甘肃省金昌市第一中学2014年高中数学 2.2.6双曲线的简单几何性质教案 新人教A版选修1-1
- 格式:doc
- 大小:308.50 KB
- 文档页数:3
双曲线及其标准方程教案与说明(甘肃)教案内容:一、教学目标1. 让学生理解双曲线的定义及其性质。
2. 引导学生掌握双曲线的标准方程及其变换。
3. 培养学生的数学思维能力,提高学生解决实际问题的能力。
二、教学重难点1. 重点:双曲线的定义、性质、标准方程及其变换。
2. 难点:双曲线标准方程的推导及应用。
三、教学准备1. 教师准备:双曲线的课件、例题、习题。
2. 学生准备:笔记本、文具、已学过的相关知识。
四、教学过程1. 导入:通过复习直线、圆等基本几何图形,引导学生思考双曲线的定义和特点。
2. 新课导入:介绍双曲线的定义,引导学生掌握双曲线的性质。
3. 例题讲解:讲解双曲线的标准方程及其变换,让学生通过例题理解并掌握双曲线的标准方程。
4. 课堂练习:让学生独立完成练习题,巩固双曲线标准方程的知识。
5. 总结:对本节课的内容进行总结,强调双曲线标准方程的重要性和应用。
五、课后作业1. 完成课后习题,加深对双曲线及其标准方程的理解。
2. 结合生活实际,寻找双曲线模型的应用,提高学生的数学应用能力。
说明:本教案根据甘肃地区的教学实际情况编写,注重学生的基本数学素养的培养,难度适中。
在教学过程中,教师要关注学生的学习情况,及时解答学生的疑问,提高学生的学习兴趣和自信心。
通过课后作业的设置,让学生将所学知识应用到实际生活中,提高学生的数学应用能力。
六、教学拓展1. 引导学生探索双曲线的参数方程及其图像。
2. 介绍双曲线在其他领域的应用,如物理学、天文学等。
七、课堂小结1. 回顾本节课所学内容,让学生总结双曲线及其标准方程的知识。
2. 强调双曲线在数学和实际生活中的重要性。
八、课后反思1. 教师对本节课的教学情况进行反思,分析学生的学习效果。
2. 根据学生的反馈,调整教学方法和解题策略,为下一节课做好准备。
九、章节测试1. 设计一份章节测试题,测试学生对双曲线及其标准方程的掌握程度。
2. 及时批改测试题,了解学生的学习状况,为下一步教学提供依据。
一、授课名称:双曲线的简单几何性质二、授课课时:一课时三、授课人:XX四、教学目的:1、知识与技能目标:理解并掌握双曲线的简单几何性质;利用双曲线的几何性质解决双曲线的问题。
2、过程与方法目标:通过类比椭圆的几何性质,得到双曲线的几何性质;通过例题和练习掌握根据条件求双曲线几何性质的相关问题。
3、情感与态度目标:培养学生的知识类比的数学思想和逻辑思维能力;培养学生的方法归纳能力和应用意识。
五、教法:以问题作为导向和课程主线,激发学生求知欲,引导学生探究双曲线的性质学法:从已有知识出发,层层设疑,调动学生自身探索的内驱力,逐步引出双曲线的渐近线,从而突破了本节课难点——渐近线。
六、教学设计:本节课主要通过数形结合,类比椭圆的几何性质,运用现代化教学手段,通过观察,分析,归纳出双曲线的几何性质,在教学过程中可采取设疑提问,重点讲解,归纳总结,引导学生积极思考,鼓励学生合作交流。
七、教学重点:双曲线的几何性质教学难点:双曲线渐近线,离心率的讲解八、教学过程:(1)复习提问导入新课:首先带领学生复习椭圆的几何性质,它有哪些几何性质?(应用范围,对称性,顶点,焦点,离心率,准线是如何探讨的呢?(通过椭圆的标准方程探讨。
让全班同学口答,并及时给以表扬。
接下来让同学回忆双曲线的标准方程是什么?请一名同学回答。
(应为:中心在原点,焦点在x 轴上的双曲线的标准方程为x ²/a ²-y ²/b ²=1; 中心在原点,焦点在y 轴上的双曲线的标准方程为y ²/a ²-x ²/b ²=1 。
回忆完旧知后,根据方程进入探究新知环节中。
(2)引导探索,学习新知1、引导学生完成黑板上关于椭圆与双曲线性质的表格(让学生回答,教师引导,启发,订正并写在黑板上,通过类比联想可以得到双曲线的范围,对称性和顶点。
2、导出渐近线,在学习椭圆时,以原点为中心, 2a,2b 为邻边的矩形,对于估计椭圆的形状, 画出椭圆的简图有很大帮助, 试问对双曲线, 仍然以2a,2b 为邻边做一矩形, 那么双曲线和这个矩形有什么关系呢?这个矩型对于估计和画出双曲线有什么指导意义呢? (不要求学生回答, 只引起学生类比联想。
双曲线的简单几何性质教学设计本教学设计旨在向学生介绍双曲线的简单几何性质,帮助他们理解双曲线的形状及其应用。
教学设计分为三个部分:引入教学、知识讲解及应用实践。
引入教学:
1. 导入:以一个真实生活的例子开始引入,比如一辆汽车以恒定速度在一条高速公路上行驶时,汽车与高速公路之间的距离是如何变化的。
2. 提问:通过向学生提问,引导他们思考距离的变化是否会随着时间变化而改变,进一步引出双曲线的概念。
知识讲解:
1. 定义:简要介绍双曲线的定义,即平面上距离差的绝对值为常数的点的集合。
2. 性质讲解:
a. 双曲线的对称性:双曲线关于两条虚轴对称。
b. 双曲线的渐近线:解释双曲线具有两条渐近线的特点,并引导学生思考渐近线与双曲线的关系。
c. 双曲线的焦点与准线:定义焦点和准线,并说明双曲线焦点到准线的距离是常数。
d. 双曲线的离心率:详细解释双曲线的离心率概念,并介绍离心率与双曲线形状之间的关系。
应用实践:
1. 练习题:给学生提供一些双曲线的练习题,让他们运用所学知识解答。
例如,给定一个双曲线方程,要求学生画出该双曲线及其渐近线,并计算其焦点、离心率等。
2. 实际应用:引导学生思考双曲线在实际生活中的应用,如双曲线在天体力学、射影几何等领域的应用,并鼓励学生自行寻找双曲线的实际应用案例。
通过以上教学设计,学生可以对双曲线的简单几何性质有一个基本的了解。
教师可以通过观察学生在引入教学及应用实践环节的表现来评估学生对双曲线的理解程度。
此外,教师还可以鼓励学生之间的合作与讨论,以促进他们对双曲线概念的深入理解。
课题:双曲线的简单几何性质(1)一.教学目标:1.知识与能力了解双曲线的简单几何性质,如范围、对称性、顶点、渐近线、离心率.2.过程和方法通过观察、类比、探究来认识双曲线的几何性质.3.情感态度与价值观通过类比旧知识,探索新知识,培养学生学习数学的兴趣,探索新知识的能力, 激发学习热情,感受事物之间处处存在联系.二.教材分析:本节课是学生在已掌握双曲线的定义及标准方程之后,在此基础上,反过来利用双曲线的标准方程研究其几何性质。
它是教学大纲要求学生必须掌握的内容,也是高考的一个考点,是深入研究双曲线,灵活运用双曲线的定义、方程、性质解题的基础,更能使学生理解、体会解析几何这门学科的研究方法,培养学生的解析几何观念,提高学生的数学素质。
三.学情分析:学生已经学习了椭圆的标准方程和它的几何性质,并且类比、推导、归纳出了双曲线的标准方程,这节课将进一步研究、归纳出类似于椭圆的几何性质的双曲线的几何性质(范围、对称性、顶点、离心率)和双曲线独有的几何性质(实轴、虚轴、渐近线)。
通过对双曲线性质的探究学习,可使学生在已有的知识结构的基础上,拓展延伸,构建新的知识体系;同时对由方程讨论曲线性质的思想方法有更深刻的认识。
四.重点难点:重点:双曲线的简单几何性质难点:由双曲线的简单几何性质求双曲线的标准方程五.教学过程:1.导入新课:大家首先回顾一下双曲线的定义及其标准方程:(PPT )在椭圆部分,我们曾经从图形和标准方程两个角度来研究椭圆的几何性质。
那么,你认为应该研究双曲线22221(0,0)x y a b a b-=>>的哪些性质呢?(范围、对称性、顶点、离心率等)这就是我们今天要共同学习的内容:双曲线的简单几何性质 2.学案反馈:通过批改学案来了解学生对本节新课的理解和掌握情况,并对学案反馈出的问题做课堂讨论和解决。
同时通过速记、提问方式加强记忆。
3.探究活动:通过阅读教材5856P P -,完成下表合作探究一:已知双曲线方程求性质.144169122近线方程顶点坐标、离心率、渐、焦点坐标、的实半轴长、虚半轴长:求双曲线例=-y x自主学习——组内展开讨论——展示——小组评价 .43,450,40,4-0,50,5-34191622x y a c e b a y x ±======-渐近线方程:离心率))、(顶点坐标())、(焦点坐标(,虚半轴长可得实半轴长程解:把方程化为标准方类题通法:1.求双曲线性质时,应把双曲线方程化为标准方程,注意分清楚焦点位置,这样便于直接的写出a ,b 的数值,进而求出c 。
一、教案内容:《双曲线的简单几何性质》1. 教学目标(1)理解双曲线的定义及标准方程。
(2)掌握双曲线的焦点、实轴、虚轴、顶点等基本几何性质。
(3)能够运用双曲线的性质解决实际问题。
2. 教学重点与难点(1)双曲线的定义及标准方程。
(2)双曲线的焦点、实轴、虚轴、顶点等基本几何性质。
3. 教学方法采用问题驱动法、案例分析法、小组讨论法等,引导学生主动探究、合作交流。
4. 教学过程(1)导入:通过复习椭圆的相关知识,引导学生思考双曲线的定义及性质。
(2)新课讲解:介绍双曲线的定义、标准方程及基本几何性质。
(3)案例分析:分析具体的双曲线例子,让学生加深对双曲线性质的理解。
(4)课堂练习:布置相关的练习题,巩固所学知识。
(5)总结拓展:引导学生思考双曲线在实际问题中的应用。
5. 课后作业(1)复习双曲线的定义及标准方程。
(2)练习双曲线的性质分析。
二、教案内容:《双曲线的焦点与实轴、虚轴的关系》1. 教学目标(1)掌握双曲线的焦点与实轴、虚轴的关系。
(2)能够运用焦点与实轴、虚轴的关系解决实际问题。
2. 教学重点与难点(1)双曲线的焦点与实轴、虚轴的关系。
3. 教学方法采用问题驱动法、案例分析法、小组讨论法等,引导学生主动探究、合作交流。
4. 教学过程(1)导入:复习双曲线的定义及基本几何性质。
(2)新课讲解:介绍双曲线的焦点与实轴、虚轴的关系。
(3)案例分析:分析具体的双曲线例子,让学生加深对焦点与实轴、虚轴关系的理解。
(4)课堂练习:布置相关的练习题,巩固所学知识。
(5)总结拓展:引导学生思考焦点与实轴、虚轴关系在实际问题中的应用。
5. 课后作业(1)复习双曲线的焦点与实轴、虚轴的关系。
(2)练习运用焦点与实轴、虚轴关系解决实际问题。
三、教案内容:《双曲线的顶点与渐近线》1. 教学目标(1)掌握双曲线的顶点与渐近线。
(2)能够运用顶点与渐近线解决实际问题。
2. 教学重点与难点(1)双曲线的顶点与渐近线。
高二数学双曲线的简单几何性质教学设计一、教学目标知识与技能1、知道双曲线的简单几何性质.2﹑能够根据双曲线方程求出双曲线的顶点坐标、实、虚轴长,渐近线方程和离心率。
3、能够根据双曲线的性质得出相应的双曲线方程。
4、理解离心率对双曲线开口大小的影响,能正确说出其中的规律.过程与方法培养学生的观察能力,想象能力,数形结合能力,和研究问题能力,以及类比的学习方法。
情感、态度与价值观培养学生主动探求知识、合作交流的意识,改变学习方式,改善数学学习信念.二、教学重点、难点教学重点:双曲线的离心率和渐近线教学难点:双曲线的离心率对双曲线的刻画,渐近线的含义及离心率与渐近线斜率间的联系三、教学准备学生熟练掌握椭圆的定义﹑标准方程及几何性质,了解双曲线的定义﹑标准方程,认识椭圆和双曲线的内在联系,并掌握几何画板的一般操作步骤。
教师制作PPT课件和易于学生发现和掌握规律的几何画板实验平台。
四、教学过程4.1 创设情境,引入课题复习1、双曲线的定义及标准方程122PF PF a-=,22221x ya b-=或22221y xa b-=(其中222b c a=-)(让学生适当举例)复习2、椭圆的几何性质动画演示平面截圆锥面的过程、椭圆双曲线的生成过程,让学生进一步体会两曲线的内在联系,从而激发探究本课题的动机.4.2 活动探究,认识性质1、范围、对称性、顶点的探究结合椭圆的性质,让学生类比得出双曲线的相关性质,并结合方程加以验证并说出与椭圆的不同.2、双曲线的离心率结合学生的举例利用几何画板画出相应的图形,让学生认识到双曲线从形状上来看有开口大小之分并提出进一步探究方案;在静态图形观察的基础上进行双曲线的动态变化(具体方式可以为a 不变,将c 逐渐增大),从而认识到离心率可以刻画双曲线的张口大小,并得出规律(离心率越大,开口越大).3、双曲线的渐近线在问题(问题1:如何作一双曲线(离心率只是一种感性认识难以外显)?问题2:函数1y x=也是双曲线,如何作其图象?)引导下,学生认识到双曲线的渐近线的概念;在几何画板平台中作两条经过坐标原点且关于y 轴对称的直线,并将它们绕着原点旋转,从而真实感受到渐近线的存在,并发现双曲线夹在两条渐近线之间。
双曲线及其标准方程教案与说明(甘肃)一、教学目标:1. 理解双曲线的定义及其性质。
2. 掌握双曲线的标准方程及其求法。
3. 能够运用双曲线的性质和标准方程解决实际问题。
二、教学内容:1. 双曲线的定义:双曲线是平面上到两个定点(焦点)距离之差为常数的点的轨迹。
2. 双曲线的性质:双曲线是中心对称图形,其两支分别向无穷远延伸,且不存在最大值和最小值。
3. 双曲线的标准方程:双曲线的标准方程为\(\frac{x^2}{a^2} \frac{y^2}{b^2} = 1\)(其中\(a > 0, b > 0\)),其中\(a\) 称为实轴半长,\(b\) 称为虚轴半长。
三、教学重点与难点:1. 教学重点:双曲线的定义、性质及其标准方程。
2. 教学难点:双曲线标准方程的求法和应用。
四、教学方法与手段:1. 教学方法:采用讲解、演示、练习、讨论相结合的方法。
2. 教学手段:利用黑板、PPT、几何画板等教学辅助工具。
五、教学安排:1. 课时:本章共4 课时。
2. 教学过程:第1 课时:介绍双曲线的定义和性质。
第2 课时:讲解双曲线的标准方程及其求法。
第3 课时:练习双曲线标准方程的求解和应用。
六、教学评估:1. 课堂提问:通过提问了解学生对双曲线定义、性质和标准方程的理解程度。
2. 课后作业:布置有关双曲线的练习题,检验学生对知识的掌握情况。
3. 单元测试:进行一次双曲线知识点的测试,全面评估学生的学习效果。
七、教学反思:1. 针对学生的掌握情况,调整教学策略,加强对难点知识点的讲解。
2. 注重培养学生运用双曲线知识解决实际问题的能力。
3. 提高学生对双曲线图像的认识,加强直观教学。
八、拓展与延伸:1. 探讨双曲线在其他领域的应用,如物理学、天文学等。
2. 介绍双曲线的变形式,如双曲函数、双曲线方程的解法等。
3. 引导学生深入研究双曲线的性质,探寻更多规律。
九、课后作业:(1)经过点\(A(2,0)\) 和\(B(-2,0)\) 的双曲线。
《双曲线的几何性质》教案一、教学目标1. 理解双曲线的定义及其标准方程。
2. 掌握双曲线的几何性质,包括焦点、准线、渐近线等。
3. 能够运用双曲线的几何性质解决实际问题。
二、教学内容1. 双曲线的定义及标准方程引导学生回顾椭圆的定义及标准方程,引出双曲线的定义及标准方程。
强调双曲线的关键要素:中心、焦点、实轴、虚轴、顶点等。
2. 双曲线的焦点解释双曲线的焦点概念,引导学生理解焦点与实轴的关系。
引导学生通过实例验证双曲线的焦点性质。
3. 双曲线的准线介绍准线的概念,引导学生理解准线与虚轴的关系。
引导学生通过实例验证双曲线的准线性质。
4. 双曲线的渐近线解释双曲线的渐近线概念,引导学生理解渐近线与双曲线的关系。
引导学生通过实例验证双曲线的渐近线性质。
5. 双曲线的对称性引导学生理解双曲线的对称性,包括轴对称和中心对称。
引导学生通过实例验证双曲线的对称性。
三、教学方法1. 采用问题驱动的教学方法,引导学生通过探索、发现双曲线的几何性质。
2. 利用图形软件或板书,直观展示双曲线的几何性质,帮助学生理解。
3. 提供丰富的实例,引导学生通过实践验证双曲线的几何性质。
四、教学评估1. 课堂练习:布置相关的练习题,检测学生对双曲线几何性质的理解。
2. 小组讨论:组织学生进行小组讨论,促进学生之间的交流与合作。
3. 课后作业:布置相关的作业题,巩固学生对双曲线几何性质的掌握。
五、教学资源1. 教学PPT:制作精美的教学PPT,展示双曲线的几何性质。
2. 图形软件:利用图形软件或板书,展示双曲线的几何性质。
3. 练习题及答案:提供相关的练习题及答案,方便学生自测。
教学反思:本节课通过问题驱动的教学方法,引导学生探索双曲线的几何性质。
通过实例验证,使学生更好地理解双曲线的焦点、准线、渐近线等性质。
利用图形软件或板书进行直观展示,帮助学生形成直观的双曲线几何性质的认识。
在教学过程中,要注意关注学生的学习情况,及时进行反馈和指导。
《双曲线的简单几何性质》教学设计【教材分析】1.教材中的地位及作用本节课是学生在已掌握双曲线的定义及标准方程之后,在此基础上,反过来利用双曲线的标准方程研究其几何性质。
它是教学大纲要求学生必须掌握的内容,也是高考的一个考点,是深入研究双曲线,灵活运用双曲线的定义、方程、性质解题的基础,更能使学生理解、体会解析几何这门学科的研究方法,培养学生的解析几何观念,提高学生的数学素质。
2.教学目标的确定及依据平面解析几何研究的主要问题之一就是:通过方程,研究平面曲线的性质。
教学参考书中明确要求:学生要掌握圆锥曲线的性质,初步掌握根据曲线的方程,研究曲线的几何性质的方法和步骤。
根据这些教学原则和要求,以及学生的学习现状,我制定了本节课的教学目标。
(1)知识目标:①使学生能运用双曲线的标准方程讨论双曲线的范围、对称性、顶点、离心率、渐近线等几何性质;②掌握双曲线标准方程中c b a ,,的几何意义,理解双曲线的渐近线的概念及证明;③能运用双曲线的几何性质解决双曲线的一些基本问题。
(2)能力目标:①在与椭圆的性质的类比中获得双曲线的性质,培养学生的观察能力,想象能力,数形结合能力,分析、归纳能力和逻辑推理能力,以及类比的学习方法;②使学生进一步掌握利用方程研究曲线性质的基本方法,加深对直角坐标系中曲线与方程的概念的理解。
(3)数学核心素养目标:培养学生对待知识的科学态度和探索精神,而且能够运用运动的,变化的观点分析理解事物。
3.重点、难点的确定及依据对圆锥曲线来说,渐近线是双曲线特有的性质,而学生对渐近线的发现与证明方法接受、理解和掌握有一定的困难。
因此,在教学过程中我利用一首情歌《悲伤的双曲线》引入今天的课题,这样一来渐近线的出现学生也易接受。
因此结合学生现有的实际水平和认知能力,我把渐近线和离心率这两个性质作为本节课的重点。
4.教学方法这节课内容是通过双曲线方程推导、研究双曲线的性质,本节内容类似于“椭圆的简单的几何性质”,教学中可以与其类比讲解,让学生自己进行探究,得到类似的结论。
甘肃省金昌市第一中学2014年高中数学 2.2.6双曲线的简单几何性质
教案 新人教A 版选修1-1
了解平面解析几何研究的主要问题:(1)根据条件,求出表示曲线的方程;(2)通过方程,研究曲线的性质.理解双曲线的范围、对称性及对称轴,对称中心、离心率、顶点、渐近线的概念;掌握双曲线的标准方程、会用双曲线的定义解决实际问题;通过例题和探究了解双曲线的第二定义,准线及焦半径的概念,利用信息技术进一步见识圆锥曲线的统一定义.
◆ 过程与方法目标
(1)复习与引入过程 引导学生复习得到椭圆的简单的几何性质的方法,在本节课中不仅要注意通过对双曲线的标准方程的讨论,研究双曲线的几何性质的理解和应用,而且还注意对这种研究方法的进一步地培养.①由双曲线的标准方程和非负实数的概念能得到双曲线的范围;②由方程的性质得到双曲线的对称性;③由圆锥曲线顶点的统一定义,容易得出双曲线的顶点的坐标及实轴、虚轴的概念;④应用信息技术的《几何画板》探究双曲线的渐近线问题;⑤类比椭圆通过56P 的思考问题,探究双曲线的扁平程度量椭圆的离心率.〖板书〗§2.2.2双曲线的简单几何性质.
(2)新课讲授过程
(i )通过复习和预习,对双曲线的标准方程的讨论来研究双曲线的几何性质.
提问:研究双曲线的几何特征有什么意义?从哪些方面来研究?
通过对双曲线的范围、对称性及特殊点的讨论,可以从整体上把握曲线的形状、大小和位置.要从范围、对称性、顶点、渐近线及其他特征性质来研究曲线的几何性质.
(ii )双曲线的简单几何性质
①范围:由双曲线的标准方程得,22
2210y x b a
=-≥,进一步得:x a ≤-,或x a ≥.这说明双曲线在不等式x a ≤-,或x a ≥所表示的区域;
②对称性:由以x -代x ,以y -代y 和x -代x ,且以y -代y 这三个方面来研究双曲线的标准方程发生变化没有,从而得到双曲线是以x 轴和y 轴为对称轴,原点为对称中心; ③顶点:圆锥曲线的顶点的统一定义,即圆锥曲线的对称轴与圆锥曲线的交点叫做圆锥曲线的顶点.因此双曲线有两个顶点,由于双曲线的对称轴有实虚之分,焦点所在的对称轴叫做实轴,焦点不在的对称轴叫做虚轴; ④渐近线:直线b y x a =±叫做双曲线22
221x y a b
-=的渐近线; ⑤离心率: 双曲线的焦距与实轴长的比a
c e =
叫做双曲线的离心率(1e >). (iii )例题讲解与引申、扩展
例3 求双曲线22916144y x -=的实半轴长和虚半轴长、焦点的坐标、离心率、渐近线方程. 分析:由双曲线的方程化为标准方程,容易求出,,a b c .引导学生用双曲线的实半轴长、虚半
轴长、离心率、焦点和渐近线的定义即可求相关量或式子,但要注意焦点在y 轴上的渐近线是a y x b
=±. 扩展:求与双曲线22
1169x y -=
共渐近线,且经过()
3A -点的双曲线的标准方及离心率. 解法剖析:双曲线22
1169
x y -=的渐近线方程为34y x =±.①焦点在x 轴上时,设所求的双曲线为22
221169x y k k -=
,∵()
3A -点在双曲线上,∴214k =-,无解;②焦点在y 轴上时,设所求的双曲线为22221169x y k k -+=
,∵()
3A -点在双曲线上,∴214k =,因此,所求双曲线的标准方程为221944
y x -=,离心率53
e =.这个要进行分类讨论,但只有一种情形有解,事实上,可直接设所求的双曲线的方程为()22
,0169
x y m m R m -=∈≠. 例 4 双曲线型冷却塔的外形,是双曲线的一部分绕其虚轴旋转所成的曲面如图(1),它的最小半径为12m ,上口半径为13m ,下口半径为25m ,高为55m .试选择适当的坐标系,求出双曲线的方程(各长度量精确到1m ).
解法剖析:建立适当的直角坐标系,设双曲线的标准方程为
22
221x y a b
-=,算出,,a b c 的值;此题应注意两点:①注意建立直角坐标系的两个原则;②关于,,a b c 的近似值,原则上在没有注意精确度时,看题中其他量给定的有效数字来决定.
引申:如图所示,在P 处堆放着刚购买的草皮,现要把这些草皮沿着道路PA
或PB 送到呈矩形的足球场ABCD 中去铺垫,已知150AP m =,100BP m =,
60BC m =,60APB ∠=.能否在足球场上画一条“等距离”线,在“等距离”
线的两侧的区域应该选择怎样的线路?说明理由.
解题剖析:设M 为“等距离”线上任意一点,则PA AM PB BM +=+,即50BM AM AP BP -=-=(定值),∴“等距离”线是以A 、B 为焦点的双曲线的左支上的一部分,容易“等距离”线方程为()22
13525,0606253750
x y x y -=-≤≤-≤≤.理由略.
例5 如图,设(),M x y 与定点()5,0F 的距离和它到直线l :165x =的距离的比是常数54,求点M 的轨迹方程.
分析:若设点(),M x y ,则MF =,到直线l :165x =的距离165
d x =-,则容易得点M 的轨迹方程. 引申:用《几何画板》探究点的轨迹:双曲线
若点(),M x y 与定点(),0F c 的距离和它到定直线l :2
a x c =的距离比是常数
c e a
=()0c a >>,则点M 的轨迹方程是双曲线.其中定点(),0F c 是焦点,定直线l :2a x c =相应于F 的准线;另一焦点(),0F c '-,相应于F '的准线l ':2
a x c
=-. ◆ 情感、态度与价值观目标
在合作、互动的教学氛围中,通过师生之间、学生之间的交流、合作、互动实现共同探究,教学相长的教学活动情境,结合教学内容,培养学生科学探索精神、审美观和科学世界观,激励学生创新.必须让学生认同和掌握:双曲线的简单几何性质,能由双曲线的标准方程能直接得到双曲线的范围、对称性、顶点、渐近线和离心率;必须让学生认同与理解:已知几何图形建立直角坐标系的两个原则,①充分利用图形对称性,②注意图形的特殊性和一般性;必须让学生认同与熟悉:取近似值的两个原则:①实际问题可以近似计算,也可以不近似计算,②要求近似计算的一定要按要求进行计算,并按精确度要求进行,没有作说明的按给定的有关量的有效数字处理;让学生参与并掌握利用信息技术探究点的轨迹问题,培养学生学习数学的兴趣和掌握利用先进教学辅助手段的技能.
◆能力目标
(1) 分析与解决问题的能力:通过学生的积极参与和积极探究,培养学生的分析问题和解
决问题的能力.
(2) 思维能力:会把几何问题化归成代数问题来分析,反过来会把代数问题转化为几何问
题来思考;培养学生的会从特殊性问题引申到一般性来研究,培养学生的辩证思维能
力.。