根式,故本选项错误;D、是最简二次根式,故本选项正确;故选D.【点评】本题考查了对最简二次根式定义的应用,在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幕的指数等于或大于2,也不是最简二次根式.3. (2015?维坊模拟)如果.,那么x取值范围是()A. x<2B. x v2C. x>2D. x>2【分析】根据二次根式的被开方数是一个》0的数,可得不等式,解即可.【解答】解:T」=2- x,x—2w 0,解得x<2.故选A.【点评】本题考查了二次根式的化简与性质.解题的关键是要注意被开方数的取值范围.4. (2016?呼伦贝尔)若1v x v2,则.■.. 的值为()A. 2x —4B.—2C. 4—2xD. 2【分析】已知1v x v2,可判断x —3v0, x—1>0,根据绝对值,二次根式的性质解答. 【解答】解:••• 1vxv 2,•- x—3v 0, x —1 >0, 原式=|x-3|+ ::1'=|x—3|+| x—1|=3 —x+x —1=2.故选D.【点评】解答此题,要弄清以下问题:1、定义:一般地,形如(a>0)的代数式叫做二次根式.当a>0时,■■表示a的算术平方根;当a=0时,=0;当a小于0时,非二次根式(若根号下为负数,则无实数根).2、性质:「=| a| .5. (2015?潜江)下列各式计算正确的是()A.匚+ 二二二B. 4 二—3 二=1C. 2 7x 3 二=6 二D. =* 二=3【分析】分别根据二次根式有关的运算法则,化简分析得出即可.【解答】解:A.好[好二,无法计算,故此选项错误,B4.;t- 3化二「;,故此选项错误,C.2二x 3二=6X 3=18,故此选项错误,故选D.【点评】此题主要考查了二次根式的混合运算,熟练掌握二次根式基本运算是解题关键.6. (2015?安徽模拟)若"E-是正整数,最小的整数门是()A. 6B. 3C. 48D. 2【分析】先将所给二次根式化为最简二次根式,然后再判断n的最小正整数值.【解答】解:.冇=4帀,由于.冇是正整数,所以n的最小正整数值是3, 故选B.【点评】此题考查二次根式的定义,解答此题的关键是能够正确的对二次根式进行化简.7. (2015?凉山州)下列根式中,不能与二合并的是()A. B ;C , D--【分析】将各式化为最简二次根式即可得到结果.【解答】解:A、;-2_,本选项不合题意;D、」;二;'「,本选项不合题意;故选C.【点评】此题考查了同类二次根式,熟练掌握同类二次根式的定义是解本题的关键.二•填空题(共7小题)8. (2015?南京)计算一的结果是5 .【分析】直接利用二次根式的性质化简求出即可.【解答】解:——-=;莎X -=5.V3故答案为:5.【点评】此题主要考查了二次根式的乘除运算,正确掌握二次根式的性质是解题关键.9. (2016?山西模拟)三角形的三边长分别为3、m、5,化简辰费-皿乔= 2m-10 .【分析】先利用三角形的三边关系求出m的取值范围,再化简求解即可.【解答】解:•••三角形的三边长分别为3、m、5,二2v m v8,•••-:_,「「;=m- 2-(8-m)=2m- 10.故答案为:2m- 10.【点评】本题主要考查了二次根式的性质与化简及三角形三边关系,解题的关键是熟记三角形的三边关系.故答案为:-a- b.【点评】正确地根据数在数轴上的位置判断数的符号以及绝对值的大小,再根据运算法则进行判断.11. (2016?山西模拟)若二次根式沁…-是最简二次根式,则最小的正整数a=2 .【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:二次根式/.;.小是最简二次根式,则最小的正整数a=2, 故答案为:2.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个10(2016春?惠山区期末)若实数a、b、c在数轴的位置,如图所示,贝U化简:.,| ■-〔-一= -a-b . - »【分析】先根据数轴上各点的位置判断出a,b的符号及a+c与b-c的符号,再进行计算即可.【解答】解:由数轴可知,c v b v0v a, |a| v|c|,••• a+c v 0,b- c>0,•原式=-(a+c)-(b - c)= - a - b.条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.12. (2014?畐州)计算:(「+1)( _- 1)= 1 .【分析】两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.就可以用平方差公式计算.结果是乘式中两项的平方差(相同项的平方减去相反项的平方).【解答】解:(匚+1)(二-1)= :「故答案为:1.【点评】本题应用了平方差公式,使计算比利用多项式乘法法则要简单.13. (2014?苏州模拟)已知x、y都是实数,且y= J 垃-3+V3-X+4,则y x= 64【分析】先根据二次根式有意义的条件列出关于x的不等式组,求出x的值代入y x进行计算即可.【解答】解:Ty=.. -<+4,解得x=3,.y=4,••• y x=43=64. 故答案为:64.【点评】本题考查的是二次根式有意义的条件及有理数的乘方,能根据二次根式有意义的条件求出x的值是解答此题的关键.14. (2015春?泰兴市期末)如果除\」+ ==0,那么【分析】先由非负数的性质求得a, b的值,再代入原式化简计算可得答案.【解答】解:•••化-+『—=0,而心0, 》0;• a=1, b=2•原式=1+ _=1+ 7.故本题答案为:1+ ".【点评】本题考查了二次根式的化简,还利用了非负数的性质:若两个非负数的和为0,则这两个数均为0.三.解答题(共26小题)15. (2016?德州校级自主招生)计算:「.丄.-【分析】先根据二次根式的乘除法法则得到原式=二-- 二+2二然后利用二次根式的性质化简后合并即可.【解答】解:原式=山-:二+2 7=4 —空并+2 ■■=4+聲汇【点评】本题考查了二次根式的混合运算:先进行二次根式的乘除运算,再把各二次根式化为最简二次根式,然后进行二次根式的加减运算.16. (2014?张家界)计算:(■—1)(,+1)-(-[)—2+| 1 — : —(n—2)0+匚.【分析】根据零指数幕、负整数指数幕和平方差公式得到原式=5 —1 —9+匚—1-1+2匚,然后合并即可.【解答】解:原式=5 - 1-9+匚-1 - 1+2 -=-7+3 匚.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式, 再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幕、负整数指数幕.通分和约分,本题难度不大.【分析】先进行二次根式的化简和乘法运算,然后合并. 【解答】解:原式=匚+1+3 - 3匚+匚【点评】本题考查了二次根式的混合运算, 解答本题的关键是掌握二次根式的化 简和乘法法则.17. (2016?安徽三模)先化简,再求值:2-T 亠-",其中 a=「+1.【分析】首先把‘ 2节寸1写成 泌',然后约去公因式(a+1),再与后一项式子进行通分化简,最后代值计算. 【解答】解: oa +2N +1 aa 2-l 蔦孑= ___ a_=a+l _ n二-I--I【点评】本题主要考查二次根式的化简求值的知识点, 解答本题的关键是分式的18. (2015?闵行区二模)计算:V2-1卜二(二-二)+ 匚.19. (2015?湖北模拟)当x 二匸「时,求代数式X 2+5X -6的值.【分析】可直接代入求值. 【解答】解:当x 二匸〕时,2x +5x - 6=(L - ) 2+5 (也■■)- 6 =6 - 2 "+5 - - 5- 6 =2%「! ■.【点评】主要考查二次根式的混合运算,要掌握好运算顺序及各运算律.【分析】本题需先对要求的式子和已知条件进行化简,再把所得的结果代入即可 求出答案. :(a+b) (d~b)3(a+b)-+1; b= \「,./-b '=(血+1?_(竝_¥=2人卜 ::知条件进行化简是本题的关键.21 . ( 2016春?日照期中)已知a ,b ,c 在数轴上如图所示,化简: --I - - -: :,-.a b0 ciiIi =20. (2016春?潮南区期中)化简求值:2 k 2 求-的值.【解答】解:【点评】本题主要考查了二次根式的化简求值, 在解题时要能对要求的式子和已3a+3b【分析】根据数轴abc的位置推出a+bv 0,c- a>0,b+cv 0,根据二次根式的性质和绝对值进行化简得出-a+a+b+c- a- b- c,再合并即可.【解答】解:•••从数轴可知:a v b v O v c,••• a+b v0, c- a>0, b+c v0,••• r—|a+b|+ +| b+c|=-a+a+b+c - a - b - c =-a.【点评】本题考查了二次根式的性质,实数、数轴的应用,关键是能得出-a+a+b+c-a- b - c.22. (2014春?汉阳区期末)计算(1) 3 . :■: - 9.丄+3 . .:■:(2)(三+不)+ (九上一7)【分析】(1)首先对每一项二次根式进行化简,然后合并同类二次根式即可,(2)首先对每一项二次根式进行化简,然后去掉括号,进行合并同类二次根式即可.【解答】解:(1)原式=12二-3二+6二=15 「;,(2)原式=4 二+2 二+2 二--=6 '+V.:;.【点评】本题主要考查二次根式的化简,合并同类二次根式,关键在于正确的化简二次根式,正确的去括号,认真的进行计算.23. (2014春?兴业县期末)计算:(1)匚+ (-2013) 0-( 1 ) -1+| - 3|(2).丘十二-.1 x y I .•:+. =.【分析】(1)根据零指数幕和负整数指数幕的意义得到原式=3+1 - 2+3,然后进行加减运算;(2)根据二次根式的乘除法则运算.【解答】解:(1)原式=3+1 - 2+3=5;(2)原式=…: 1:; -'一.•. i _+2訂」=4 —.卜+2”;.扌叭 =4+ *(i .【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式, 再进 行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幕和负整数指 数幕.24. (2016?仙游县校级模拟)先化简,再求值:(二+)- 一,其中旷1 a -2a+la_1a= T +1.【分析】利用通分、平方差公式等将原式化简为厶,代入a 的值即可得出结论. 【解答】解:原式=(止+ 「 )^■,丹(a -l ) 2 ^-1=6+1)(旷1)+1 ? aT: ?,_ a=..当a=二+1时,原式=丄=二!a-l 3【点评】本题考查了分式的化简求值,解题的关键是将原式化简成-.本题属a -l于基础题,难度不大,解决该题型题目时,先将原代数式进行化简,再代入数据 求值是关键.(1)化简这四个数;(2)把这四个数,通过适当运算后使得结果为 2.请列式并写出运算过程.25. (2015?杭州模拟)已知a=()c= (2014— n) 0, d=| 1 — "I ,【分析】(1)根据零指数幕和负整数指数幕和分母有理化求解;(2)可列式子为a+b-3c-d,然后把a b、c、d的值代入计算.【解答】解:(1)a=d)-1=3, b= - =匚+1, c=(2014-n °=1, d=| 1 —匚| =匚3 V2-1-1,(2) a+b - 3c- d=3+ 匚+1 - 3X 1 -匚+1=2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幕和负整数指数幕.26. (2014?焦作一模)先化简:(2x+1) 2+ (x+2) (x-2)- 4x (x+1),再求值, 其中* -.2【分析】根据整式的运算法则将式子进行化简,再代值计算.【解答】解:原式=4X+4x+1+x2- 4 - 4x2- 4x=«- 3,当厂时,【点评】本题不是很难,但是在合并同类项时要仔细.27. (2010?莱芜)先化简,再求值:二;:',其中弓.孟* u 矗T £【分析】这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先把代数式去括号,把除法转换为乘法化简,然后再代入求值.本题注意x-2看作一个整体.【解答】解:原式=三',:,一—…x+2 x+2=X2-16X X+2.■ - '■ ■:=::■: - ■ ■:-=■ ■:=-(x+4),当时,原式= 一■■=_■ = :■:.【点评】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解; 第15页(共24页)除法要统一为乘法运算.28. (2016春?澄城县期末)若a、b为实数,且b二-二+4,求a+b的值.【分析】根据二次根式有意义的条件列出方程,分别求出a、b的值,计算即可. 【解答】解:由题意得,a2- 1 >0, 1-a2>0, 解得,a=± 1,则b=4,••• a+b=3或5.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键.29. (2016春?闵行区期末)计算:(「- -)2-(「+ _)2.【分析】先进行完全平方公式的运算,然后合并.【解答】解:原式=3 - 2 7+2 - 3 -2「- 2=-4 '■.【点评】本题考查了二次根式的混合运算,解答本题的关键是掌握完全平方公式以及二次根式的合并.30. (2016春?定州市期中)计算:(1) 4 ~+ . ■-口- +4 ■:(2)(- 2 .h) J (于+3」-7)【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算. 【解答】解:(1)原式=4 ~+3 :-2 ~+4 -=7 +2 :;(2)原式=4X 12-(5 二+ 二-4 二)第仃页(共24页)=48宁(2 二)=8【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式, 再进 行二次根式的乘除运算,然后合并同类二次根式.31. (2015春?黔南州期末)计算:(“ ":•…ii - 〔 •丄:(2) 「汁「「T 一 〕 「一— 【分析】(1)先化简,再进一步去掉括号计算即可;(2)利用二次根式的性质化简,平方差公式计算,再进一步合并即可.【解答】解:(1)原式=2「+• - + 7 2 4=3 一-二 4(2)原式=3 - 1 - 3 - 1+ 二+1=':-1.【点评】本题考查的是二次根式的混合运算,在进行此类运算时,一般先把二次根式化为最简二次根式的形式后再运算.【解答】解::::- ::=1 - 3 二 + 匚-1 +=-3 ■+ ■:+ ■— ■:,=-2 =、.【点评】此题主要考查了二次根式的混合运算以及绝对值的性质, 在进行此类运 32. (2011?上海)计算: (-3) 0- =+| 1 -匚|+ 1V3+\/2【分析】观察,可以首先去绝对值以及二次根式化简,再合并同类二次根式即可.算时一般先把二次根式化为最简二次根式的形式后再运算.其中 x= , y=27. 2【分析】首先对二次根式进行化简,然后去括号、合并二次根式即可化简,然后 把x , y 的值代入求解.【解答】解:原式=(6.「+3 7T ) ;+6.「)=9 二—6 二当 x= , y=27 时, 2=---【点评】本题考查了二次根式的化简求值,正确对二次根式进行化简是关键.【分析】本题需先对a 的值和要求的式子进行化简,然后把a 的值代入化简以后 的式子即可求出结果.a v 1,33. (2015春?封开县期中)先化简,再求值 丁34. (2003?济南)已知:)-第仃页(共24页)=—2 —:.【点评】本题主要考查了二次根式的化简求值,在解题时要能灵活应用二次根式化简的方法是本题的关键.35. (2015秋?哈尔滨校级月考)计算】【分析】把二次根式的被开方数相除,再根据二次根式的性质开出来即可.【解答】解:原式=二壯 b=2a.【点评】本题考查了二次根式的性质,二次根式的乘除的应用,主要考查学生的 计算和化简能力.36. (2012?深圳模拟)计算与化简(1) 乙〉].厂:(2) -「儿【分析】(1)先化简二次根式,再进行计算即可;(2)先化简二次根式,再合并同类二次根式即可.=「 2::;2 一岳•(2) 原式=2a 2 =+3a?5a 二x 3a 二 2 -3 一、 【解答】解:(1)原式=((2)根据二次根式的被开方数是非负数,列出关于x的不等式组,然后解得x值,从而求得y值;最后将它们代入所求的代数式求值即可.【解答】解:(1)设该正数为x.则由题可知2a- 3+5 - a=0,解得a二—2,所以2a- 3=- 7,所以x=49,即所求的正数是49;(2)根据题意,得x_3^0解得x=3,••• y=4;.•. y x=43=64,即y x=64.【点评】此题主要考查了平方根的性质,注意如果一个数的平方等于A,那么这个数就叫做A的平方根,也叫做A的二次方根.一个正数有正、负两个平方根,他们互相为相反数;零的平方根是零,负数没有平方根.38. 若x, y, a, b满足关系式心T+ 一-巳—m x "-:,试求x, y的值.【分析】由a+b- 2014》0, 2014-( a+b)>0,所以a+b=2014.再利用两个根式的和等于0,即每一个被开方数等于0.【解答】解:依题意,得a+b- 2014》0, 2014-( a+b)》0,解得a+b=2014.所以二一■:+、.U =0,3x- 6=0, 2y- 7=0,x=2, y=.【点评】考查了二次根式的意义和性质.概念:式子-(a》0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.同时考查了非负数的性质,几个非负数的和为0,这几个非负数都为0.39. (2014春?黄梅县校级期中)已知a, b为等腰三角形的两条边长,且a, b 第20页(共24页)满足b= - 1+ :一+4,求此二角形的周长.【分析】根据二次根式有意义:被开方数为非负数可得a的值,继而得出b的值,然后代入运算即可.【解答】解:•••.—,、.:有意义,--a=3,b=4,当a为腰时,三角形的周长为:3+3+4=10;当b为腰时,三角形的周长为:4+4+3=11.【点评】本题考查了二次根式有意义的条件,属于基础题,注意掌握二次根式有意义:被开方数为非负数.40. (2013秋?川汇区校级月考)已知a, b,c ABC的三边长,且(:+幕+ 一)2=3 (V込初二辰),试说明这个三角形是什么三角形.【分析】先利用完全平方公式展开后合并得到a+b+c-.亍-丁- =o,再利用配方法得到(1-”;.北)2+ (”;.北-)2+ (-I - )2=0,然后根据非负数的性质得到灵-血=0,血-讥=0,灵-叭=0,所以a=b=c.【解答】解:•(空和+心+ )2=3 (叮'),a+b+c+2、匕:+2 了:+2 丨—3 .-1- 3 : - 3 :'L ;=0,a+b+c- 1’- 心:- 门:=0,2a+2b+2c- 2 -1 ■ - 2 -■ —2门:=0,••( 1-“:「.;)2+ (',-吋二)2+ (1-悩二)2=0,•••灵-麻=0,亦-讥=0,讥-讥=0,• a=b=c,•这个三角形为等边三角形.【点评】本题考查了二次根式的应用:把二次根式的运算与现实生活相联系,体现了所学知识之间的联系,感受所学知识的整体性,不断丰富解决问题的策略,提高解决问题的能力.41. (2016?德州校级自主招生)计算- "-''::.=4—遽 ci +2' -,y 1;'.=4+*(匚. 【点评】本题考查了二次根式的混合运算:先进行二次根式的乘除运算,再把各 二次根式化为最简二次根式,然后进行二次根式的加减运算.42. (2014?张家界)计算:(山—1) (*二+1)-(-二)2+| 1-灯:—( n — 2) 30+ ".【分析】根据零指数幕、负整数指数幕和平方差公式得到原式 =5 — 1 — 9+匚—1 —1+2匚,然后合并即可.【解答】解:原式=5- 1 — 9+ ~— 1 — 1+2 -=—7+3 _.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幕、负整 数指数幕. 43. (2014?荆门)(1)计算: 丁X 〒-4X X ( 1—二)°;2.2 k 2 ________________________________________(2)先化简,再求值:(”+「)- ,其中a ,b 满足 +|b a -2ab+b 2 "a a -ab—二 | =0. 【分析】(1)根据二次根式的乘法法则和零指数幕的意义得到原式X - X 仁2匚-.,然后合并即可; 4(2)先把分子和分母因式分解和除法运算化为乘法运算, 再计算括号内的运算,【分析】先根据二次根式的乘除法法则得到原式 :+2 ,然后利 用二次根式的性质化简后合并即可.然后约分得到原式=「,再根据非负数的性质得到a+仁0, b—二=0,解得a=—1,b b=二,然后把a和b的值代入计算即可.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式, 再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幕、非负 数的性质和分式的化简求值.44. (2016?安徽三模)先化简,再求值:-亠‘亠-:,其中a=「+1.a 2-l H2 2 【分析】首先把自+严+1写成 £辛) 然后约去公因式(a+1),再与后一 项式子进行通分化简,最后代值计算.2【解答】解:亠_'一 _ ,32-1 旷 1= ____ a:.I ; U.:...=曰+1 a=2匚-匚-4X - 4(2)原式=[:"''- (a-b)=(丁一: — ')?a-b a-b=\- ?oA-_i-b-」L : ? I.:a ] ?3(自-b)a-b b 2 =- 一,T .丨 +| b - ;|=0,••• a+1=0, b - =0,解得 a= - 1, b= ■:,当 a=- 1,【解答】解:(1)原式= b=「时,【点评】本题主要考查二次根式的化简求值的知识点,解答本题的关键是分式的 通分和约分,本题难度不大. 45. (2015?闵行区二模)计算: 一二(二-7) + 匚. V2-1 【分析】先进行二次根式的化简和乘法运算,然后合并. 【解答】解:原式=匚+1+3-3匚+匚 =4 -':. 【点评】本题考查了二次根式的混合运算, 解答本题的关键是掌握二次根式的化 简和乘法法则. Y5 2 V4 Y5 【分析】先二次根式化为最简二次根和根据二次根式的乘除法得到原式 =:+ :- 丨+3灯.宀"=2 - - 1+3,然后合并即可.=2 _- 1+3=2 _+2.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式, 再进行二次根式的乘除运算,然后进行二次根式的加减运算.,31且【点评】本题考查了二次根式的混合运算,二次根式的化简是解此题的关键.37. (2009春?岳阳校级期末)(1) 一个正数的平方根是2a - 3与5 - a ,求这个 正数. (2)已知x 、y 都是实数,且 八门,求y "的值.【分析】(1)因为一个正数x 的平方根有两个,且互为相反数,由此即可得到关 于a 方程,解方程即可得a 的值,然后代入求x ;46. (2015春?石林县期末)计算: V4 5【解答】/。
一、选择题1.下列计算正确的是( )A 3=±B 2=C .2=D 2=2.下列式子中,属于最简二次根式的是( )A B C D3.下列运算正确的是( )A 2=B 5=-C 2=D 012=4.已知2a =,2b =的值为( )A .4B .5C .6D .75.有意义,则x 的取值范围是( ) A .x≠2 B .x >-2 C .x <-2 D .x≠-26.下列各式是二次根式的是( )A B C D 7.下列式子一定是二次根式的是 ( )A B C D8.有意义,则字母x 的取值范围是( ) A .x≥1B .x≠2C .x≥1且x =2D ..x≥-1且x ≠29.已知12x =⋅,n 是大于1的自然数,那么(nx 的值是( ). A .12007 B .12007- C .()112007n - D .()112007n -- 10.下列各式中,一定是二次根式的是( )A B C D 二、填空题11.已知x =()21142221x x x x -⎛⎫+⋅= ⎪-+-⎝⎭_________12.设a ﹣b=2b ﹣c=2a 2+b 2+c 2﹣ab ﹣ac ﹣bc=_____.13.已知a =﹣73+,则代数式a 3+5a 2﹣4a ﹣6的值为_____. 14.把1m m-根号外的因式移到根号内,得_____________. 15.已知整数x ,y 满足20172019y x x =+--,则y =__________. 16.将一组数2,2,6,22,10,…,251按图中的方法排列:若2的位置记为(2,3),7的位置记为(3,2),则这组数中最大数的位置记为______.17.25523y x x =--,则2xy 的值为__________.18.已知x 51-,y 51+,则x 2+xy +y 2的值为______. 19.观察分析下列数据:0,36,-3,231532的规律得到第10个数据应是__________.20.4x -x 的取值范围是_____三、解答题21.计算:(18322(2))((25225382+-+. 【答案】(1)52【分析】(1)先化简二次根式,再合并同类二次根式即可;(2)根据平方差公式化简,再化简、合并同类二次根式即可.【详解】(18322=22422=52(2))((25225382+--+=22(5)23222--+ =5-4-3+2=022.阅读材料,回答问题:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们就说这两个代数式a =,)111=11互为有理化因式.(1)1的有理化因式是;(2)这样,化简一个分母含有二次根式的式子时,采用分子、分母同乘以分母的有理化因式的方法就可以了,例如:==24====进行分母有理化.(3)利用所需知识判断:若a=,2b=ab,的关系是.(4)直接写结果:)1=.【答案】(1)1;(2)7-;(3)互为相反数;(4)2019【分析】(1)根据互为有理化因式的定义利用平方差公式即可得出;(2)原式分子分母同时乘以分母的有理化因式(2,化简即可;(3)将a=(4)化简第一个括号内的式子,里面的每一项进行分母有理化,然后利用平方差公式计算即可.【详解】解:(1)∵()()1111=,∴1的有理化因式是1;(2227-==-(3)∵2a ===,2b =-, ∴a 和b 互为相反数;(4))1++⨯=)11⨯=)11 =20201-=2019,故原式的值为2019.【点睛】 本题考查了互为有理化因式的定义及分母有理化的方法,并考查了利用分母有理化进行计算及探究相关式子的规律,本题属于中档题.23.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中1x =..【分析】 根据分式的运算法则进行化简,再代入求解. 【详解】原式=221(1)12(3)232(3)3(1)1x x x x x x x x x ---+⎛⎫⎛⎫÷=⋅= ⎪ ⎪+++--⎝⎭⎝⎭.将1x == 【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.24.计算(11)1)⨯; (2)【答案】(12+;(2).【解析】分析:先将二次根式化为最简,然后再进行二次根式的乘法运算.详解:(1)11+;=()31-2;(2)原式=(22⨯,==3⨯==点睛:此题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.25.已知a,b(1)求a2﹣b2的值;(2)求ba+ab的值.【答案】(1);(2)10【分析】(1)先计算出a+b、a-b的值,然后将所求的式子因式分解后利用整体代入思想代入数值进行计算即可;(2)先计算ab的值,然后将所求的式子通分,分子进行变形后利用整体代入思想代入相关数值进行计算即可.【详解】(1)∵ab,∴a+ba﹣b=,∴a2﹣b2=(a+b)(a﹣b)==;(2)∵ab,∴ab=)×)=3﹣2=1,则原式=22b aab+=()22a b abab+-=(2211-⨯=10.【点睛】本题考查了二次根式的化简求值,熟练掌握整体代入思想是解题的关键. 26.计算:(1;(2+2)2+2).【答案】(1-2)【分析】(1)直接化简二次根式进而合并得出答案;(2)直接利用乘法公式计算得出答案.【详解】解:(1)原式=-(2)原式=3434++-=6+.【点睛】本题考查了二次根式的运算,在进行二次根式运算时,可以运用乘法公式,运算率简化运算.27.计算:0(3)|1|π-+.【答案】【分析】根据二次根式的意义和性质以及零次幂的定义可以得到解答.【详解】解:原式11=+=【点睛】本题考查实数的运算,熟练掌握二次根式的运算和零次幂的意义是解题关键.28.计算:(1 ;(2)))213【答案】(1)2)1-.【分析】(1)根据二次根式的混合运算法则可以算得答案.(2)结合整式的乘法公式和二次根式的运算法则计算.【详解】(1)原式==(2)原式=212---=1-.【点睛】本题考查二次根式的运算,熟练掌握二次根式的意义、性质和运算法则是解题关键.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据算术平方根、立方根、二次根式的乘法逐项判断即可得.【详解】A3=,此项错误;B2=-,此项错误;=≠C、27D2==,此项正确;故选:D.【点睛】本题考查了算术平方根、立方根、二次根式的乘法,熟练掌握算术平方根与立方根是解题关键.2.D解析:D【分析】根据直角二次根式满足的两个条件进行判断即可.【详解】被开方数中含能开得尽方的因数,不是最简二次根式,故选项A错误;=被开方数中含分母,不是最简二次根式,故选项B错误;3=被开方数中含能开得尽方的因数,不是最简二次根式,故选项C错误;是最简二次根式,故选项D正确.故选D.【点睛】本题考查的是最简二次根式的概念,满足(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式两个条件的二次根式是最简二次根式.3.C解析:C【分析】由二次根式的性质,二次根式的混合运算,分别进行计算,即可得到答案.【详解】解:A A 错误;B 5=,故B 错误;C 2==,故C 正确;D 01213=+=,故D 错误;故选:C .【点睛】本题考查了二次根式的性质,二次根式的混合运算,立方根,零指数幂,解题的关键是熟练掌握运算法则进行解题.4.B解析:B【分析】根据二次根式的混合运算和完全平方公式进行计算,即可得到结果.【详解】解:∵2a =,2b =,∴227a b ++ 2252527 554547454 25= ∴255故选:B .【点睛】本题主要考查了二次根式的混合运算和完全平方公式,熟悉相关运算法则是解题的关键 5.B解析:B【分析】根据二次根式的被开方数是非负数,且分母不能为零,可得答案.【详解】有意义,得: 20x +>,解得:2x >-.故选:B .本题考查了二次根式有意义的条件,利用被开方数是非负数,分母不能为零得出不等式是解题关键.6.A解析:A【分析】根据二次根式定义和有意义的条件:被开方数是非负数,即可判断.【详解】解:A、符合二次根式有意义条件,符合题意;B、-1<0B选项不符合题意;C、是三次根式,所以C选项不符合题意;D、π-4<0D选项不符合题意.故选:A.【点睛】a≥0.7.A解析:A【分析】根据二次根式的定义,直接判断得结论.【详解】A A正确;a<B错误;B、0C是三次根式,故C错误;a<D错误;D、0故选:A.【点睛】a≥)是二次根式,注意二次根式的被开方数是非负数.8.D解析:D【分析】直接利用二次根式的有意义的条件分析得出答案.【详解】有意义,则x+1≥0且x-2≠0,解得:x≥-1且x≠2.【点睛】本题考查了二次根式有意义的条件,正确把握相关性质是解题关键.9.C解析:C【解析】【分析】令a =112x a a ⎛⎫=- ⎪⎝⎭112a a ⎛⎫=+ ⎪⎝⎭,2007n a =,进而得到x【详解】令a =112x a a ⎛⎫=- ⎪⎝⎭112a a ⎛⎫=+ ⎪⎝⎭,2007n a =,∴x 1111122a a a a a ⎛⎫⎛⎫--+=- ⎪ ⎪⎝⎭⎝⎭,∴原式=111()(1)(1)2007n n n n a a -=-=-. 故选C .【点睛】 本题考查了二次根式的混合运算.熟练掌握二次根式混合运算法则是解答本题的关键.10.D解析:D【分析】根据二次根式的意义,如果一定是二次根式,则不论字母取何值,被开方数一定是非负数,逐一判断即可得.【详解】解:A ,不是二次根式;B x <0时无意义,不一定是二次根式;C 在-2<a <2时,无意义,不一定是二次根式;D a 2≥0,一定是二次根式;故选:D .【点睛】本题主要考查二次根式的定义,一般地,a≥0)的式子叫做二次根式.二、填空题11.【分析】利用完全平方公式化简,得到;化简分式,最后将代入化简后的分式,计算即可.【详解】将代入得:故答案为:【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在解析:1-【分析】利用完全平方公式化简x =1x =;化简分式,最后将1x =代入化简后的分式,计算即可.【详解】1x =====()211422(2)(2)2221(2)(2)2(1)x x x x x x x x x x x -++-+-⎛⎫+⋅= ⎪-+--+-⎝⎭ 1x x =-将1x =1=-故答案为:1-【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在于化简x =熟练掌握相关知识点是解题关键. 12.15【解析】根据题意,由a ﹣b=2+,b ﹣c=2﹣,两式相加得,得到a ﹣c=4,然后根据配方法,把式子各项变为:a2+b2+c2﹣ab ﹣bc ﹣ac=====15.故答案为:15.解析:15【解析】根据题意,由a ﹣b ﹣c=2,两式相加得,得到a ﹣c=4,然后根据配方法,把式子各项变为:a 2+b 2+c 2﹣ab ﹣bc ﹣ac=2222222222a b c ab ac bc ++﹣﹣﹣=2222222222a ab b b bc c a ac c +++++﹣﹣﹣=222()()()2a b b c a c -+-+-=15. 故答案为:15.13.-4【分析】先将a 进行化简,然后再进一步分组分解代数式,最后代入求得答案即可.【详解】解:当a =-=-=-3时,原式=a3+6a2+9a -(a2+6a+9)-7a+3=a(a+3)2-(解析:-4【分析】先将a 进行化简,然后再进一步分组分解代数式,最后代入求得答案即可.【详解】解:当a-3时, 原式=a 3+6a 2+9a -(a 2+6a +9)-7a +3=a (a +3)2-(a +3)2-7a +3=7a -7-7a +3=-4.故答案为:-4.【点睛】本题综合运用了二次根式的化简,提公因式及完全平方公式法分解因式,熟练掌握分母有理化的方法及因式分解的方法是解题的关键.14.-【解析】【分析】根据二次根式的性质,可得答案【详解】由题意可得: ,即∴故答案为【点睛】本题考查了二次根式的性质与化简,利用了二次根式的性质.解答关键在于根据二次根式的性质确定解析:【解析】【分析】根据二次根式的性质,可得答案【详解】 由题意可得:10m ,即0m ∴11m m m mm m m故答案为【点睛】本题考查了二次根式的性质与化简,利用了二次根式的性质.解答关键在于根据二次根式的性质确定m 的取值范围.15.2018【解析】试题解析:,令,,显然,∴,∴,∵与奇偶数相同,∴,∴, ∴.故答案为:2018.解析:2018【解析】 试题解析:y ===令a =b = 显然0a b >≥,∴224036a b -=,∴()()4036a b a b +-=,∵()a b +与()-a b 奇偶数相同,∴20182a b a b +=⎧⎨-=⎩, ∴10101008a b =⎧⎨=⎩, ∴2018y a b =+=.故答案为:2018.16.(17,6)【解析】观察、分析这组数据可发现:第一个数是的积;第二个数是的积;第三个数是的积,的积.∵这组数据中最大的数:,∴是这组数据中的第102个数.∵每一行排列了6个数,而∴是第1解析:(17,6)【解析】的积,.∵这组数据中最大的数:∴102个数.∵每一行排列了6个数,而1026=17÷ ∴17行第6个数,∴这组数据中最大的一个数应记为(17,6).点睛:(1)这组数据组中的第n 2)该组数据是按从左到右,从小到大,每行6个数进行排列的;(3)6n ÷6n ÷的余数是所在的列数.17.【解析】试题分析:根据二次根式的意义和等式的特点,可知2x-5=0,解得x=,y=-3,代入可得=-2××3=-15.解析:15-【解析】试题分析:根据二次根式的意义和等式的特点,可知2x-5=0,解得x=52,y=-3,代入可得2xy =-2×52×3=-15. 18.4【详解】根据完全平方公式可得:原式=-xy==5-1=4.解析:4【详解】根据完全平方公式可得:原式=2()x y -xy=251515151)222=5-1=4. 19.6【分析】通过观察可知,根号外的符号以及根号下的被开方数依次是:,,…,可以得到第13个的答案.【详解】 解:由题意知道:题目中的数据可以整理为:,,…,∴第13个答案为:.故答案为6. 解析:6【分析】 通过观察可知,根号外的符号以及根号下的被开方数依次是:11(1)30,21(1)31,31(1)32…1(1)3(1)n n ,可以得到第13个的答案.【详解】 解:由题意知道:题目中的数据可以整理为:11(1)30,21(1)31,31(1)32…1(1)3(1)n n ,∴第13个答案为:131(1)3(131)6.故答案为6.【点睛】此题主要考查了二次根式的运算以及学生的分析、总结、归纳的能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律. 20.x≥4【解析】试题分析:根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4.故答案为x≥4.点睛:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然解析:x≥4【解析】试题分析:根据算术平方根的意义,可知其被开方数为非负数,因此可得x-4≥0,解得x≥4.故答案为x≥4.点睛:此题主要考查了平方根的意义,解题时要注意被开方数为非负数的条件,然后列不等式求解即可,是一个中考常考的简单题.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无。
初二数学二次根式试题1.规定用符号[m]表示一个实数m的整数部分. 例如:[]="0" ,[3.14]="3" ,按此规定[]的值为_________ .【答案】4.【解析】∵9<10<16,∴. ∴.试题解析:【考点】1.新定义;2.估计无理数的大小.2.若式子有意义,则点P(a,b)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C.【解析】∵式子有意义,∴.根据平面直角坐标系中各象限点的特征,判断其所在象限,四个象限的符号特征分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).故P(a,b 位于第三象限.故选C.【考点】1.二次根式的性质;2.平面直角坐标系中各象限点的特征.3.计算(6分)[(1)(2)【答案】(1);(2).【解析】(1)按照运算顺序计算即可.(2)应用平方差公式计算即可.(1).(2)【考点】二次根式计算.4.下列各根式、、、、其中最简二次根式的个数有。
A. 1B.2C.3D.4【答案】B.【解析】∵、、、、∴、有二个最简二次根式.故选B.考点:5.的平方根是,的算术平方根是 .【答案】3【解析】;,所以的算术平方根是3.6.计算:【答案】.【解析】原式=.【考点】实数的运算.7.在实数,,,,,,,7.1010010001中,无理数有()A.1个B.2个C.3个D.4个【答案】C【解析】根据无理数的概念,无限不循环小数,开方开不尽的数是无理数,在实数,,,,,,,7.1010010001中,,是无理数【考点】无理数点评:本题考查无理数,解答本题的关键是掌握无理数的概念,会以此来判断一个数是否是无理数8.若,则的值等于()A.B.C.D.或【答案】A【解析】由可得,再整体代入求值即可.由可得则故选A.【考点】代数式求值点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.9.已知最简二次根式和的和是一个二次根式,那么b=_ __,它们的和是____。
人教版数学八年级下册第十六章二次根式单元测试卷(含答案解析)一、单选题(共12小题,每小题4分,共计48分)1A.4b B.CD2.下列各数中,与的积不含二次根式的是A.B.CD3m为()A.-10B.-40C.-90D.-1604.若a,b-5,则a,b的关系为A.互为相反数B.互为倒数C.积为-1D.绝对值相等5.下列计算正确的是3==6=3=;a b=-.A.1个B.2个C.3个D.4个6合并的是()A B C D7.若6的整数部分为x,小数部分为y,则(2x)y的值是() A.5-B.3C.-5D.-38.如图,a,b,c的结果是()a c+A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b9.估计的值应在( )A .5和6之间B .6和7之间C .7和8之间 D.8和9之间10有意义,那么直角坐标系中点A(a,b)在() A .第一象限 B .第二象限 C .第三象限D .第四象限11.下列计算正确的是AB . CD12.如果,,那么各式:,,,其中正确的是()A .①②③B .①③C .②③D .①②二、填空题(共5小题,每小题4分,共计20分)13.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a﹣的结果是_____.14.已知a 、b满足(a ﹣1)2=0,则a+b=_____.15有意义,则实数x 的取值范围是_____.16.若a ,b 都是实数,b﹣2,则a b 的值为_____. 17.已知实数,互为倒数,其中__________. ()=3=2==0ab > 0a b +<=1=b =-a b a 2=+三、解答题(共4小题,每小题8分,共计32分)18=b+8.(1)求a 的值;(2)求a 2-b 2的平方根.19.已知实数a 满足|300﹣a =a ,求a ﹣3002的值.20.已知点A(5,a)与点B(5,-3)关于x 轴对称,b 为求(1)的值。
一、选择题1.,a ==b a 、b 可以表示为 ( ) A .10a b+ B .10-b aC .10ab D .b a2.a 的值可能是( ) A .2-B .2C .32D .83.(2的结果正确的是( )A B .3 C .6D .34.已知5x =-,则2101x x -+的值为( )A .-B .C .2-D .05.已知:x ,y 1,求x 2﹣y 2的值( )A .1B .2C D .6.下列各式计算正确的是( )A =B 6=C .3+=D 2=-7.对于已知三角形的三条边长分别为a ,b ,c ,求其面积的问题,中外数学家曾经进行过深入研究,古希腊的几何学家海伦给出求其面积的海伦公式:S =,其中2a b cp ++=,若一个三角形的三边长分别为2,3,4,则其面积( )A B C D8.已知12x =⋅,n 是大于1的自然数,那么(n x 的值是( ). A .12007B .12007-C .()112007n- D .()112007n--9.实数a ,b ,c ,满足|a |+a =0,|ab |=ab ,|c |-c =0,a +b |+|a -c |-( )A .2c -bB .2c -2aC .-bD .b10.下列运算中正确的是( )A .27?3767=B .()442323333=== C .3313939===D .155315151÷⨯=÷=二、填空题11.已知412x =-,则()21142221x x x x -⎛⎫+⋅= ⎪-+-⎝⎭_________ 12.把31a a-根号外的因式移入根号内,得________ 13.已知实数a 、b 、c 在数轴上的位置如图所示,化简2a ﹣|a ﹣c |+2()c b -﹣|﹣b |=_______.14.把1a-15.如果332y x x --,那么y x =_______________________. 16.3a ,小数部分是b 3a b -=______. 17.化简(32)(322)+-的结果为_________. 18.1+x有意义,则x 的取值范围是____. 19.2121=-+3232=+4343=+20202324320202019+++++……=___________.20.4x -x 的取值范围是_____. 三、解答题21.计算:(18322(2))((25225382+-+. 【答案】(1)52 【分析】(1)先化简二次根式,再合并同类二次根式即可; (2)根据平方差公式化简,再化简、合并同类二次根式即可.【详解】(1==(2))((222+-+=2223--+ =5-4-3+2 =022.先阅读下列解答过程,然后再解答:,a b ,使a b m +=,ab n =,使得22m +==)a b ==>7,12m n ==,由于437,4312+=⨯=,即:227+=,=2===+。
初二数学二次根式试题答案及解析1.与﹣2的乘积是有理数的是()A.﹣2B.C.2﹣D.+2【答案】D.【解析】∵-2的有理化因式为+2,∴与-2的乘积是有理数的是+2,故选D.【考点】分母有理化.2.式子在实数范围内有意义,则x的取值范围是()A.x<1B.x≥1C.x≤﹣1D.x>1【答案】B.【解析】根据二次根式的性质,被开方数大于等于0,所以x﹣1≥0,即x≥1时,二次根式有意义.故选B.【考点】二次根式有意义的条件.3.下列计算中正确的是()A.B.C.D.【答案】C.【解析】根据二次根式的性质化简即可:A.,计算错误;B.,计算错误;C.,计算正确;D.,计算错误.故选C.【考点】二次根式化简.4.当时,二次根式的值为【答案】5.【解析】当时,.【考点】二次根式求值.5.计算:(1);(2)【答案】(1)4;(2).【解析】(1)根据二次根式的性质化简计算.(2)根据分配律和完全平方公式展开后合并同类根式即可.(1)原式=.(2)原式=【考点】二次根式的计算.6.化简的结果 .【答案】【解析】写成分式的形式,然后分子、分母都乘以(1+),化简整理即可..【考点】分母有理化.7.方程的解是 .【答案】1【解析】先进行分母有理化,把所给方程化为一元一次方程,求出方程的解即可.分母有理化得:去分母整理得:;解得x=1.【考点】解一元一次方程.8.是整数,则最小的正整数a的值是。
【答案】5.【解析】由于45a=5×3×3×a,要使其为整数,则必能被开得尽方,所以满足条件的最小正整数a 为5.试题解析:45a=5×3×3×a,若为整数,则必能被开方,所以满足条件的最小正整数a为5.考点: 二次根式的定义.9.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2B.8C.D.【答案】D.【解析】由图表得,64的算术平方根是8,8的算术平方根是.故选D.【考点】算术平方根.10.比较下列各组数的大小:(1)与; (2)与.【答案】(1)>(2)小于【解析】解:(1)因为,,所以.(2)因为,,所以.11.计算:______.【答案】13【解析】12.已知正数的两个平方根是和,则=【答案】49.【解析】∵正数x的两个平方根是m+3和2m-15,∴m+3+2m-15=0,∴3m=12,m=4,∴m+3=7,即x=72=49.【考点】平方根.13. 9的平方根是()A.3B.C.D.【答案】B.【解析】此题主要考查了平方根的定义,易错点正确区别算术平方根与平方根的定义.根据平方根的定义:若一个数的平方等于a,那么这个数就是数a的平方根.∵(±3)2=9,∴±3是9的平方根.故选B.【考点】平方根的定义.14.以下说法正确的是()A.B.C.16的算术平方根是±4D.平方根等于本身的数是1.【答案】A.【解析】A.,正确;B.,故本选项错误;C.16的算术平方根是4,故本选项错误;D.平方根等于本身的数是1和0,故本选项错误.故选A.【考点】1.平方根;2.算术平方根.15.若,则的值为()A.6B.2C.-2D.8【答案】B【解析】由题,得(x-2)2="0," =0,x=2,y=4,故==2,选B.非负数和等于零,要求每一项都要等于零,由题,得(x-2)2="0," =0,x=2,y=4,故==2,选B.【考点】非负数和等于零.16.如图所示,数轴上表示2,的对应点分别为C、B,点C是AB的中点,则点A表示的数是()A. B. C. D.【答案】C.【解析】因为表示2,的对应点分别为C,B,所以CB=,因为点C是AB的中点,则设点A的坐标是x,则,所以点A表示的数是.故选C.【考点】实数与数轴.17.已知是实数,且,则()A.31B.21C.13D.13或21或31【答案】C【解析】由可得,再结合二次根式有意义的条件即可求得x的值,最后代入代数式计算即可.∵∴解得∵即∴∴故选C.【考点】解一元二次方程,二次根式有意义的条件,代数式求值点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.18.(1)计算: ①;②÷(2)解方程:①;②【答案】(1)①;②;(2)①;②【解析】(1)先根据二次根式的性质化简,再合并同类二次根式即可;(2)①先移项,方程两边同加一次项系数一半的平方,再根据完全平方公式分解因式,最后根据直接开平方法求解即可;②先去括号,再移项、合并同类项,最后选择恰当的方法解方程即可. (1)①;②;(2)①解得;②解得.【考点】实数的运算,解一元二次方程点评:点评:计算题是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分. 19.下列实数:,3.14,,,,,,无理数有( )A.2个B.3个C.4个D.5个【答案】B【解析】无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有的数.∵∴无理数有,,共3个,故选B.【考点】无理数的定义点评:本题属于基础应用题,只需学生熟练掌握无理数的三种形式,即可完成.20.请写出一个介于1与2之间的无理数: .【答案】【解析】此题答案不唯一,,,即此无理数只要存在于和之间即可【考点】无理数的定义点评:答案不唯一,此题考查学生对无理数概念的掌握,无理数,即无限不循环小数,且不能化成整数之比21.观察下面的等式:=7,=67,=667,则=6667。
二次根式必考题1.等式3355
x x x x --=--成立的条件是___________.2.若a<0,则23a a --
的值是__________.3.化简3
a a
--的结果是___________.4.化简二次根式3
(0)b a a
<得___________.5.把二次根式1(1)1x x
--中的根号外的因式移到根号内,结果为___________.6.已知234178b a a =-+--,则a-b=.7.若2+26y x x =---,则P(x,y)在第象限.
8.设x 、y 均为实数,且222000442x x y x +-+
-=-,求10xy 的平方根。
9.计算:20192020(223)(223)-+=.10.若244x x -+与1y -互为相反数,则x+y 的值为.11.已知31x =+,求2
2
12x x x -+的值.12.若15
2m +=,152n -=,则m 4+n 4=.
13.已知2323a -
=+,2323
b +=-,求:224a ab b ++的值14.已知2310x x -+=,求2
212x x -的值.15.已知:123
a =+,求2221a a a a -+-的值.16计算:(1)2732863-+(2)(51)(51)+-(3)2(231)-(4)3232
-
+(5)22(23)(23)--+(6)3
(25)(25)25
+---17观察、思考、解答:
222(21)(2)2211322-=-创+=-,反过来222322(2)2211(21)-=-创+=-∴2322(21)-=-,∴32221
-=-(1)仿上例,化简:625-;
(2)若2+n a b m +=,则m 、n 与a 、b 的关系是什么?并说明理由
(3)已知412x =-,求2114()222(1)
x x x x -+-+- 的值(结果保留根号)
【思考题】(1)化简112307210-+-;
(2)当1≤x≤2时,化简2121x x x x --+++.
18观察下列运算过程:21
12121211221(21)(21)(2)1
--====-+++--22113232322332(32)(32)(3)(2)--====-+++--;……
请运用上面的运算方法计算:
(1)1
11223++++…+199100
+(2)1
11133557++++++…+112015201720172019
+++19阅读理解题
阅读材料:小明在一次数学活动中,在研究“面积一定的长方形中,正方形的周长最小”这个问题时,推导出了一个新的结论:“1x x
+(x>0)的最小值是2”推导方法如下:设长方形的面积为1,一边长为x(x>0),则相邻边长为
1x .222211111()()2()2()x x x x x x x x x x
+=+=-+=-+
∵21()x x -≥0;∴21()2x x -+≥2;∴1x x +≥2∴1x x
+的最小值是2,此时x=1(1)问题:利用以上方法,求9x x
+(x>0)的最小值.(2)延伸:利用以上方法,求252x x +
+(x>-2的最小值.。