函数解析式的求法(2019年8月整理)
- 格式:ppt
- 大小:374.50 KB
- 文档页数:15
求函数y =Asin(ωx +φ)的解析式(1)(2019·西安八校联考)已知函数f (x )=sin(ωx +φ)(ω>0,-π2≤φ≤π2)的图象上的一个最高点和它相邻的一个最低点的距离为22,且过点⎝ ⎛⎭⎪⎫2,-12,则函数f (x )=sin ⎝ ⎛⎭⎪⎫π2x +π6 . 解析:依题意得22+⎝ ⎛⎭⎪⎫πω2=22,则πω=2,即ω=π2,所以f (x )=sin ⎝ ⎛⎭⎪⎫π2x +φ, 由于该函数图象过点⎝ ⎛⎭⎪⎫2,-12,因此sin(π+φ)=-12,即sin φ=12, 而-π2≤φ≤π2,故φ=π6, 所以f (x )=sin ⎝ ⎛⎭⎪⎫π2x +π6. (2)已知函数f (x )=sin(ωx +φ)(ω>0,|φ|<π2)的部分图象如图所示,则y =f ⎝ ⎛⎭⎪⎫x +π6取得最小值时x 的集合为⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x =k π-π3,k ∈Z .解析:根据所给图象,周期T =4×⎝ ⎛⎭⎪⎫7π12-π3=π,故π=2πω,∴ω=2,因此f (x )=sin(2x +φ),另外图象经过点⎝ ⎛⎭⎪⎫7π12,0,代入有2×7π12+φ=π+2k π(k ∈Z ),再由|φ|<π2,得φ=-π6, ∴f (x )=sin ⎝ ⎛⎭⎪⎫2x -π6,∴f ⎝ ⎛⎭⎪⎫x +π6=sin ⎝ ⎛⎭⎪⎫2x +π6, 当2x +π6=-π2+2k π(k ∈Z ), 即x =-π3+k π(k ∈Z )时, y =f ⎝ ⎛⎭⎪⎫x +π6取得最小值.确定y =A sin(ωx +φ)+B (A >0,ω>0)的解析式的步骤(1)求A ,B ,确定函数的最大值M 和最小值m ,则A =M -m 2,B =M +m 2.(2)求ω,确定函数的周期T ,则ω=2πT . (3)求φ,常用方法有:①代入法:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入.②五点法:确定φ值时,往往以寻找“五点法”中的特殊点作为突破口.具体如下:“第一点”(即图象上升时与x 轴的交点)为ωx +φ=0;“第二点”(即图象的“峰点”)为ωx +φ=π2;“第三点”(即图象下降时与x 轴的交点)为ωx +φ=π;“第四点”(即图象的“谷点”)为ωx +φ=3π2;“第五点”(即图象上升时与x 轴的交点)为ωx +φ=2π.(1)(2019·长沙模拟)已知函数f (x )=A sin(ωx +φ),x ∈R ⎝ ⎛⎭⎪⎫其中A >0,ω>0,-π2<φ<π2,其部分图象如图所示,将f (x )的图象纵坐标不变,横坐标变为原来的2倍,再向右平移1个单位长度得到g (x )的图象,则函数g (x )的解析式为( B )A .g (x )=sin π2(x +1)B .g (x )=sin π8(x +1)C .g (x )=sin ⎝ ⎛⎭⎪⎫π2x +1D .g (x )=sin ⎝ ⎛⎭⎪⎫π8x +1解析:由题图可得f (x )=sin ⎝ ⎛⎭⎪⎫π4x +π4,横坐标变为原来的2倍得f (x )=sin ⎝ ⎛⎭⎪⎫π8x +π4,再向右平移1个单位长度,得g (x )=sin ⎣⎢⎡⎦⎥⎤π8(x -1)+π4=sin ⎝ ⎛⎭⎪⎫π8x +π8=sin π8(x +1). (2)已知函数y =f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-5π12+k π,π12+k π(k ∈Z ) .解析:由图可知T 4=π3-π12=π4,A =2, 即T =π,A =2,故ω=2πT =2,又f ⎝ ⎛⎭⎪⎫π12=2,所以2×π12+φ=π2,故φ=π3,所以f (x )=2sin ⎝ ⎛⎭⎪⎫2x +π3, 由-π2+2k π≤2x +π3≤π2+2k π(k ∈Z )得-5π12+k π≤x ≤π12+k π(k ∈Z ),故f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤-5π12+k π,π12+k π(k ∈Z ).。
高中数学人教A 版(2019)必修一 第三章 第一节 函数的解析式的求法一、单选题(共4题;共8分)1.(2分)若函数f(x−1x )=1x 2−2x+1,则函数g(x)=f(x)−4x 的最小值为( )A .-1B .-2C .-3D .-42.(2分)若f(1x )=x+1x2,则有( )A .f(x)=x 2+1B .f(x)=x 2+xC .f(x)=x 2+x(x ≠0)D .f(x)=x 2+1(x ≠0)3.(2分)已知f(x −1)=x 2+4x −5,则f(x)的解析式是( )A .f(x)=x 2+6xB .f(x)=x 2+8x +7C .f(x)=x 2+2x −3D .f(x)=x 2+6x −104.(2分)已知 f(x)+2f(−x)=3x 2−x ,则 f(x)= ( )A .x 2+xB .x 2C .3x 2+xD .x 2+3x二、多选题(共2题;共6分)5.(3分)已知函数f(√x −1)=2x +√x −3,则( )A .f(1)=7B .f(x)=2x 2+5xC .f(x)的最小值为−258D .f(x)的图象与x 轴只有1个交点6.(3分)已知f(x-1)=x 2,则下列结论正确的是( )A .f(−3)=4B .f(x)=(x +1)2C .f(x)=x 2D .f (3)=16三、填空题(共3题;共3分)7.(1分)若函数 f(√x +1)=x −1 ,则 f(x)= .8.(1分)已知函数 f(x) 满足 f(2x +1)=x 2−2x ,则 f(2) 的值为 . 9.(1分)若函数f(2x +1)=x +1,则f(1−x)= .四、解答题(共9题;共85分)10.(10分)求下列函数的解析式:(1)(5分)已知二次函数f(x)满足f(0)=1,且f(x +1)−f(x)=2x ; (2)(5分)已知函数f(x)满足:f(√x +1)=x −2√x ;11.(10分)已知函数g(√x +2)=x +2√x +1(1)(5分)求函数g(x)的解析式;(2)(5分)设f(x)=g(x)−2x x,若存在x ∈[2,3]使f(x)−kx ≤0成立,求实数k 的取值范围.12.(10分)已知二次函数f(x)=ax 2+bx +c .(1)(5分)若函数满足f(x +1)−f(x)=2x +2,且f(0)=1.求f(x)的解析式;(2)(5分)若对任意x ∈R ,不等式f(x)≥2ax +b 恒成立,求b 24(a 2+c 2)的最大值.13.(10分)求下列函数的解析式(1)(5分)已知f(x)是一次函数,且满足3f(x +1)−2f(x −1)=2x +17,求f(x); (2)(5分)若函数f(√x +1)=x −1,求f(x).14.(10分)已知二次函数f(x)=ax 2+bx +c 的图象与x 轴交于点(1,0)和(2,0),与y 轴交于点(0,2).(1)(5分)求二次函数f(x)的解析式;(2)(5分)若关于x 的不等式f(x)≤tx 2−(t +3)x +3对一切实数x 恒成立,求实数t 的取值范围.15.(10分)已知函数 f(x) 满足 f(x)+2f(1x)=3x .(1)(5分)求函数 f(x) 的解析式;(2)(5分)判断函数 f(x) 在 (0,+∞) 上的单调性,并用定义证明.16.(10分)若 f(x) 是定义在 R 上的二次函数,对称轴 x =−12,且 f(1)=3 , f(0)=1 .(1)(5分)求函数 f(x) 的解析式;(2)(5分)设函数 g(x)=kx 2+2kx +1(k ≠0) ,若对 ∀x 1∈[−2,2] , ∃x 2∈[−1,2] , f(x 1)=g(x 2) ,求实数 k 的取值范围.17.(5分)若 f(x) 是二次函数,且满足 f(0)=3 , f(x −1)−f(x)=−4x ,求 f(x) 的解析式.18.(10分)(1)(5分)已知f(x)是一次函数,且满足3f(x +1)−2f(x −1)=2x +17,求f(x)的解析式; (2)(5分)已知函数f(x)={x +2(x ≤1)x 2(1<x <2)2x(x ≥2)①求f(2),f(12),f[f(−1)];②若f(a)=3,求a的值.答案解析部分1.【答案】D【解析】【解答】因为f(x−1x )=1x 2−2x +1=x 2−2x+1x 2=(x−1x )2, 所以f(x)=x 2(x ≠1).从而g(x)=x 2−4x =(x −2)2−4, 当x =2时,g(x)取得最小值,且最小值为-4. 故答案为:D【分析】由配方法求得f(x)=x 2(x ≠1),进而得到g(x)=x 2−4x ,即可求解。
一、待定系数法:1、已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .2、已知二次函数()x f 满足()()2--2-x f x f =,且图象在y 轴上的截距为1,被x 轴截得的线段长为22,求函数()x f 的解析式。
3、已知函数f(x)是一次函数,且满足关系式3f(x+1)-2f(x-1)=2x+17,求f(x)的解析式。
4、求一次函数f(x),使f[f(x)]=9x+1;二、配凑法:5、已知221)1(x x x x f +=+ )0(>x ,求 ()f x 的解析式6、已知函数()11-23+=-x -x x x f ,求()x f 的解析式。
7、(1)已知f(x-1)= 2x -4x ,解方程f(x+1)=0. (2)若x x x f 2)1(+=+,求)(x f8、(1)已知x x x f 2)1(+=+,求)1(+x f (2)已知 ()211xf x x =++,求()f x .9、已知x ≠0,函数f (x )满足f (x x 1-)=x 2+21x ,求f (x )四、代入法:10、已知:函数)(2x g y x x y =+=与的图象关于点)3,2(-对称,求)(x g 的解析式11、已知函数()x x x f 22+=,求函数()1-x f y =的解析式。
已知)3(41)(,2)(2+=+=x x g a x x f ,若g[f(x)]=x 2+x+1,则a=_____________.12、已知f(1-cosx)=sin 2x ,则f(x)=______________.已知f(cosx)=cos5x ,则f(sinx)=______________.13、已知)3(41)(,2)(2+=+=x x g a x x f ,若g[f(x)]=x 2+x+1,则a=_____________.五、构造方程组法:14、设,)1(2)()(x x f x f x f =-满足求)(x f 15、已知3f(x)+f(x 1)=x ,求f(x)16、已知函数()x f 满足2()x x f x f 31=⎪⎭⎫⎝⎛+,求函数()x f 的解析式。
二次函数三种解析式的求法二次函数是高中数学中的重要概念,它的解析式有三种常见的求法。
本文将分别介绍这三种求法,并且给出相应的例题加以说明。
第一种求法是通过顶点坐标和另一点坐标来确定二次函数的解析式。
二次函数的标准形式为f(x) = a(x-h)² + k,其中(h,k)为顶点坐标。
假设已知顶点坐标为(h,k),另一个已知点的坐标为(x₁,y₁),我们可以将这两个点的坐标代入二次函数的标准形式,得到两个方程:k = a(x-h)²y₁ = a(x₁-h)² + k通过解方程组,我们可以求解出a的值,进而得到二次函数的解析式。
例如,已知二次函数过点(2,5),顶点坐标为(-1,3),我们可以代入上述方程组进行求解。
将顶点坐标代入第一个方程,可得:3 = a(2-(-1))²解得a = 1/3。
然后将a的值代入第二个方程,可得:5 = (1/3)(2-(-1))² + 3化简后得到二次函数的解析式为f(x) = (1/3)(x+1)² + 3。
第二种求法是通过顶点坐标和对称轴与顶点的距离来确定二次函数的解析式。
对称轴与顶点的距离等于顶点的纵坐标的绝对值,即|k|。
假设已知顶点坐标为(h,k),对称轴与顶点的距离为|k|,我们可以将这些信息代入二次函数的标准形式,得到方程:f(x) = a(x-h)² + k代入|k|,可得:f(x) = a(x-h)² + |k|通过解这个方程,我们可以求解出a的值,进而得到二次函数的解析式。
例如,已知二次函数过点(2,5),顶点坐标为(-1,3),对称轴与顶点的距离为3。
我们可以代入上述方程进行求解。
将顶点坐标代入方程,可得:5 = a(2-(-1))² + 3化简后得到a = 1/3。
然后将a的值代入方程,可得:f(x) = (1/3)(x+1)² + 3这就是二次函数的解析式。
函数解析式的求解及常用方法(知识点)02【课程要求】掌握函数解析式的求法一、直接代入法已知()f x 的解析式,求()()f g x 的解析式常用此法,如已知()21f x x =+,则()()2221211442f x x x x +=++=++,()()()2242112f f x x x x =++=++. 二、配凑法已知()()f g x 的解析式,要求()f x 的解析式时,可从()()f g x 的解析式中配凑出()g x ,即把解析式变为关于()g x 的表达式,然后再把解析式两边的()g x 换为x 即可.如)1f x =+)211-的形式再求解,或者已知2211f x x x x ⎛⎫+=+ ⎪⎝⎭,可以将右边凑成212x x ⎛⎫+- ⎪⎝⎭的形式再求解. 补充说明:此时需要注意()g x 本身的范围(值域)就代表()f x 的定义域.三、换元法已知已知()()f g x 的解析式,要求()f x 的解析式时也可以令()t g x =,反解此方程(即用t 去表示x ),将解得的结果带入到解析式中,从而求出()f t 的解析式,再把解析式中的t 换为x 即可,如上面的)1f x =+,令1t =,解得()21x t =-,带入到等号右边得到()21f t t =-,再变换自变量得到()21f x x =-.四、待定系数法如果已知函数类型,可待定出函数的解析式,在利用条件制造方程(组)求出参数,由此确定函数的解析式,如已知二次函数()f x 经过原点且在2x =时取得最大值4,要求()f x 解析式,可根据题意待定()f x 的解析式为()()()2240f x a x a =-+<,再利用()00f =解出1a =-,带回原解析式得到()24f x x x =-.五、联立方程组法已知()f x 与()()f g x 满足的关系式,要求()f x 解析式,可用()g x 代替两边所有的x ,得到关于()f x 与()()f g x 的方程组,然后类比于二元一次方程组解法,消去()()f g x 解出()f x 即可.常见的含有()f x 与1f x ⎛⎫± ⎪⎝⎭,()f x 与()f a x -时,可将原式中的x 用1x ±或a x -代替,从而得到另一个同时含有()f x 与1f x ⎛⎫± ⎪⎝⎭或()f x 与()f a x -的关系式,将两个关系式联立方程组解出()f x . 六、特殊值法(赋值法)所给函数方程含有两个变量时,可对这两个变量交替用特殊值带入,或使这两个变量相等带入,再利用已知条件,可求出未知的函数.但此处的难点是取什么特殊值才对题目有效,这要根据题目特征而定。
一)求函数的解析式1、函数的解析式表示函数与自变量之间的一种对应关系,就是函数与自变量建立联系的一座桥梁,其一般形式就是y =f(x),不能把它写成f(x,y)=0;2、求函数解析式一般要写出定义域,但若定义域与由解析式所确定的自变量的范围一致时,可以不标出定义域;一般地,我们可以在求解函数解析式的过程中确保恒等变形;3、求函数解析式的一般方法有:(1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y 。
(2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值;(3)换元法:若给出了复合函数f [g(x)]的表达式,求f(x)的表达式时可以令t =g(x),以换元法解之;(4)构造方程组法:若给出f(x)与f(-x),或f(x)与f(1/x)的一个方程,则可以x 代换-x(或1/x),构造出另一个方程,解此方程组,消去f(-x)(或f(1/x))即可求出f(x)的表达式;(5)根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出y 的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定。
(二)求函数定义域1、函数定义域就是函数自变量的取值的集合,一般要求用集合或区间来表示;2、常见题型就是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;4、对复合函数y =f [g(x)]的定义域的求解,应先由y =f(u)求出u 的范围,即g(x)的范围,再从中解出x 的范围I1;再由g(x)求出y =g(x)的定义域I2,I1与I2的交集即为复合函数的定义域;5、分段函数的定义域就是各个区间的并集;6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;(三)求函数的值域1、函数的值域即为函数值的集合,一般由定义域与对应法则确定,常用集合或区间来表示;2、在函数f:A→B 中,集合B 未必就就是该函数的值域,若记该函数的值域为C,则C 就是B 的子集;若C =B,那么该函数作为映射我们称为“满射”;3、分段函数的值域就是各个区间上值域的并集;4、对含参数的函数的值域,求解时须对参数进行分类讨论;叙述结论时要就参数的不同范围分别进行叙述;5、若对自变量进行分类讨论求值域,应对分类后所求的值域求并集;6、求函数值域的方法十分丰富,应注意总结函 数 解 析 式 的 七 种 求 法一、 待定系数法:在已知函数解析式的构造时,可用待定系数法。
函数解析式的求法1.待定系数法例1.求一次函数y=f(x)解析式,使f(f(x))=4x+3.解:设f(x)=ax+b(a≠0).∴f(f(x))==af(x)+b=a(ax+b)+b=a^2x+ab+b∴a^2x+ab+b=4x+3∴a^2=4,ab+b=3解得a=2,b=1或a=-2,b=-3.∴f(x)=2x+1或f(x)=-2x-3.总结:当已知函数类型时,求函数解析式,常用待定系数法。
其基本步骤:设出函数的一般式,代入已知条件通过解方程(组)确定未知系数。
2.换元法换元法就是引进一个或几个新的变量来替换原来的某些量的解题方法,它的目的是化繁为简、化难为易,以快速的实现从未知向已知的转换,从而达到顺利解题的目的。
常见换元法是多种多样的,如局部换元、整体换元、分母换元、平均换元等,应用极为广泛。
例2.已知f(1-√x)=x.求f(x).解:设1-√x=t,则x=(1-t)^2∵x≥0,∴t≤1,∴f(t)=(1-t)^2(t≤1)∴f(x)=(1-x)^2(x≤1)(函数变量的无关性)总结:(1)利用换元法解题时,要注意在换元时易引起定义域的变化,所以最后的结果要注意所求函数的定义域。
(2)函数变量的无关性,变量无论是用x还是用t表示,都无关紧要,函数依然成立。
3.配凑法例3.已知f(3x+1)=9x^2-6x+5,求f(x).解:∵f(3x+1)=9x^2-6x+5=(3x+1)^2-12x+4=(3x+1)^2-4(3x+1)+8∴f(x)=x^2-4x+8总结:当已知函数表达式比较简单时,可直接应用配凑法,即根据具体的解析式凑出复合变量的形式,从而求出函数解析式。
4.消元法(又叫解方程组法)例4.已知函数f(x)满足条件:f(x)+2f(1/x)=x,求f(x).分析:用1/x代替条件方程中的x得:f(1/x)+2f(x)=1/x.把它与原条件式联立。
用消元法消去f(1/x),即得f(x)的解析式。
函 数1:设,A B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的 ,在集合B 中都有 和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数,记做2:对于函数(),y f x x A =∈,其中x 叫做自变量,x 的取值范围A 叫做 ;与x 的值相对应的y 值叫做 ,函数值的集合{}()|f x x A ∈叫做函数的 3:函数的三要素为 、 、 ,两个函数当且仅当 分别相同时,二者才能称为同一函数。
4:函数的表示法有 、 、 .5:在函数定义域内,对于自变量x 的不同取值范围,有着不同的对应法则,这样的函数通常叫 ,它是一个函数,而不是几个函数;分段函数的定义域是各段函数定义域的并集,值域也是各段函数值域的并集。
函数解析式的四种求法:(1):换元法 (2):配凑法(3):待定系数法 (4):构造方程组法1:确定下列函数的解析式(1) 已知1)(2+=x x f ,求)1(+x f(2) 已知11)1(2++=+)(x x f ,求)(x f(3)(换元法,配凑法)已知23)1(2++=+x x x f ,求()f x(4)(配凑法):已知2211()f x x x x+=+,求()f x (5) (待定系数法)设)(x f 是一次函数,且34)]([+=x x f f ,求)(x f(6)(构造方程组法)已知12()()f f x x x+=,求()f x2:求下列函数的定义域1:21()3f x x =- 2:y = 3:y = 4:()f x =5:()01()x f x x x +=- 6:2(0)()2(01)(14)x x f x x x x ⎧-<⎪=≤<⎨⎪-≤≤⎩ 7: 1122---=x x y1.函数值域的求法:①直接法:利用常见函数的值域来求.②配方法:转化为二次函数,利用二次函数的特征来求值;常转化为型如:),(,)(2n m x c bx ax x f ∈++=的形式;③分式转化法(或改为“分离常数法”)④换元法:通过变量代换转化为能求值域的函数,化归思想⑤利用某些函数的有界性:转化为只含正弦、余弦的函数,运用三角函数有界性来求值域;⑥基本不等式法:转化成型如)0(>+=k x k x y ,利用均值不等式公式或单调性来求值域;⑦数形结合:根据函数的几何图形,利用数型结合的方法来求值域. 2.确定函数的值域的原则:定义域优先原则3:求下列函数的值域:1: )322R x x x y ∈-+=( 2:]2,1[,322∈-+=x x x y 3 113+-=x x y 4:1222+-=x x y 5: 5212+-=x x y 6: 542++-=x x y7: x x y 21--= 8:()212log 45y x x =-+9:2sin 3sin 4y x x =-+ 10: 1sin 21sin 2-+=x x y11: sin 1cos 2x y x +=+ 12:1y x x =+(0)x >两个函数相等的条件:定义域和对应法则相同4:判断下列各组中的两个函数是否是同一函数1.3)5)(3(1+-+=x x x y 52-=x y 2。
函数解析式的七种求法一、通过给定的输入和输出求解析式。
这是最简单直接的方法,当给定了函数的输入和输出时,可以利用这些已知信息求解析式。
例如,如果一个函数在输入为1时输出为3,在输入为2时输出为5,我们可以直接写出函数解析式为f(x)=2x+1二、基于已知函数的变换求解析式。
对于已知的一些基本函数,例如线性函数、多项式函数、指数函数、对数函数等,我们可以通过对它们进行变换得到其他函数的解析式。
例如,如果已知函数f(x)=x^2,我们可以通过对f(x)进行变换得到f(x)=(x-1)^2+1三、利用函数的性质和特点求解析式。
对于一些特殊函数,例如奇函数、偶函数、周期函数等,可以利用它们的性质和特点来求解析式。
例如,如果一个函数是奇函数,那么它的解析式中只包含奇次幂项,可以利用这个特点来求解析式。
四、利用已知函数的级数展开求解析式。
对于一些复杂的函数,可以利用已知函数的级数展开进行逼近,从而得到函数的解析式。
例如,可以利用泰勒级数展开求得函数的解析式,只需要计算到足够高的阶数即可。
五、利用已知函数的导数和积分求解析式。
对于一些函数,可以通过对它们的导数和积分进行运算得到其他函数的解析式。
例如,如果已知一个函数的导数或积分,可以通过对这个导数或积分进行逆运算来求得函数的解析式。
六、基于已知函数的函数逼近求解析式。
对于一些复杂的函数,可以利用一些已知的简单函数进行逼近,从而得到函数的解析式。
例如,可以利用多项式函数对一个非多项式函数进行逼近,从而得到函数的解析式。
七、利用差分方程或微分方程求解析式。
对于一些具有差分方程或微分方程性质的函数,可以通过求解这些方程来得到函数的解析式。
例如,可以利用差分方程或微分方程求解线性递推函数的解析式。
以上是七种常用的求解函数解析式的方法。
不同方法适用于不同情况,根据具体的问题和已知信息选择合适的方法可以更高效地求解函数的解析式。