十年高考——导数理科解答题
- 格式:pptx
- 大小:2.17 MB
- 文档页数:12
一、解答题1. 解:(Ⅰ) 函数()f x 的定义域为(0,)+∞,'112()e ln e e e .xx x x a b b f x a x x x x--=+-+ 由题意可得'(1)2,(1) e.f f ==故1,2a b ==.(Ⅱ)由(Ⅰ)知12e ()e ln ,x xf x x x-=+从而()1f x >等价于2ln e .e x x x x ->- 设函数()ln g x x x =,则()1ln g x x '=+,所以当1(0,)ex ∈时,'()0g x <;当1(,)ex ∈+∞时,'()0gx >,故()g x 在1(0,)e 单调递减,在1(,)e+∞单调递增,从而()g x 在(0,)+∞的最小值为11().e eg =-.设函数2()e ex h x x -=-,则'()e (1)x h x x -=-,所以当(0,1)x ∈时,'()0h x >;当(1,)x ∈+∞时,'()0h x <,故()h x 在(0,1)上单调递增,在(1,)+∞上单调递减,从而()h x 在(0,)+∞的最大值为1(1)eh =-. 综上,当0x >时,()()g x h x >,即()1f x >.2. 解题指南(1)根据导数公式求出函数的导数,利用分类讨论思想求解;(2)根据函数的单调性以及函数极值与导数的关系式确定函数的极值点,代入函数中求解.解析(1)2/222(2)24(1)()1(2)(1)(2)a x x ax a f x ax x ax x +-+-=-=++++ (*)当1a ≥时,/()0f x >,此时,()f x 在区间(0,)+∞上单调递增.当01a <<时,由/()0f x =得1x =(2x =-. 当1(0,)x x ∈时,/()0f x <;当1(,)x x ∈+∞时,/()0f x >.故()f x 在区间1(0,)x 上单调递减,在区间1(,)x +∞上单调递增. 综上所述,当1a≥时,()f x 在区间(0,)+∞上单调递增.当01a <<时,()f x 在区间上单调递减,在区间)+∞上单调递增. 由(*)式知,当1a≥时,/()0f x >,此时()f x 不存在极值点,因而要使得()f x 有两个极值点,必有01a <<.又()f x 的极值点只可能是1x =2x =-1x a >-且2x ≠-,所以1a ->-且2--,解得12a ≠-此时,由(*)式易知,12,x x 分别是()f x 的极小值和极大值点,而12()()f x f x +=12121222ln(1)ln(1)22x x ax ax x x +-++-++ 21212121212124()ln[1()]2()4x x x x a x x a x x x x x x ++=+++-+++224(1)2ln(21)ln(21)22121a a a a a -=--=-+---令21a x -=,则01a <<且12a ≠-知:当102a <<时,10x -<<;当112a <<时,01x <<.记22()ln 2g x x x=+-, (Ⅰ)当10x -<<时,2()2ln()2g x x x =-+-,所以/222222()0x g x x x x -=-=< 因此,()g x 在区间(1,0)-上单调递减,从而()(1)40g x g <-=-<,故当102a <<时, 12()()0f x f x +<.(Ⅱ)当01x <<时,2()2ln 2g x x x =+-,所以/222222()0x g x x x x-=-=< 因此,()g x 在区间(0,1)上单调递减,从而()(1)0g x g >=,故当时112a <<,12()()0f x f x +>. 综上所述,满足条件的a 的取值范围为1(,1)2.3. (1)证明:因为对任意x ∈R ,都有()()e e e e ()x x x x f x f x -----=+=+=,所以f (x )是R 上的偶函数.(2)解:由条件知(ee 1)e 1xx x m --+-≤-在(0,+∞)上恒成立.令t = e x (x >0),则t >1,所以m ≤21111111t t t t t --=--+-++-对于任意t >1成立.因为11111t t -++≥- = 3,所以1113111t t -≥--++-, 当且仅当t = 2,即x = ln2时等号成立.因此实数m 的取值范围是1,3⎛⎤-∞- ⎥⎝⎦.(3)解:令函数31()e (3)e xx g x a x x =+--+,则21()e 3(1)ex xg x a x '=-+-. 当x ≥1时,1e 0ex x ->,x 2 – 1≥0,又a >0,故g ′(x )>0,所以g (x )是[1,+∞)上的单调增函数, 因此g (x )在[1,+∞)上的最小值是1(1)e e 2g a -=+-.由于存在x 0∈[1,+∞),使0030e e (3)0x x a x x -+--+<成立,当且仅当最小值g (1)<0, 故1e+e 20a --<,即1e e 2a -+>.令函数()(e 1)ln 1h x x x =---,则()1h x '=-e 1x-,令h ′(x ) = 0,得e 1x =-. 当(0,e 1)x ∈-时,h ′(x )<0,故h (x )是(0,e 1)-上的单调减函数. 当x ∈(e – 1,+∞)时,h ′(x )>0,故h (x )是(e – 1,+∞)上的单调增函数. 所以h (x )在(0,+∞)上的最小值是(e 1)h -.注意到h (1) = h (e) = 0,所以当(1,e 1)x ∈- ⊆(0,e 1)-时,(e 1)h -)≤h (x )<h (1) = 0; 当(e 1,e)(e 1,)a ∈-⊆-+∞时,h (x )<h (e) = 0,所以h (x )<0对任意的x ∈(1,e)成立.①当a ∈1e e ,e 2-⎛⎫+ ⎪⎝⎭⊆(1,e)时,h (a )<0,即1(e 1)ln a a -<-,从而1e 1e a a --<;②当a = e 时,1e 1ea a --<;③当(e,)(e 1,)a ∈+∞⊆-+∞时,h (a )>h (e) = 0,即1(e 1)ln a a ->-,故1e 1e a a -->.综上所述,当a ∈1e e ,e 2-⎛⎫+⎪⎝⎭时,1e 1e a a --<,当a = e 时,1e 1e a a --=,当(e,)a ∈+∞ 时,1e 1e a a -->.4. 解题指南:(I )利用'()f x 为偶函数和()yf x 在点(0,(0))f 处的切线的斜率为4c -建立关于,a b 的方程求解.(II )利用基本不等式求解.(III)需对c 进行分类,讨论方程'()0f x =是否有实根,从而确定极值.解析:(I )对()f x 求导得'22()22xxf x ae bec -=+-,由()f x '为偶函数,知'()'()f x f x -=,即222()()0x x a b e e --+=,因220x x e e -+>,所以a b =. 又'(0)224f a b c c =+-=-,故1,1a b ==. (II )当3c =时,22()3x x f x e e x -=--,那么'22()223310,x x f x e e -=+-≥=>故()f x 在R 上为增函数.(III)由(Ⅰ)知'22()22x x f x e e c -=+-,而22224,x x e e -+≥=当0x =时等号成立. 下面分三种情况进行讨论.当4c <时,对任意22,()220x x x R f x e e c -'∈=+->,此时()f x 无极值; 当4c =时,对任意220,()220x x x f x e e c -'≠=+->,此时()f x 无极值;当4c >时,令2xe t =,注意到方程220t c t+-=有两根1,20t =>, 即'()0f x =有两根112211ln ln 22x t x t ==或. 当12x x x <<时,'()0f x <;又当2x x >时,'()0f x >,从而'()f x 在2x x =处取得极小值; 综上,若'()f x 有极值,则c 取值范围为()4,+∞.5. 解题指南(1)先求导数,结合解不等式求解函数的单调区间;(2)利用单调性与导数的关系求解字母的取值范围.解析⑴当4b =时,2()(4f x x x =++定义域为12(,)-∞,212()(24)(44)(2)f x x x x '=+++⨯-=.令()0f x '=,解得12x =-,20x =. 当2x <-或120x <<时,()0f x '<;当20x -<<时,()0f x '>.所以()f x 在(,2)-∞-,12(0,)上单调递减;在(2,0)-上单调递增.所以当2x =-时,()f x 取得极小值(2)0f -=;当0x =时,()f x 取得极大值(0)4f =. ⑵因为()f x 在13(0,)上单调递增,所以()0f x '≥,且不恒等于0对13(0,)x ∈恒成立.2212()(2)()(2)f x x b xbx b '=+++⨯-=,所以25320x bx x --+≥,得min 253()x b -≤.因为1252513339x-⨯->=,所以19b ≤,故b 的取值范围为19(,]-∞.6. 解析:(Ⅰ)对()f x 求导得222(6)(3)3(6)'(),()x x x xx a e x ax e x a x af x e e +-+-+-+== 因为()f x 在0x=处取得极值,所以'(0)0f =即0a =.当0a =时,()f x =22336,'(),x xx x x f x e e-+=故33(1),'(1),f f e e ==从而()f x 在点(1,(1)f )处的切线方程为33(1),y x e e-=-化简得30.x ey -=(Ⅱ)由(Ⅰ)知23(6)'().xx a x af x e-+-+= 令2()3(6),g x xa x a =-+-+由()0g x =解得2212636636,.66a a a a x x --+-++==当1x x <时,()0g x <,即'()0f x <,故()f x 为减函数; 当12x x x <<时,()0g x >,即'()0f x >,故()f x 为增函数;当2x x >时,()0g x <,即'()0f x <,故()f x 为减函数;由()f x 在[)3,+∞上为减函数,知226363,6a a x -++=≤解得9,2a ≥- 故a 的取值范围为9,.2⎡⎫-+∞⎪⎢⎣⎭考点分类第四章 考点一、导数的概念、运算及其几何意义;考点二、导数的应用;第九章 考点一、不等关系与一元二次不等式7. 解:(1)∵22'()2(1)(1)0x x x f x x x x =++=+≥e e e (仅当1x =-时取等号),∴()f x 的单调递增区间为(,)-∞+∞. (2)∵(0)10f a =-<,2(ln )(ln )0f a a a =>,∴()f x 在单调递增区间(,)-∞+∞上仅有一个零点. (3)由题意知'()0P f x =,又仅'(1)0f -=,得1P x =-,2P y a =-e,由题意知'()OP f m k =,得22(1)m m a +=-e e,要证321m a ≤--e ,即要证32(1)m a +≤-e,只需证32(1)(1)m m m +≤+e ,即要证1m m +≤e ,①设()1m g m m =+-e ,则'()1m g m =-e , 又'()00g m m ⇔==,∴()g m 在(,0)-∞上递增,在(0,)∞+上递减。
专题03 导数及其应用【2021年乙卷】安徽、河南、山西、江西、甘肃、陕西、黑龙江、吉林、宁夏、新疆、青海、内蒙古1. 设0a ≠,若x a =为函数()()()2f x a x a x b =--的极大值点,则( )A. a b <B. a b >C. 2ab a <D. 2ab a >【2021年甲卷】贵州、云南、四川、西藏、广西 2. 曲线212x y x -=+在点()1,3--处的切线方程为__________.【2021年新课标1卷】山东、广东、河北、江苏、湖北、湖南、福建 3. 若过点(),a b 可以作曲线e x y =的两条切线,则( ) A. e b a < B. e a b < C. 0e b a << D. 0e a b <<【2021年新课标1卷】山东、广东、河北、江苏、湖北、湖南、福建 4. 函数()212ln f x x x =--的最小值为______.【2020年】5.(2020·新课标Ⅰ)函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为( ) A. 21y x =-- B. 21y x =-+ C. 23y x =-D. 21y x =+6.(2020·新课标Ⅲ)若直线l 与曲线yx 2+y 2=15都相切,则l 的方程为( ) A. y =2x +1 B. y =2x +12 C. y =12x +1 D.y =12x +12【2019年】7.(2019·全国Ⅲ卷】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则A .e 1a b ==-,B .a=e ,b =1C .1e 1a b -==,D .1e a -=,1b =-8.(2019·天津卷)已知a ∈R ,设函数222,1,()ln ,1.x ax a x f x x a x x ⎧-+≤=⎨->⎩若关于x 的不等式()0f x ≥在R 上恒成立,则a 的取值范围为 A .[]0,1 B .[]0,2 C .[]0,eD .[]1,e9.(2019浙江卷)已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则A .a <–1,b <0B .a <–1,b >0C .a >–1,b <0D .a >–1,b >010.(2019·全国Ⅰ卷)曲线23()e xy x x =+在点(0)0,处的切线方程为____________.11.(2019·江苏卷)在平面直角坐标系xOy 中,P 是曲线4(0)y x x x=+>上的一个动点,则点P 到直线0x y +=的距离的最小值是 ▲ .12.(2019·江苏卷)在平面直角坐标系xOy 中,点A 在曲线y =ln x 上,且该曲线在点A 处的切线经过点(-e ,-1)(e 为自然对数的底数),则点A 的坐标是 ▲ .13.(2019·北京卷)设函数(a 为常数).若f (x )为奇函数,则a =________;若f (x )是R 上的增函数,则a 的取值范围是___________.【2018年】14.(2018·全国Ⅰ卷)设函数32()(1)f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =- B .y x =- C .2y x = D .y x =15.(2018·全国Ⅱ卷)函数()2e e x xf x x--=的图像大致为16.(2018·全国Ⅲ卷)函数422y x x =-++的图像大致为17.(2018·全国Ⅱ卷)曲线2ln(1)y x =+在点(0,0)处的切线方程为__________.18.(2018·全国Ⅲ卷)曲线()1e xy ax =+在点()0,1处的切线的斜率为2-,则a =________.19.(2018·全国Ⅰ卷)已知函数()2sin sin2f x x x =+,则()f x 的最小值是_____________.20.(2018·江苏卷)若函数在内有且只有一个零点,则在上的最大值与最小值的和为________.【2017年】21.(2017·全国Ⅲ卷)已知函数211()2(e e )x x f x x x a --+=-++有唯一零点,则a =A .12- B .13C .12D .122.(2017·全国Ⅱ卷)若2x =-是函数21()(1)e x f x x ax -=+-的极值点,则()f x 的极小值为 A .1- B .32e -- C .35e - D .123.(2017·浙江卷)函数y=f (x )的导函数()y f x '=的图象如图所示,则函数y=f (x )的图象可能是24.(2017·江苏卷)已知函数31()2e exx f x x x =-+-,其中e 是自然对数的底数.若(1)f a -+2(2)0f a ≤,则实数a 的取值范围是 .25.(2017·山东卷)若函数e ()xf x (e 2.71828=是自然对数的底数)在()f x 的定义域上单调递增,则称函数()f x 具有M 性质.下列函数中所有具有M 性质的函数的序号为 . ①()2xf x -=②()3xf x -=③3()f x x =④2()2f x x =+【2016年】26. 【2016高考山东理数】若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( ) (A )sin y x =(B )ln y x =(C )e x y =(D )3y x =27.【2016年高考四川理数】设直线l 1,l 2分别是函数f (x )= ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△P AB 的面积的取值范围是( )(A )(0,1) (B )(0,2) (C )(0,+∞) (D )(1,+∞)28.【2016高考新课标2理数】若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线ln(1)y x =+的切线,则b = .29.【2016高考新课标3理数】已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =在点(1,3)-处的切线方程是_______________.【2015年新课标1卷】30、设函数f(x)=e x (2x-1)-ax+a,其中a 1,若存在唯一的整数x 0,使得f (x 0)0,则a 的取值范围是( )A.[-,1)B. [-,)C. [,)D. [,1)(2015•天津)31.曲线y=x 2与y=x 所围成的封闭图形的面积为【2014年新课标1卷】32.已知函数()3231f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是A .()2,+∞B .()1,+∞C . (),2-∞-D .(),1-∞-【2014年新课标2卷】33. 设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )A .0B .1C .2D .3【2014年全国大纲卷】34.(5分)曲线y=xe x﹣1在点(1,1)处切线的斜率等于( )A .2eB .eC .2D .1【2013年全国新课标1卷】35、已知函数()f x =22,0ln(1),0x x x x x ⎧-+≤⎨+>⎩,若|()f x |≥ax ,则a 的取值范围是A .(,0]-∞B .(,1]-∞C .[-2,1]D .[-2,0]36.(2013课标全国Ⅱ,理10)已知函数f (x )=x 3+ax 2+bx +c ,下列结论中错误的是( ).A .∃x 0∈R ,f (x 0)=0B .函数y =f (x )的图像是中心对称图形C .若x 0是f (x )的极小值点,则f (x )在区间(-∞,x 0)单调递减D .若x 0是f (x )的极值点,则f ′(x 0)=0。
专题三 导数及其应用第七讲 导数的几何意义、定积分与微积分基本定理2019年1.(2019全国Ⅰ理13)曲线23()e xy x x =+在点(0)0,处的切线方程为____________. 2.(2019全国Ⅲ理6)已知曲线e ln x y a x x =+在点1e a (,)处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1C .1e 1a b -==,D .1e a -= ,1b =-2010-2018年一、选择题1.(2018全国卷Ⅰ)设函数32()(1)f x x a x ax =+-+,若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =-B .y x =-C .2y x =D .y x =2.(2016年四川)设直线1l ,2l 分别是函数()f x = ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点1P ,2P 处的切线,1l 与2l 垂直相交于点P ,且1l ,2l 分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是A .(0,1)B .(0,2)C .(0,+∞)D .(1,+∞)3.(2016年山东)若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是 A .sin y x =B .ln y x =C .x y e=D .3y x =4.(2015福建)若定义在R 上的函数()f x 满足()01f =-,其导函数()f x '满足()1f x k '>> ,则下列结论中一定错误的是A .11()f kk <B .11()1f k k >-C .11()11f k k <--D .1()11kf k k >-- 5.(2014新课标Ⅰ)设曲线ln(1)y ax x =-+在点(0,0)处的切线方程为2y x =,则a = A .0 B .1 C .2 D .36.(2014山东)直线x y 4=与曲线3y x =在第一象限内围成的封闭图形的面积为A .22B .24C .2D .4 7.(2013江西)若22221231111,,,x S x dx S dx S e dx x===⎰⎰⎰则123,,S S S 的大小关系为A .123S S S <<B .213S S S <<C .231S S S <<D .321S S S <<8.(2012福建)如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为A .14 B .15 C .16 D .179.(2011新课标)由曲线y x =2y x =-及y 轴所围成的图形的面积为A .103 B .4 C .163D .6 10.(2011福建)1(2)x e x dx +⎰等于A .1B .1e -C .eD .1e + 11.(2010湖南)421dx x⎰等于 A .2ln2- B .2ln 2 C .ln 2- D .ln 2 12.(2010新课标)曲线3y 21x x =-+在点(1,0)处的切线方程为A .1y x =-B .1y x =-+C .22y x =-D .22y x =-+ 13.(2010辽宁)已知点P 在曲线y=41xe +上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是A .[0,4π) B .[,)42ππ C .3(,]24ππ D .3[,)4ππ二、填空题14.(2018全国卷Ⅱ)曲线2ln(1)=+y x 在点(0,0)处的切线方程为__________. 15.(2018全国卷Ⅲ)曲线(1)xy ax e =+在点(0,1)处的切线的斜率为2-,则a =____. 16.(2016年全国Ⅱ)若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线ln(1)y x =+的切线,则b = .17.(2016年全国Ⅲ) 已知()f x 为偶函数,当0x <时,()ln()3f x x x =-+,则曲线()y f x =,在点(1,3)-处的切线方程是_________.18.(2015湖南)2(1)x dx -⎰= .19.(2015陕西)设曲线xy e =在点(0,1)处的切线与曲线1(0)y x x=>上点P 处的切线垂直,则P 的坐标为 .20.(2015福建)如图,点A 的坐标为()1,0,点C 的坐标为()2,4,函数()2f x x =,若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于 .(第15题) (第17题)21.(2014广东)曲线25+=-xey 在点)3,0(处的切线方程为 .22.(2014福建)如图,在边长为e (e 为自然对数的底数)的正方形中随机撒一粒黄豆,则他落到阴影部分的概率为______.23.(2014江苏)在平面直角坐标系xOy 中,若曲线xbax y +=2(a ,b 为常数)过点)5,2(-P ,且该曲线在点P 处的切线与直线0327=++y x 平行,则b a +的值是 . 24.(2014安徽)若直线l 与曲线C 满足下列两个条件:)(i 直线l 在点()00,y x P 处与曲线C 相切;)(ii 曲线C 在P 附近位于直线l 的两侧,则称直线l 在点P 处“切过”曲线C .下列命题正确的是_________(写出所有正确命题的编号)①直线0:=y l 在点()0,0P 处“切过”曲线C :3y x =②直线1:-=x l 在点()0,1-P 处“切过”曲线C :2)1(+=x y③直线x y l =:在点()0,0P 处“切过”曲线C :x y sin = ④直线x y l =:在点()0,0P 处“切过”曲线C :x y tan = ⑤直线1:-=x y l 在点()0,1P 处“切过”曲线C :x y ln =.25.(2013江西)若曲线1y x α=+(R α∈)在点(1,2)处的切线经过坐标原点,则α= . 26.(2013湖南)若209,Tx dx T =⎰则常数的值为 .27.(2013福建)当,1x R x ∈<时,有如下表达式:211.......1n x x x x+++++=- 两边同时积分得:1111122222200011.......1ndx xdx x dx x dx dx x+++++=-⎰⎰⎰⎰⎰从而得到如下等式:23111111111()()...()...ln 2.2223212n n +⨯+⨯+⨯++⨯+=+ 请根据以下材料所蕴含的数学思想方法,计算:0122311111111()()()2223212nn n n n n C C C C n +⨯+⨯+⨯+⋅⋅⋅+⨯+= .28.(2012江西)计算定积分121(sin )x x dx -+=⎰___________.29.(2012山东)设0>a ,若曲线x y =与直线0,==y a x 所围成封闭图形的面积为2a ,则=a .30.(2012新课标)曲线(3ln 1)y x x =+在点(1,1)处的切线方程为________.31.(2011陕西)设2lg 0()30ax x f x x t dt x >⎧⎪=⎨+⎪⎩⎰…,若((1))1f f =,则a = .32.(2010新课标)设()y f x =为区间[0,1]上的连续函数,且恒有0()1f x ≤≤,可以用随机模拟方法近似计算积分1()f x dx ⎰,先产生两组(每组N 个)区间[0,1]上的均匀随机数12,,N x x x …和12,,N y y y …,由此得到N 个点(,)(1,2,)i i x y i N =…,,再数出其中满足()(1,2,)i i y f x i N ≤=…,的点数1N ,那么由随机模拟方案可得积分10()f x dx ⎰的近似值为 .33.(2010江苏)函数2y x =(0x >)的图像在点2(,)k k a a 处的切线与x 轴交点的横坐标为1k a +,其中*k N ∈,若116a =,则135a a a ++= .三、解答题34.(2017北京)已知函数()cos xf x e x x =-.(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 在区间[0,]2π上的最大值和最小值.35.(2016年北京)设函数()a xf x xebx -=+,曲线()y f x =在点(2,(2))f 处的切线方程为(1)4y e x =-+,(I )求a ,b 的值; (II )求()f x 的单调区间.36.(2015重庆)设函数23()()e xx axf x a R +=∈. (Ⅰ)若()f x 在0x =处取得极值,确定a 的值,并求此时曲线()y f x =在点(1,(1))f处的切线方程;(Ⅱ)若()f x 在[3,)+∞上为减函数,求a 的取值范围. 37.(2015新课标Ⅰ)已知函数31()4f x x ax =++,()ln g x x =-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min {},m n 表示m ,n 中的最小值,设函数{}()min (),()h x f x g x =(0)x >,讨论()h x 零点的个数.38.(2014新课标Ⅰ)设函数1()ln x xbe f x ae x x-=+,曲线()y f x =在点(1,(1))f 处的切线为(1)2y e x =-+. (Ⅰ)求,a b ;(Ⅱ)证明:()1f x >.39.(2013新课标Ⅱ)已知函数()()ln x f x e x m =-+(Ι)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (Ⅱ)当2m ≤时,证明()0f x >.40.(2012辽宁)设()()()=ln +1+,,,f x x ax b a b R a b ∈为常数,曲线()=y f x 与直线3=2y x 在()0,0点相切. (1)求,a b 的值;(2)证明:当0<<2x 时,()9<+6xf x x . 41.(2010福建)(1)已知函数3()=f x x x -,其图象记为曲线C .(i )求函数()f x 的单调区间;(ii )证明:若对于任意非零实数1x ,曲线C 与其在点111(,())P x f x 处的切线交于另一点222(,())P x f x ,曲线C 与其在点222(,())P x f x 处的切线交于另一点333(,())P x f x ,线段1223,PP P P 与曲线C 所围成封闭图形的面积分别记为1,2S S ,则12S S 为定值; (2)对于一般的三次函数32()g x ax bx cx d =+++(0)a ≠,请给出类似于(1)(ii )的正确命题,并予以证明.专题三 导数及其应用第七讲 导数的几何意义、定积分与微积分基本定理答案部分 2019年1.解析:因为23e x y x x =+(),所以2'3e 31xy x x =++(),所以当0x =时,'3y =,所以23e xy x x =+()在点00(,)处的切线斜率3k =,又()00y =所以切线方程为()030y x -=-,即3y x =. 2.解析 e ln x y a x x =+的导数为'e ln 1x y a x =++,又函数e ln x y a x x =+在点(1,e)a 处的切线方程为2y x b =+, 可得e 012a ++=,解得1e a -=,又切点为(1,1),可得12b =+,即1b =-.故选D .2010-2018年1.D 【解析】通解 因为函数32()(1)=+-+f x x a x ax 为奇函数,所以()()-=-f x f x ,所以3232()(1)()()[(1)]-+--+-=-+-+x a x a x x a x ax ,所以22(1)0-=a x ,因为∈R x ,所以1=a ,所以3()=+f x x x ,所以2()31'=+f x x ,所以(0)1'=f ,所以曲线()=y f x 在点(0,0)处的切线方程为=y x .故选D .优解一 因为函数32()(1)=+-+f x x a x ax 为奇函数,所以(1)(1)0-+=f f ,所以11(11)0-+--++-+=a a a a ,解得1=a ,所以3()=+f x x x ,所以2()31'=+f x x ,所以(0)1'=f ,所以曲线()=y f x 在点(0,0)处的切线方程为=y x .故选D .优解二 易知322()(1)[(1)]=+-+=+-+f x x a x ax x x a x a ,因为()f x 为奇函数,所以函数2()(1)=+-+g x x a x a 为偶函数,所以10-=a ,解得1=a ,所以3()=+f x x x ,所以2()31'=+f x x ,所以(0)1'=f ,所以曲线()=y f x 在点(0,0)处的切线方程为=y x .故选D .2.A 【解析】不妨设111(,ln )P x x ,222(,ln )P x x ,由于12l l ⊥,所以1211()1x x ⨯-=-, 则121x x =.又切线1l :1111ln ()y x x x x -=-,22221:ln ()l y x x x x +=--,于是1(0,ln 1)A x -,1(0,1ln )B x +,所以||2AB =,联立1112221ln ()1ln ()y x x x x y x x x x ⎧-=-⎪⎪⎨⎪+=--⎪⎩,解得1121P x x x =+,所以1112212PAB P S x x x ∆=⨯⨯=+,因为11x >,所以1112x x +>,所以PAB S ∆的取值范围是(0,1),故选A .3.A 【解析】设函数()y f x =的图象上两点11(,)P x y ,22(,)Q x y ,则由导数的几何意义可知,点P ,Q 处切线的斜率分别为11()k f x '=,22()k f x '=若函数具有T 性质,则12k k ⋅=1()f x '2()f x '=-1.对于A 选项,()cos f x x '=,显然12k k ⋅=12cos cos x x =-1有无数组解,所以该函数具有T 性质;对于B 选项,1()(0)f x x x'=>,显然 12k k ⋅=1211x x ⋅=-1无解,故该函数不具有T 性质;对于C 选项,()x f x e '=>0, 显然12k k ⋅=12xxe e ⋅=-1无解,故该函数不具有T 性质;对于D 选项,2()3f x x '=≥0,显然12k k ⋅=221233x x ⋅=-1无解,故该函数不具有T 性质.故选A .4.C 【解析】 取满足题意得函数()21f x x =-,若取32k =,则121()()33f f k == 213k <=,所以排除A .若取1110k =, 则111110()()(10)1911111111111010k f f f k k ===>==----,所以排除D ;取满足题 意的函数()101f x x =-,若取2k =,则1111()()412211f f k k ==>==--,所以排除B , 故结论一定错误的是C . 5.D 【解析】11y a x '=-+,由题意得0|2x y ='=,即3a =. 6.D 【解析】由34x x =得,0x =、2x =或2x =-(舍去),直线x y 4=与曲线3y x =在第一象限内围成的封闭图形的面积23242001(4)(2)|44S x x dx x x =-=-=⎰.7.B 【解析】3221127133x S x dx ===⎰,22121ln ln 21S dx x x ===⎰,223121x xS e dx e e e ===-⎰.显然213S S S <<,故选B .8.C【解析】∵312201211)()0326S x dx x x =-=⎰阴影=,正方形的面积为1,∴P =16. 9.C【解析】用定积分求解342420021162)(2)323x dx x x x +=-+=⎰,选C 10.C 【解析】1(2)xex dx +⎰210()x e x e =+=,选C .11.D 【解析】∵1(ln )x x '=,∴421dx x ⎰=4ln ln 4ln 2ln 22x =-=.12.A 【解析】点(1,0)处的切线斜率为k ,213121x k y ='==⨯-=,由点斜式可得切线方程为A .13.D 【解析】因为'2441(1)2x x x xe y e e e --==≥-+++,即tan α≥-1,所以34παπ≤≤. 14.2=y x 【解析】∵2ln(1)=+y x ,∴21y x '=+.当0x =时,2y '=, ∴曲线2ln(1)=+y x 在点(0,0)处的切线方程为02(0)y x -=-,即2=y x . 15.3-【解析】(1)xy ax a e '=++,由曲线在点(0,1)处的切线的斜率为2-,得0(1)12xx x y ax a e a =='=++=+=-,所以3a =-.16.1ln2-【解析】设y kx b =+与ln 2y x =+和ln(1)y x =+的切点分别为11(,ln 2)x x + 和22(,ln(1))x x +. 则切线分别为1111ln 2()y x x x x --=-,2221ln(1)()1y x x x x -+=-+, 化简得111ln 1y x x x =⋅++,()22221ln 111xy x x x x =++-++,依题意,()122122111ln 1ln 11x x x x x x ⎧=⎪+⎪⎨⎪+=+-⎪+⎩,解得112x =,从而1ln 11ln 2b x =+=-.17.21y x =--【解析】由题意可得当0x >时,()ln 3f x x x =-,则1()3f x x'=-,(1)2f '=-,则在点(1,3)-处的切线方程为32(1)y x +=--,即21y x =--.18.0【解析】2221(1)()002x dx x x -=-=⎰. 19.(1,1)【解析】因为xy e =,所以xy e '=,所以曲线xy e =在点()0,1处的切线的斜率0101x k y e ='===,设P 的坐标为()00,x y (00x >),则001y x =,因为1y x=,所以21y x '=-,所以曲线1y x=在点P 处的切线的斜率02201x x k y x ='==-,因为121k k ⋅=-,所以211x -=-,即201x =,解得01x =±,因为00x >,所以01x =,所以01y =,即P 的坐标是()1,1,所以答案应填:()1,1.20.512【解析】由已知得阴影部分面积为221754433x dx -=-=⎰.所以此点取自阴影部分的概率等于553412=.21.53y x =-+【解析】55xy e -'=-,在点(0,3)处的切线的斜率为5-,切线方程为35(0)y x -=--,即53y x =-+. 22.22e【解析】根据对称性,两个阴影部分面积相等, ∴1100=2()22|2x x S e e dx e e -=-=⎰阴,由几何概型的概率计算公式,得所求的概率为22=S S e 阴正. 23.-3【解析】由题意可得542b a -=+① 又2()2bf x ax x'=-,过点)5,2(-P 的切线的斜率7442b a -=- ②,由①②解得1,2a b =-=-,所以3a b +=-. 24.①③④【解析】 对于①,203,|0x y x y =''==,所以:0l y =是曲线3:C y x =在点(0,0)P处的切线,画图可知曲线3:C y x =在点(0,0)P 附近位于直线l 的两侧,①正确;对于②,因为12(1),|0x y x y =-''=+=,所以:1l x =-不是曲线C :2)1(+=x y 在点()0,1-P 处的切线,②错误;对于③,0cos ,|1x y x y =''==,在点()0,0P 处的切线为x y l =:,画图可知曲线C :x y sin =在点()0,0P 附近位于直线l 的两侧,③正确;对于④,21cos y x '=,021|1cos 0x y ='==,在点()0,0P 处的切线为x y l =:,画图可知曲线C :x y tan =在点()0,0P 附近位于直线l 的两侧,④正确;对于⑤1y x '=,1|1x y ='=,在点()0,1P 处的切线为1:-=x y l ,令()1ln (0)h x x x x =-->,可得11()1x h x x x-'=-=,所以min ()(1)0h x h ==,故1ln x x -≥, 可知曲线C :x y ln =在点()0,1P 附近位于直线l 的下侧,⑤错误. 25.2【解析】1y x αα-'=,则k α=,故切线方程y x α=过点(1,2)解得2α=.26.3【解析】393330302=⇒===⎰T T x dx x TT. 27.113[()1]12n n +-+【解析】由01221......(1)n nn nn n n C C x C x C x x +++++=+ 两边同时积分得:111112222220001......(1).nn n n n n C dx C xdx C x dx C x dx x dx +++++=+⎰⎰⎰⎰⎰从而得到如下等式:0122311111111()()()2223212nn n n n n C C C C n +⨯+⨯+⨯+⋅⋅⋅+⨯+=113[()1]12n n +-+.28.23【解析】31211111(sin )cos |cos1cos1333x x x dx x --⎛⎫-⎛⎫⎛⎫+=-=--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰ 112333=+=. 29.94【解析】a a x dx x S aa ====⎰232303232,解得49=a .30.43y x =-【解析】∵3ln 4y x '=+,∴切线斜率为4,则切线方程为:430x y --=. 31.1【解析】因为10x =>,所以(1)lg10f ==,又因为230()3af x x t dt x a =+=+⎰,所以3(0)f a =,所以31a =,1a =.32.1NN【解析】由题意可知11()1f x dx N N ≈⎰得11()N f x dx N≈⎰,故积分10()f x dx ⎰的近似值为1N N.33.21【解析】在点2(,)k k a a 处的切线方程为:22(),k k k y a a x a -=-当0y =时,解得2k a x =,所以1135,1641212k k aa a a a +=++=++=. 34.【解析】(Ⅰ)因为()e cos x f x x x =-,所以()e (cos sin )1,(0)0xf x x x f ''=--=.又因为(0)1f =,所以曲线()y f x =在点(0,(0))f 处的切线方程为1y =. (Ⅱ)设()e (cos sin )1xh x x x =--,则()e (cos sin sin cos )2e sin x x h x x x x x x '=---=-.当π(0,)2x ∈时,()0h x '<, 所以()h x 在区间π[0,]2上单调递减.所以对任意π(0,]2x ∈有()(0)0h x h <=,即()0f x '<. 所以函数()f x 在区间π[0,]2上单调递减.因此()f x 在区间π[0,]2上的最大值为(0)1f =,最小值为ππ()22f =-. 35.【解析】(I )()e a x f x x bx -=+Q ,∴()e e (1)e a x a x a x f x x b x b ---'=-+=-+∵曲线()y f x =在点(2,(2))f 处的切线方程为(e 1)4y x =-+ ∴(2)2(e 1)4f =-+,(2)e 1f '=- 即2(2)2e 22(e 1)4a f b -=+=-+ ①2(2)(12)e e 1a f b -'=-+=- ②由①②解得:2a =,e b =(II )由(I )可知:2()e e x f x x x -=+,2()(1)e e x f x x -'=-+令2()(1)e x g x x -=-,∴222()e (1)e (2)e x x x g x x x ---'=---=-∴()g x 的最小值是(2)(12)e 1g =-=- ∴()f x '的最小值为(2)(2)e e 10f g '=+=->. 即()0f x '>对x ∀∈R 恒成立.∴()f x 在(),-∞+∞上单调递增,无减区间.36.【解析】(Ⅰ)对()f x 求导得222(6)(3)3(6)'(),()x x x xx a e x ax e x a x af x e e +-+-+-+== 因为()f x 在0x =处取得极值,所以'(0)0f =即0a =.当0a =时,()f x =22336,'(),x x x x x f x e e -+=故33(1),'(1),f f e e==从而()f x 在点(1,(1)f )处的切线方程为33(1),y x e e-=-化简得30x ey -=. (Ⅱ)由(Ⅰ)知23(6)'()xx a x af x e -+-+=.令2()3(6)g x x a x a =-+-+,由()0g x =解得166a x -=,266a x -+=.当1x x <时,()0g x <,即'()0f x <,故()f x 为减函数; 当12x x x <<时,()0g x >,即'()0f x >,故()f x 为增函数; 当2x x >时,()0g x <,即'()0f x <,故()f x 为减函数;由()f x 在[)3,+∞上为减函数,知23,x =≤解得9,2a ≥- 故a 的取值范围为9,2⎡⎫-+∞⎪⎢⎣⎭. 37.【解析】(Ⅰ)设曲线()y f x =与x 轴相切于点0(,0)x ,则0()0f x =,0()0f x '=,即3002010430x ax x a ⎧++=⎪⎨⎪+=⎩,解得013,24x a ==-. 因此,当34a =-时,x 轴是曲线()y f x =的切线. (Ⅱ)当(1,)x ∈+∞时,()ln 0g x x =-<,从而()min{(),()}()0h x f x g x g x =<≤, ∴()h x 在(1,)+∞无零点.当x =1时,若54a -≥,则5(1)04f a =+≥,(1)min{(1),(1)}(1)0h fg g ===, 故x =1是()h x 的零点;若54a <-,则5(1)04f a =+<,(1)min{(1),(1)}(1)0h f g f ==<,故x =1不是()h x 的零点.当(0,1)x ∈时,()ln 0g x x =->,所以只需考虑()f x 在(0,1)的零点个数. (ⅰ)若3a -≤或0a ≥,则2()3f x x a '=+在(0,1)无零点,故()f x 在(0,1)单调, 而1(0)4f =,5(1)4f a =+,所以当3a -≤时,()f x 在(0,1)有一个零点; 当a ≥0时,()f x 在(0,1)无零点.(ⅱ)若30a -<<,则()f x 在(01)单调递增, 故当x()f x取的最小值,最小值为f14.①若f >0,即34-<a <0,()f x 在(0,1)无零点.②若f =0,即34a =-,则()f x 在(0,1)有唯一零点;③若f <0,即334a -<<-,由于1(0)4f =,5(1)4f a =+, 所以当5344a -<<-时,()f x 在(0,1)有两个零点; 当534a -<≤-时,()f x 在(0,1)有一个零点.综上,当34a >-或54a <-时,()h x 由一个零点; 当34a =-或54a =-时,()h x 有两个零点;当5344a -<<-时,()h x 有三个零点.38.【解析】(1)函数()f x 的定义域为(0,)+∞,112()ln xx x x a b b f x ae x e e e x x x--=+-+.由题意可得(1)2f =,(1)f e '=.1, 2.a b ==故 (2)由(1)知12()ln xx f x e x e x -=+,从而()1f x >等价于2ln x x x xe e->-. 设函数()1g x x nx =,则'()1g x nx =.所以当1(0,)x e ∈时,()0g x '<;当1(,)x e ∈+∞时,()0g x '>.故()g x 在1(0,)e 单调递减,在1(,)e+∞单调递增,从而()g x 子啊(0,)+∞的最小值为11()g e e=-.设函数2()xh x xe e-=-,则'()(1)x h x e x -=-.所以当(0,1)x ∈时()0h x '>;当(1,)x ∈+∞时,()0h x '<故()h x 在(0,1)单调递增, 在(1,)+∞单调递减,从而()h x 在(0,)+∞的最大值为1(1)h e=-. 39.【解析】(Ι)因为'1()xf x e x m =-+, x =0是()f x 的极值点,所以'1(0)10f m=-=, 解得1m =,所以函数()f x =xe -ln(x +1),其定义域为(1,)-+∞,因为'1()1xf x e x =-+=(1)11x e x x +-+,设()(1)1x g x e x =+-,则'()(1)0x xg x e x e =++>,所以()g x 在(1,)-+∞上是增函数,又因为(0)0g =,所以当0x >时,()0g x >,即'()0f x >;当10x -<<时,()0g x <,'()0f x <,所以()f x 在(1,0)-上是减函数;在(0,)+∞,上是增函数.(Ⅱ)当2m ≤,(),x ∈-∞+∞时,()()ln ln 2x m x +≤+, 故只需证明当2m =时,()0f x >. 当2m =时,函数()12x f x e x '=-+在()2,-+∞单调递增.又()()10,00f f ''-<>,故()0f x '=在()2,-+∞有唯一实根0x ,且()01,0x ∈-. 当()02,x x ∈-时,()0f x '<;当()0,x x ∈+∞时,()0f x '>,从而当0x x =时,()f x 取得最小值.由()00f x '=得()00001,ln 22x e x x x =+=-+, 故()()()2000011022x f x f x x x x +≥=+=>++ 综上,当2m ≤时,()0f x >.40.【解析】(1)由()=y f x 的图像过()0,0点,代入得1b =-,由()=y f x 在()0,0处的切线斜率为32,又=0=013'==++12x x y a a x ⎛⎫⎪⎝⎭, 得0a =.(2)(证法一)由均值不等式,当>0x 时,+1+1=+2xx +12x.记()()9=-+6xh x f x x , 则()()()()()()22215454+654'==<-+12+14+1+6+6+6x h x x x x x x x ()()()()32+6-216+1=4+1+6x x x x , 令()()()3=+6-216+1g x x x ,则当0<<2x 时,()()2'=3+6-216<0g x x 因此()g x 在()0,2内是减函数,又由()0=0g ,得()<0g x ,所以()'<0h x 因此()h x 在()0,2内是减函数,又由()0=0h ,得()<0h x , 于是当0<<2x 时, ()9<+6xf x x . (证法二)由(1)知()()=ln +1f x x ,由均值不等式, 当>0x时,+1+1=+2xx +12x令()()=ln +1-k x x x ,则()()1-0=0,'=-1=<0+1+1x k k x x x ,故()<0k x ,即()ln +1<x x ,由此得,当>0x 时,()3<2f x x ,记()()()=+6-9h x x f x x , 则当0<<2x 时,()()()()()31'=++6'-9<++6-92+1h x f x x f x x x x ⎛ ⎝=1[3(1)(6)(218(1)]2(1)x x x x x +++-++1[3(1)(6)(3)18(1)]2(1)2xx x x x x <++++-++()()=7-18<04+1xx x .因此()h x 在()0,2内是减函数,又由()0=0h ,得()<0h x ,即()9<+6xf x x . 41.【解析】(1)(i )由3()=f x x x -得2()=31f x x '-=3(x -,当(,x ∈-∞和+∞)时,()>0f x ';当(x ∈时,()<0f x ', 因此,()f x的单调递增区间为(,)3-∞-和3+∞(),单调递减区间为(3-)3. (ii )曲线C 与其在点1P 处的切线方程为231111=(31)()+,y x x x x x ---即2311y=(31)2,x x x --由23113(31)2=y x x x y x x⎧=--⎪⎨-⎪⎩得3=x x -2311(31)2x x x --,即211()+2)=0x x x x -(,解得1121=2,2x x x x x x =-=-或故,进而有 1123234111127(3+2)=4x x S x x x x dx x -=-⎰,用2x 代替1x ,重复上述计算过程,可得 322x x =-和42227=4S x ,又2120x x =-≠,所以4212716=0,4S x ⨯≠因此有121=16S S . (Ⅱ)记函数32()g x ax bx cx d =+++(0)a ≠的图象为曲线C ',类似于(Ⅰ)(ii )的正确命题为:若对任意不等式3ba-的实数1x ,曲线C '与其在点111(,())P x g x 处的切线交于另一点222(,())P x g x ,曲线C 与其在点222(,())P x g x 处的切线交于另一点333(,())P x g x ,线段1223,PP P P 与曲线C 所围成封闭图形的面积分别记为1,2S S ,则12S S 为定值. 证明如下:因为平移变换不改变面积的大小,故可将曲线=()y g x 的对称中心(3b g a -(,))3b a-平移至坐标原点,因而不妨设3()(0)g x ax hx x =+≠,类似(i )(ii )的计算可得41127=4S x ,4212716=0,4S x ⨯≠故121=16S S .。
《导数》解答题16道专项练习1.已知函数22()x f x e ax e x =+-.(Ⅰ)若曲线()y f x =在点(2,(2))f 处的切线平行于x 轴,求函数()f x 的单调性;(Ⅱ)若0x >时,总有2()f x e x >-,求实数a 的取值范围.【详解答案】(Ⅰ)由22()x f x e ax e x =+-,得2()2x f x e ax e '=+-,即()y f x =在点(2,(2))f 处的切线斜率40k a ==此时2()x f x e e x =-,2()x f x e e '=-由()0f x '=,得2x =当(,2)x ∈-∞时,()0f x '<,()f x 在(,2)-∞上为单调递减函数;当(2,)x ∈+∞时,()0f x '>,()f x 在(2,)+∞上为单调递增函数.(Ⅱ)2()f x e x >-得2x e a x >-,设2()x e g x x =-(0)x >,则2(2)()x e x g x x -'=当02x <<时,()0g x '>,()g x 在(0,2)上单调递增;当2x >时,()0g x '<,()g x 在(0,2)上单调递减;2()(2)4e g x g ≤=-,所以实数a 的取值范围为2(,)4e -+∞2.函数()ln()ln f x x m n x =+-.(Ⅰ)当1m =,0n >时,求()f x 的单调减区间;(Ⅱ)1n =时,函数()(2)()g x m x f x am =+-,若存在0m >,使得()0g x >恒成立,求实数a 的取值范围.【详解答案】(Ⅰ)由()ln()ln f x x m n x =+-((0,))x ∈+∞,1(1)()1(1)n n x n f x x x x x --'=-=++①当1n =时,1()(1)f x x x -'=+,所以函数()f x 的单调递减区间为:(0,)+∞②当01n <<时,由()0f x '<,得01n x n <<-,所以函数()f x 的单调递减区间为:(0,)1n n-③当1n >时,由()0f x '<,得0x >,所以函数()f x 的单调递减区间为:(0,)+∞综上可得:当1n ≥时,函数()f x 的单调递减区间为:(0,)+∞当01n <<时,函数()f x 的单调递减区间为:(0,1n n-(Ⅱ)当1n =时,函数()(2)()(2)[ln()ln ]g x m x f x am m x x m x am =+⋅-=++--,(0,)+∞由()0g x >可得()0g x x >,即(1)ln (1)0m x m x m x a x x x ++++-->,设1m x t x +=>,所以(1)ln (1)0t t a t +-->,(1)ln 01a t t t -->+令(1)()ln 1a t h t t t -=-+,1t >,222(1)1()(1)t a t h t t t +-+'=+,(1)0h =①当2a ≤时,222(1)1210t a t t t +-+≥-+>,所以()0h t '>可得函数()h t 在(1,)+∞上单调递增.可得()(1)0h t h >=②当2a >时,()0h t '=,即2t +2(1-a )t +1=0,得11t a =--,21t a =-+由21t >,121t t =,可得11t <,所以函数()h t 在2(1,)t 上单调递减可得()(1)0h t h <=,舍去综上可得,实数a 的取值范围为2a ≤3.已知函数(a ∈R ),当时,讨论f (x )的单调性.【详解答案】(1)求函数的导数,可得导函数的零点为1,,根据一元二次不等式的解法可确定函数的单调性.试题解析:因为,所以,,令,可得两根分别为1,,因为,所以,当时,,函数单调递减;当时,,函数单调递增;当时,,函数单调递减.4.已知函数,x >1.(1)若f (x )在(1,+∞)上单调递减,求实数a 的取值范围;(2)若a =2,求函数f (x )的极小值.【详解答案】(1),由题意可得在上恒成立,∴.∵,∴,∴当时函数的最小值为,∴.故实数的取值范围为.(2)当时,,,令得,解得或(舍),即.当时,,当时,,∴的极小值为.5.已知函数f (x )=ln x -ax +1-a x-1(a ∈R).当0<a <12时,讨论f (x )的单调性.【详解答案】因为f (x )=ln x -ax +1-a x -1,所以f ′(x )=1x -a +a -1x 2=-ax 2-x +1-a x 2,x ∈(0,+∞),令f ′(x )=0,可得两根分别为1,1a -1,因为0<a <12,所以1a-1>1>0,当x ∈(0,1)时,f ′(x )<0,函数f (x )单调递减;当x,1a -f ′(x )>0,函数f (x )单调递增;当x1,+f ′(x )<0,函数f (x )单调递减.6.已知函数f (x )=x ln x +ax ,x >1.(1)若f (x )在(1,+∞)上单调递减,求实数a 的取值范围;(2)若a =2,求函数f (x )的极小值.解析:(1)f ′(x )=ln x -12+a ,由题意可得f ′(x )≤0在(1,+∞)上恒成立,∴a ≤1ln 2x -1ln x =-14.∵x ∈(1,+∞),∴ln x ∈(0,+∞),∴当1ln x -12=0时函数t -14的最小值为-14,∴a ≤-14.故实数a ∞,-14.(2)当a =2时,f (x )=x ln x +2x ,f ′(x )=ln x -1+2ln 2x ln 2x ,令f ′(x )=0得2ln 2x +ln x -1=0,解得ln x =12或ln x=-1(舍),即x =e 12.当1<x <e 12时,f ′(x )<0,当x >e 12时,f ′(x )>0,∴f (x )的极小值为=e 1212+2e 12=4e 12.7.已知函数()1ln f x x a x x=-+(a R ∈).(Ⅰ)若函数()f x 在区间[)1,+∞上单调递增,求实数a 的取值范围;(Ⅱ)已知()()21112g x x m x x =+-+,2m ≤-,()()()h x f x g x =+,当1a =时,()h x 有两个极值点1x ,2x ,且12x x <,求()()12h x h x -的最小值.【详解答案】(1)由已知可得()0f x '≥在[)1,+∞上恒成立,()222111a x ax f x x x x ++'=++= ,210x ax ∴++≥恒成立,21x a x--∴≥,记()2112x x x x x ϕ--⎛⎫==-+≤- ⎪⎝⎭,当且仅当1x =时等号成立,2a ∴≥-.………………+4分(2)()21ln 2h x a x x mx =++,当1a =时,由()21ln 2h x x x mx =++,()211x mx h x x m x x ++'=++=,由已知210x mx ++=有两互异实根1x ,2x ,由根与系数的关系得12x x m +=-,1x ,21x =.()()221211122211ln ln 22h x h x x x mx x mx ⎛⎫⎛⎫∴-=++-++ ⎪ ⎪⎝⎭⎝⎭()()221212121ln ln 2x x m x x x x =-+-+-()()()()222211212121212211ln ln ln 22x x x x x x x x x x x x =--+-+-=--+1212121ln 2x x x x x x ⎛⎫=--+ ⎪⎝⎭.……………………+7分令12x t x =,()0,1t ∴∈,()2222121212922x x x x x x m +=++=≥ ,221252x x ∴+≥,221212122152x x x x x x x x +∴=+≥,152t t +≥,10,2t ⎛⎤∴∈ ⎥⎝⎦,()()()1211ln 2h x h x t t t t ϕ⎛⎫∴-=--= ⎪⎝⎭,()()2212t t t ϕ-'∴=-,()t ϕ∴10,2t ⎛⎤∈ ⎥⎝⎦单调递减,()min 13ln 224t ϕϕ⎛⎫∴==- ⎪⎝⎭. (12)8.已知函数()222x f x e ax a =+-,a R ∈.(Ⅰ)求函数()f x 的单调区间;(Ⅱ)若0x ≥时,()23f x x ≥-恒成立,求实数a 的取值范围.【详解答案】(Ⅰ)()22x f x e a '=+,①0a ≥时,()0f x '>恒成立,此时()f x 在R 上单调递增;②当0a <时,由()0f x '>,得()ln x a >-;由()0f x '<,得()ln x a <-,此时()f x 在()(),ln a -∞-上递减,在())ln ,a -+∞⎡⎣上递增.…………………+4分(Ⅱ)令()()()22323x g x f x x e x a =-+=--+,0x ≥,则()()2x g x e x a '=-+,又令()()2x h x e x a =-+,则()()210x h x e '=-≥,()h x ∴在[)0,+∞上递增,且()()021h a =+.①当1a ≥-时,()0g x '≥恒成立,即函数()g x 在[)0,+∞上递增,从而须满足()2050g a =-≥,解得a ≤≤,又1a ≥-,1a ∴-≤≤;②当1a <-时,则00x ∃>,使()00h x =,且()00,x x ∈时,()0h x <,即()0g x '<,即()g x 递减,()0,x x ∈+∞时,()0h x >,即()0g x '>,即()g x 递增.()()()0200min 230x g x g x e x a ∴==--+≥,又()()00020x h x e x a =-+=,从而()002230x x e e-+≥,解得00ln 3x <≤,由0000x x e x a a x e =-⇒=-,令()x M x x e =-,0ln 3x <≤,则()10xM x e '=-<,()M x ∴在(]0,ln 3上递减,则()()ln 3ln 33M x M ≥=-,又()()01M x M <=-,故ln 331a -≤<-,综上ln 335a -≤≤.……………………+12分9.(本小题满分12分)已知函数()()22ln f x x a x a x =-++,其中a R ∈.(1)若曲线()y f x =在点()()2,2f f 处的切线的斜率为1,求a 的值;(2)讨论函数()f x 的单调性.【详解答案】(1)由()()22ln f x x a x a x =-++可知,函数的定义域为{}0x x >,且()()22a f x x a x '=-++.由题意,()()24212a f a '=-++=,解得2a =.(2)()()()()()2222122x a x a x a x a f x x a x x x-++--'=-++==(0x >)令()0f x '=,得11x =,22a x =①当0a ≤时,02a ≤,令()0f x '>,得1x >,令()0f x '<,得01x <<所以,()f x 在()0,1上为减函数,在()1,+∞上为增函数②当012a <<,即02a <<时,令()0f x '>,得1x >或02a x <<,令()0f x '<,得12a x <<所以,()f x 在,12a ⎛⎫⎪⎝⎭上为减函数,在0,2a ⎛⎫ ⎪⎝⎭和()1,+∞上为增函数③当12a =,即2a =时,()0f x '≥恒成立,所以,()f x 在()0,+∞上为增函数④当12a >,即2a >时,令()0f x '>,得01x <<或2a x >,令()0f x '<,得12a x <<所以,()f x 在1,2a ⎛⎫ ⎪⎝⎭上为减函数,在()0,1和,2a ⎛⎫+∞ ⎪⎝⎭上为增函数10.(本小题满分12分)已知函数()()22x f x ax x e =++(0a >),其中e 是自然对数的底数.(1)当2a =时,求()f x 的极值;(2)若()f x 在[]2,2-上是单调增函数,求a 的取值范围;(3)当1a =时,求整数t 的所有值,使方程()4f x x =+在[],1t t +上有解.【详解答案】(1)()()222x f x x x e =++,则()()()()2253123x x f x x x e x x e '=++=++令()0f x '=,1x =-,32-()32352f x f e -⎛⎫∴=-= ⎪⎝⎭极大值,()()113f x f e -=-=极小值(2)问题转化为()()22130xf x ax a x e '⎡⎤=+++≥⎣⎦在[]2,2x ∈-上恒成立;又0x e >即()22130ax a x +++≥在[]2,2x ∈-上恒成立;令()()2213g x ax a x =+++0a > ,对称轴1102x a=--<①当1122a --≤-,即102a <≤时,()g x 在[]2,2-上单调增,()()min 210g x g ∴=-=>102a ∴<≤②当12102a -<--<,即12a >时,()g x 在12,12a ⎡⎤---⎢⎥⎣⎦上单调减,在11,22a ⎡⎤--⎢⎥⎣⎦上单调增,()221120a a ∴∆=+-≤解得:331122a -≤≤+13122a ∴<≤+综上,a 的取值范围是30,12⎛⎤+ ⎥ ⎝⎦.(3)1a = ,设()()224x h x x x e x =++--,()()2331xh x x x e '=++-令()()2331x x x x e ϕ=++-,()()256xx x x e ϕ'=++令()()2560x x x x e ϕ'=++=,得2x =-,3-()()33310x e ϕϕ∴=-=-<极大值,()()21210x eϕϕ=-=-<极小值()1110e ϕ-=-< ,()020ϕ=>∴存在()01,0x ∈-,()0,x x ∈-∞时()0x ϕ<,()0,x x ∈+∞时()0x ϕ>()h x ∴在()0,x -∞上单调减,在()0,x +∞上单调增又()41440h e -=> ,()38310h e-=-<,()020h =-<,()1450h e =->由零点的存在性定理可知:()0h x =的根()14,3x ∈--,()20,1x ∈即4t =-,0.11.设函数211()ln 42f x x x x =--.(1)求()f x 的极值;(2)若21()(()1)4g x x f x x =++,当1x >时,()g x 在区间(,1)n n +内存在极值,求整数n 的值.【详解答案】(1)2'1112()0)222x x f x x x x x --+=--=>,令'()0f x =,解得1x =(-2舍去),根据',(),()x f x f x 的变化情况列出表格:由上表可知函数()f x 的单调增区间为(0,1),递减区间为(1,)+∞,在1x =处取得极大值34-,无极小值.(2)2211()(()1)ln 42g x x f x x x x x x =++=-+,'()ln 11ln 2g x x x x x =+-+=-+,令()ln 2h x x x =-+,∴'11()1x h x x x -=-=,∵1x >,∴'()0h x <恒成立,所以()h x 在(1,)+∞为单调递减函数,∵(1)10h =>,(2)ln 20h =>,(3)ln 31h =-,(4)ln 420h =-<.所以()h x 在(3,4)上有零点0x ,且函数()g x 在0(3,)x 和0(,4)x 上单调性相反,因此,当3n =时,()g x 的区间(,1)n n +内存在极值,所以3n =.12.已知函数21()(2)2x f x a x e x x =-∙-+.(1)若1a =,求函数()f x 在(2,(2))f 处切线方程;(2)讨论函数()f x 的单调区间.【详解答案】(1)'()1()x x f x e x e x x R =--+∈,故切线斜率'2(2)1f e =-,(2)0f =,所以,切线方程22(1)2(1)0e x y e ----=.(2)令'()0f x =,(1)(1)0x x ae --=,当(,0]a ∈-∞时,()f x 在(,1)-∞上为增函数,在(1,)+∞上为减函数,当1(0,)a e ∈时,()f x 在(,1)-∞,1(ln,)a +∞上为增函数,在1(1,ln a 上为减函数当1a e =时,()f x 在R 上恒为增函数当1(,)a e ∈+∞时,()f x 在1(,ln )a -∞,(1,)+∞上为增函数,在1(ln ,1)a上为减函数13.已知函数()x f x ae x b =-+,()ln(1)g x x x =-+,(,,a b R e ∈为自然对数的底数),且曲线()y f x =与()y g x =在坐标原点处的切线相同.(1)求()f x 的最小值;(2)若0x ≥时,()()f x kg x ≥恒成立,试求实数k 的取值范围.【详解答案】(1)因为'()1x f x ae =-,'1()1(1)1g x x x =->-+,依题意,''(0)(0)f g =,且(0)0f =,解得1,1a b ==-,所以'()1x f x e =-,当0x <时,'()0f x <;当0x >时,'()0f x >.故()f x 的单调递减区间为(,0)-∞,单调递增区间为(0,)+∞.∴当0x =时,()f x 取得最小值为0.(2)由(1)知,()0f x ≥,即1x e x ≥+,从而ln(1)x x ≥+,即()0g x ≥.设()()()ln(1)(1)1x F x f x kg x e k x k x =-=++-+-,则'()(1)1(1)11x kkF x e k x k x x =+-+≥++-+++,①当1k =时,因为0x ≥,∴'1()1201F x x x ≥++-≥+(当且仅当0x =时等号成立)此时()F x 在[0,)+∞上单调递增,从而()(0)0F x F ≥=,即()()f x kg x ≥.②当1k <时,由于()0g x ≥,所以()()g x kg x ≥,又由(1)知,()()0f x g x -≥,所以()()()f x g x kg x ≥≥,故()0F x ≥,即()()f x kg x ≥.(此步也可以直接证1k ≤)③当1k >时,令()(1)1x kh x e k x =+-++,则'2()(1)x kh x e x =-+,显然'()h x 在[0,)+∞上单调递增,又'(0)10h k =-<,'11)10h -=->,所以'()h x 在1)上存在唯一零点0x ,当0(0,)x x ∈时,'()0h x <,∴()h x 在0[0,)x 上单调递减,从而()(0)0h x h <=,即'()0F x <,所以()F x 在0[0,)x 上单调递减,从而当0(0,)x x ∈时,()(0)0F x F <=,即()()f x kg x <,不合题意.综上,实数k 的取值范围为(,1]-∞.14.已知函数()ln ()f x x a x a R =-∈.(1)当2a =时,求曲线()y f x =在点(1,(1))A f 处的切线方程;(2)讨论函数()f x 的单调区间.【详解答案】(1)∵2a =,∴()2ln f x x x =-,∴(1)12ln11f =-=,即(1,1)A '2()1f x x =-,'(1)121f =-=-,当0a ≤时,∵0x >,∴'()0f x >恒成立,∴()f x 在定义域(0,)+∞上单调递增;当0a >时,令'()0f x =,得x a =,∵0x >,∴'()0f x >,得x a >;'()0f x <得0x a <<;∴()f x 在(0,)a 上单调递减,在(,)a +∞上单调递增.15.已知函数1()f x x x=-.(1)用函数单调性的定义证明:函数()f x 在区间(0,)+∞上为增函数;(2)若2(4)(2)0t t tf mf -=,当[1,2]t ∈时,求实数m 的取值范围.【详解答案】(1)证明:任取12,(0,)x x ∈+∞,且12x x <,则1212121212121212()(1)1111()()()x x x x f x f x x x x x x x x x x x -+-=---=-+=∵120x x <<,∴1210x x +>,120x x >,120x x -<,有12()()0f x f x -<即12()()f x f x <,∴函数()f x 在区间(0,)+∞上为增函数(2)∵22112(4)(2)2(2)(2)022t t t t t t t t f mf m -=---=即24(21)21t t m -=-∵2210t ->,∴221t m =+∵[1,2]t ∈,∴212[5,17]t +∈故m 的取值范围是[5,17].16.已知函数2()ln 2f x x ax x =--.(1)若函数()f x 在1[,2]4x ∈内单调递减,求实数a 的取值范围;(2)当14a =-时,关于x 的方程1()2f x x b =-+在[1,4]上恰有两个不相等的实数根,求实数b 的取值范围.【详解答案】(1)2'1221()22ax x f x ax x x --+=--=由题意'()0f x ≤在1[,2]4x ∈时恒成立,即221212(1)1x a x x-≥=--在1[,2]4x ∈时恒成立,即2max 12[(1)1]a x ≥--,当14x =时,21(1)1x --取得最大值8,∴实数a 的取值范围是4a ≥(2)当14a =-时,1()2f x x b =-+可变形为213ln 042x x x b -+-=令213()ln (0)42g x x x x b x =-+->,则'(2)(1)()2x x g x x --=列表如下:∴()(2)ln 22g x g b ==--极小值,5(1)4g b =--又(4)2ln 22g b =--∵方程()0g x =在[1,4]上恰有两个不相等的实数根,∴(1)0(2)0(4)0g g g ≥⎧⎪<⎨⎪≥⎩得5ln 224b -<≤-.17.已知函数2()2ln f x x x =-+,函数()f x 与()a g x x x =+有相同极值点.(1)求函数()f x 的最大值;(2)求实数a 的值;(3)若121,[,3]x x e ∀∈,不等式12()()11f x g x k -≤-恒成立,求实数k 的取值范围.【详解答案】(1)'22(1)(1)()20)x x f x x x x x--+=-+=>,由'()00f x x ⎧>⎨>⎩,得01x <<;由'()00f x x ⎧<⎨>⎩,得1x >∴()f x 在(0,1)上为增函数,在(1,)+∞上为减函数,∴函数()f x 的最大值为(1)1f =-.(2)因为()a g x x x =+,所以'2()1a g x x=-,由(1)知,1x =是函数()f x 的极值点,又因为函数()f x 与()a g x x x=+有相同极值点,∴1x =是函数()g x 的极值点,∴'(1)10g a =-=,解得1a =经检验,当1a =时,函数()g x 取到极小值,符合题意(3)因为211(2f ee =--,(1)1f =-,(3)92ln 3f =-+∵2192ln 321e -+<--<-,即1(3)()(1)f f f e <<,∴11[,3]x e ∀∈,1min ()(3)92ln 3f x f ==-+,1max ()(1)1f x f ==-,由(2)知,1()g x x x=+,∴'21()1g x x =-∴()g x 在1[,1)e 上,'()0g x <;当(1,3]x ∈时,'()0g x >∴()g x 在1[,1)e 上为减函数,在(1,3]上为增函数,∵11()g e e e =+,(1)2g =,110(3)333g =+=,而11023e e <+<,∴1(1)()(3)g g g e <<∴21[,3]x e ∀∈,2min ()(1)2g x g ==,2max 10()(3)3g x g ==①当10k ->,即1k >时,对于121,[,3]x x e ∀∈,不等式12()()11f x g x k -≤-恒成立即12max [()()]1k f x g x ≥-+,∵12()()(1)(1)123f x g x f g -≤-=--=-,∴312k ≥-+=-,由12k k >⎧⎨≥-⎩,得1k >.②当10k -<时,即1k <,对于121,[,3]x x e ∀∈,不等式12()()11f xg x k -≤-恒成立即12min [()()]1k f x g x ≤-+,∵121037()()(3)(3)92ln 32ln 333f x g x f g -≥-=-+-=-+,∴342ln 33k ≤-+综上所述,所求的实数k 的取值范围为34(,2ln 3](1,)3-∞-++∞ .。
导数历年高考题精选(理科)1、曲线2y 21x x =-+在点(1,0)处的切线方程为 ( )(A )1y x =- (B )1y x =-+ (C )22y x =- (D )22y x =-+2、若曲线2y x ax b =++在点(0,)b 处的切线方程是10x y -+=,则( )(A) 1,1a b == (B) 1,1a b =-= (C) 1,1a b ==- (D) 1,1a b =-=-3、若曲线12y x -=在点12,a a -⎛⎫ ⎪⎝⎭处的切线与两个坐标围成的三角形的面积为18,则a = ( )(A )64 (B )32 (C )16 (D )84、若a >0,b >0,且函数f (x )=4x 3-2-2+2在x =1处有极值,则的最大值等于( )A .2B .3C .6D .95、已知函数()13323++-=x ax x x f .(1)设2=a ,求()x f 的单调期间;(2)设()x f 在区间(2,3)中至少有一个极值点,求a 的取值范围。
6、已知函数32()f x ax x bx =++(其中R b a ∈,),()()()g x f x f x '=+是奇函数.(1)求()f x 的表达式; (2)讨论()g x 的单调性,并求()g x 在区间[1,2]上的最大值和最小值.7、设ax x x x f 22131)(23++-=.(1)若)(x f 在),32(+∞上存在单调递增区间,求a 的取值范围;(2)当20<<a 时,)(x f 在]4,1[上的最小值为316-,求)(x f 在该区间上的最大值.8、已知函数()32312f x ax x =-+()x ∈R ,其中0a >. (1)若1a =,求曲线()y f x =在点()()2,2f 处的切线方程;(2)若在区间11,22⎡⎤-⎢⎥⎣⎦上,()0f x >恒成立,求a 的取值范围.9、设32()21f x x ax bx =+++的导数为()f x ',若函数()y f x '=的图象关于直线12x =-对称,且()10f '=.(1)求实数,a b 的值;(2)求函数()f x 的极值.10、设()nx mx x x f ++=2331.(1)如果()()32--'=x x f x g 在2-=x 处取得最小值5-,求()x f 的解析式;(2)如果()+∈<+N n m n m ,10,()x f 的单调递减区间的长度是正整数,试求m 和n 的值.(注:区间()b a ,的长度为a b -)11、已知函数32()3(36)124()f x x ax a x a a R =++-+-∈(1)证明:曲线()0y f x x ==在(2,2)的切线过点;(2)若00()(1,3)f x x x x =∈在处取得极小值,,求a 的取值范围。
专题三 导数及其应用第七讲 导数的几何意义、定积分与微积分基本定理2019年1.(2019全国Ⅰ理13)曲线23()e xy x x =+在点(0)0,处的切线方程为____________.2.(2019全国Ⅲ理6)已知曲线e ln x y a x x =+在点1e a (,)处的切线方程为y =2x +b ,则 A .e 1a b ==−, B .a=e ,b =1C .1e 1ab −=,D .1e a −= ,1b =−2010-2018年一、选择题1.(2018全国卷Ⅰ)设函数32()(1)f x x a x ax =+−+,若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =−B .y x =−C .2y x =D .y x =2.(2016年四川)设直线1l ,2l 分别是函数()f x = ln ,01,ln ,1,x x x x −<< >图象上点1P ,2P 处的切线,1l 与2l 垂直相交于点P ,且1l ,2l 分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是A .(0,1)B .(0,2)C .(0,+∞)D .(1,+∞)3.(2016年山东)若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是 A .sin y x =B .ln y x =C .x y e =D .3y x =4.(2015福建)若定义在R 上的函数()f x 满足()01f =−,其导函数()f x ′满足()1f x k ′>> ,则下列结论中一定错误的是A .11()f kk <B .11()1f k k >−C .11()11f k k <−− D .1()11kf k k >−− 5.(2014新课标Ⅰ)设曲线ln(1)y ax x =−+在点(0,0)处的切线方程为2y x =,则a = A .0 B .1 C .2 D .36.(2014山东)直线x y 4=与曲线3y x =在第一象限内围成的封闭图形的面积为A .22B .24C .2D .4 7.(2013江西)若22221231111,,,x S x dx S dx S e dx x ===∫∫∫则123,,S S S 的大小关系为A .123S S S <<B .213S S S <<C .231S S S <<D .321S S S << 8.(2012福建)如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为A .14 B .15C .16 D .179.(2011新课标)由曲线y =,直线2y x =−及y 轴所围成的图形的面积为A .103 B .4 C .163D .6 10.(2011福建)1(2)x e x dx +∫等于A .1B .1e −C .eD .1e + 11.(2010湖南)421dx x∫等于 A .2ln 2− B .2ln 2 C .ln 2− D .ln 2 12.(2010新课标)曲线3y 21x x =−+在点(1,0)处的切线方程为A .1y x =−B .1y x =−+C .22y x =−D .22y x =−+ 13.(2010辽宁)已知点P 在曲线y=41xe +上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是A .[0,4π) B .[,)42ππC .3(,]24ππD .3[,)4ππ二、填空题14.(2018全国卷Ⅱ)曲线2ln(1)+yx 在点(0,0)处的切线方程为__________.15.(2018全国卷Ⅲ)曲线(1)x y ax e =+在点(0,1)处的切线的斜率为2−,则a =____. 16.(2016年全国Ⅱ)若直线y kx b =+是曲线ln 2y x =+的切线,也是曲线ln(1)y x =+的切线,则b = .17.(2016年全国Ⅲ) 已知()f x 为偶函数,当0x <时,()ln()3f x x x =−+,则曲线()y f x =,在点(1,3)−处的切线方程是_________.18.(2015湖南)2(1)x dx −∫= .19.(2015陕西)设曲线x y e =在点(0,1)处的切线与曲线1(0)y x x=>上点P 处的切线垂直,则P 的坐标为 .20.(2015福建)如图,点A 的坐标为()1,0,点C 的坐标为()2,4,函数()2f x x =,若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于 .(第15题) (第17题)21.(2014广东)曲线25+=−x e y 在点)3,0(处的切线方程为 .22.(2014福建)如图,在边长为e (e 为自然对数的底数)的正方形中随机撒一粒黄豆,则他落到阴影部分的概率为______.23.(2014江苏)在平面直角坐标系xOy 中,若曲线xbax y +=2(a ,b 为常数)过点)5,2(−P ,且该曲线在点P 处的切线与直线0327=++y x 平行,则b a +的值是 . 24.(2014安徽)若直线l 与曲线C 满足下列两个条件:)(i 直线l 在点()00,y x P 处与曲线C 相切;)(ii 曲线C 在P 附近位于直线l 的两侧,则称直线l 在点P 处“切过”曲线C .下列命题正确的是_________(写出所有正确命题的编号)①直线0:=y l 在点()0,0P 处“切过”曲线C :3y x = ②直线1:−=x l 在点()0,1−P 处“切过”曲线C :2)1(+=x y ③直线x y l =:在点()0,0P 处“切过”曲线C :x y sin = ④直线x y l =:在点()0,0P 处“切过”曲线C :x y tan = ⑤直线1:−=x y l 在点()0,1P 处“切过”曲线C :x y ln =.25.(2013江西)若曲线1y x α=+(R α∈)在点(1,2)处的切线经过坐标原点,则α= . 26.(2013湖南)若209,Tx dx T =∫则常数的值为 .27.(2013福建)当,1x R x ∈<时,有如下表达式:211.......1n x x x x+++++=− 两边同时积分得:1111122222200011.......1ndx xdx x dx x dx dx x+++++=−∫∫∫∫∫从而得到如下等式:23111111111()()...()...ln 2.2223212n n +×+×+×++×+=+ 请根据以下材料所蕴含的数学思想方法,计算:122311111111()()()2223212n n n n n n C C C C n +×+×+×+⋅⋅⋅+×+= .28.(2012江西)计算定积分121(sin )x x dx −+=∫___________.29.(2012山东)设0>a ,若曲线x y =与直线0,==y a x 所围成封闭图形的面积为2a ,则=a . 30.(2012新课标)曲线(3ln 1)yx x +在点(1,1)处的切线方程为________.31.(2011陕西)设2lg 0()30ax x f x x t dt x >= + ∫ ,若((1))1f f =,则a = .32.(2010新课标)设()y f x =为区间[0,1]上的连续函数,且恒有0()1f x ≤≤,可以用随机模拟方法近似计算积分1()f x dx ∫,先产生两组(每组N 个)区间[0,1]上的均匀随机数12,,N x x x …和12,,N y y y …,由此得到N 个点(,)(1,2,)i i x y i N =…,,再数出其中满足()(1,2,)i i y f x i N ≤=…,的点数1N ,那么由随机模拟方案可得积分1()f x dx ∫的近似值为 .33.(2010江苏)函数2y x =(0x >)的图像在点2(,)k k a a 处的切线与x 轴交点的横坐标为1k a +,其中*k N ∈,若116a =,则135a a a ++= .三、解答题34.(2017北京)已知函数()cos x f x e x x =−.(Ⅰ)求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)求函数()f x 在区间[0,]2π上的最大值和最小值.35.(2016年北京)设函数()a x f x xe bx −=+,曲线()y f x =在点(2,(2))f 处的切线方程为(1)4y e x =−+,(I )求a ,b 的值; (II )求()f x 的单调区间.36.(2015重庆)设函数23()()e xx ax f x a R +=∈. (Ⅰ)若()f x 在0x =处取得极值,确定a 的值,并求此时曲线()y f x =在点(1,(1))f处的切线方程;(Ⅱ)若()f x 在[3,)+∞上为减函数,求a 的取值范围. 37.(2015新课标Ⅰ)已知函数31()4f x x ax =++,()ln g x x =−. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线;(Ⅱ)用min {},m n 表示m ,n 中的最小值,设函数{}()min (),()h x f x g x =(0)x >,讨论()h x 零点的个数.38.(2014新课标Ⅰ)设函数1()ln x xbe f x ae x x−=+,曲线()y f x =在点(1,(1))f 处的切线为(1)2y e x =−+. (Ⅰ)求,a b ;(Ⅱ)证明:()1f x >.39.(2013新课标Ⅱ)已知函数()()ln xf x e x m =−+ (Ι)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (Ⅱ)当2m ≤时,证明()0f x >.40.(2012辽宁)设()()()=ln +1+,,,f x x ax b a b R a b ∈为常数,曲线()=y f x 与直线3=2y x 在()0,0点相切. (1)求,a b 的值;(2)证明:当0<<2x 时,()9<+6xf x x . 41.(2010福建)(1)已知函数3()=f x x x −,其图象记为曲线C .(i )求函数()f x 的单调区间;(ii )证明:若对于任意非零实数1x ,曲线C 与其在点111(,())P x f x 处的切线交于另一点222(,())P x f x ,曲线C 与其在点222(,())P x f x 处的切线交于另一点333(,())P x f x ,线段1223,PP P P 与曲线C 所围成封闭图形的面积分别记为1,2S S ,则12S S 为定值; (2)对于一般的三次函数32()g x ax bx cx d +++(0)a ≠,请给出类似于(1)(ii )的正确命题,并予以证明.。
专题04导数及其应用历年考题细目表解答题2014 导数综合问题2014年新课标1理科21解答题2013 导数综合问题2013年新课标1理科21解答题2012 导数综合问题2012年新课标1理科21解答题2011 导数综合问题2011年新课标1理科21解答题2010 导数综合问题2010年新课标1理科21历年高考真题汇编1.【2019年新课标1理科05】函数f()在[﹣π,π]的图象大致为()A.B.C.D.2.【2018年新课标1理科05】设函数f()=3+(a﹣1)2+a.若f()为奇函数,则曲线y=f()在点(0,0)处的切线方程为()A.y=﹣2 B.y=﹣C.y=2 D.y=3.【2016年新课标1理科07】函数y=22﹣e||在[﹣2,2]的图象大致为()A.B.C.D.4.【2015年新课标1理科12】设函数f()=e(2﹣1)﹣a+a,其中a<1,若存在唯一的整数0使得f(0)<0,则a的取值范围是()A.[)B.[)C.[)D.[)5.【2014年新课标1理科11】已知函数f()=a3﹣32+1,若f()存在唯一的零点0,且0>0,则实数a 的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1) D.(﹣∞,﹣2)6.【2012年新课标1理科10】已知函数f(),则y=f()的图象大致为()A.B.C.D.7.【2012年新课标1理科12】设点P在曲线上,点Q在曲线y=ln(2)上,则|PQ|最小值为()A.1﹣ln2 B.C.1+ln2 D.8.【2011年新课标1理科09】由曲线y,直线y=﹣2及y轴所围成的图形的面积为()A.B.4 C.D.69.【2010年新课标1理科03】曲线y在点(﹣1,﹣1)处的切线方程为()A.y=2+1 B.y=2﹣1 C.y=﹣2﹣3 D.y=﹣2﹣210.【2019年新课标1理科13】曲线y=3(2+)e在点(0,0)处的切线方程为.11.【2013年新课标1理科16】若函数f()=(1﹣2)(2+a+b)的图象关于直线=﹣2对称,则f()的最大值为.12.【2010年新课标1理科13】设y=f()为区间[0,1]上的连续函数,且恒有0≤f()≤1,可以用随机模拟方法近似计算积分,先产生两组(每组N个)区间[0,1]上的均匀随机数1,2,…N和y1,y2,…y N,由此得到N个点(i,y i)(i=1,2,…,N),再数出其中满足y i≤f(i)(i=1,2,…,N)的点数N1,那么由随机模拟方案可得积分的近似值为.13.【2019年新课标1理科20】已知函数f()=sin﹣ln(1+),f′()为f()的导数.证明:(1)f′()在区间(﹣1,)存在唯一极大值点;(2)f()有且仅有2个零点.14.【2018年新课标1理科21】已知函数f()+aln.(1)讨论f()的单调性;(2)若f()存在两个极值点1,2,证明:a﹣2.15.【2017年新课标1理科21】已知函数f()=ae2+(a﹣2)e﹣.(1)讨论f()的单调性;(2)若f()有两个零点,求a的取值范围.16.【2016年新课标1理科21】已知函数f()=(﹣2)e+a(﹣1)2有两个零点.(Ⅰ)求a的取值范围;(Ⅱ)设1,2是f()的两个零点,证明:1+2<2.17.【2015年新课标1理科21】已知函数f()=3+a,g()=﹣ln(i)当a为何值时,轴为曲线y=f()的切线;(ii)用min{m,n}表示m,n中的最小值,设函数h()=min{f(),g()}(>0),讨论h()零点的个数.18.【2014年新课标1理科21】设函数f()=aeln,曲线y=f()在点(1,f(1))处得切线方程为y=e(﹣1)+2.(Ⅰ)求a、b;(Ⅱ)证明:f()>1.19.【2013年新课标1理科21】已知函数f()=2+a+b,g()=e(c+d),若曲线y=f()和曲线y=g()都过点P(0,2),且在点P处有相同的切线y=4+2.(Ⅰ)求a,b,c,d的值;(Ⅱ)若≥﹣2时,f()≤g(),求的取值范围.20.【2012年新课标1理科21】已知函数f()满足f()=f′(1)e﹣1﹣f(0)2;(1)求f()的解析式及单调区间;(2)若,求(a+1)b的最大值.21.【2011年新课标1理科21】已知函数f(),曲线y=f()在点(1,f(1))处的切线方程为+2y﹣3=0.(Ⅰ)求a、b的值;(Ⅱ)如果当>0,且≠1时,f(),求的取值范围.22.【2010年新课标1理科21】设函数f()=e﹣1﹣﹣a2.(1)若a=0,求f()的单调区间;(2)若当≥0时f()≥0,求a的取值范围.考题分析与复习建议本专题考查的知识点为:导数的概念及运算,导数与函数的单调性、极值、最值,导数与函数的综合问题,定积分与微积分基本定理.历年考题主要以选择填空或解答题题型出现,重点考查的知识点为:导数的运算,导数与函数的单调性、极值、最值,导数与函数的综合问题,定积分,预测明年本考点题目会比较稳定.备考方向以知识点导数的运算,导数与函数的单调性、极值、最值,导数与函数的综合问题,定积分为重点较佳.最新高考模拟试题1.已知函数10()ln ,0x x f x x x x⎧⎪⎪=⎨⎪⎪⎩,<>,若()()F x f x kx =-有3个零点,则k 的取值范围为( ) A .(21e -,0) B .(12e -,0) C .(0,12e ) D .(0,21e) 2.已知,(0,)2παβ∈,sin sin 0βααβ->,则下列不等式一定成立的是( ) A .2παβ+< B .2παβ+= C .αβ< D .αβ>3.已知函数()ln 2f x a x x =-+(a 为大于1的整数),若()y f x =与(())y f f x =的值域相同,则a 的最小值是( )(参考数据:ln20.6931≈,ln3 1.0986≈,ln5 1.6094≈)A .5B .6C .7D .84.已知实数a ,b ,c ,d 满足ln 12113a c b d +-==+-,则22()()a c b d -+-的最小值为( ) A .8 B .4 C .2 D5.若函数()ln f x x a x =在区间()1,+∞上存在零点,则实数a 的取值范围为( )A .10,2⎛⎫ ⎪⎝⎭ B .1,2e ⎛⎫ ⎪⎝⎭ C .()0,∞+ D .1,2⎛⎫+∞ ⎪⎝⎭6.已知函数1()2x a f x e ax x x ⎛⎫=-+- ⎪⎝⎭,若对任意(0,)x ∈+∞,都有()()f x xf x '≥-成立,则实数a 的取值范围是( )A .3,2e ⎛⎤-∞- ⎥⎝⎦ B.(,-?C .3,2e 轹÷-+?ê÷ê滕D .)é-+?êë7.已知奇函数()f x 是定义在R 上的可导函数,其导函数为()f x ',当0x >时,有()()22f x xf x x '>+,则不等式()()()22018+2018420x f x f +-<+的解集为( )A .(),2016-∞-B .()2016,2012--C .(),2018-∞-D .()2016,0- 8.已知函数35791131()135791113x x x x x x f x x =+-+-+-+,则使不等式(1)0f x ->成立的x 的最小整数为( )A .-3B .-2C .-1D .09.直线y ax =是曲线1ln y x =+的切线,则实数a =____.10.函数()2x f x ae x =-与()21g x x x =--的图象上存在关于x 轴的对称点,则实数a 的取值范围为_________.11.已知函数()1x f x e =-,若存在实数,()a b a b <使得()()f a f b =,则2+a b 的最大值为________.12.已知实数a ,b ,c 满足2121a c b c e a b e +--+++≤(e 为自然对数的底数),则22a b +的最小值是_______.13.已知直线x t =与曲线()()()ln 1,x f x x g x e =+=分别交于,M N 两点,则MN 的最小值为________14.曲线cos y a x =在6x π=处的切线l 的斜率为12,则切线l 的方程为_____. 15.已知函数22,0,(),0,x x x f x e x ⎧≤=⎨>⎩若方程2[()]f x a =恰有两个不同的实数根12,x x ,则12x x +的最大值是______.16.已知函数31,0()2,0ax x f x x ax x x -≤⎧=⎨-+->⎩的图象恰好经过三个象限,则实数a 的取值范围______. 17.已知函数()||ln (0)f x x a x a =-->.(Ⅰ)讨论()f x 的单调性; (Ⅱ)比较222222ln 2ln 3ln 23n n++⋯+ 与(1)(21)2(1)n n n -++的大小(n N +∈且)2n >,并证明你的结论. 18.已知函数()()21ln 2f x x x ax a =++∈R . (1)讨论()f x 的单调性;(2)若12,x x 为()f x 的两个极值点,证明:()()21212+44282f x f x a a x x f +++⎛⎫-> ⎪⎝⎭. 19.已知函数()ln(1)1(1)f x ax x a =+-+…. (Ⅰ)当1a =时,求()f x 的最大值; (Ⅱ)若1()e f x e +…对1,x a ⎛⎫∈-+∞ ⎪⎝⎭恒成立,求实数a 的取值范围. 20.对于函数()y f x =的定义域D ,如果存在区间[],m n D ⊆,同时满足下列条件:①()f x 在()()f x g x +上是单调函数;②当[],x m n ∈时,()f x 的值域为[]2,2m n ,则称区间()()f x g x +是函数()f x 的“单调倍区间”.已知函数()ln 2,0()02,0a x x x f x a a x ->⎧⎪=>≤ (1)若2a =,求()f x 在点()(),e f e 处的切线方程;(2)若函数()f x 存在“单调倍区间”,求a 的取值范围.21.已知函数2()(0)4x x a f x e a x ++=⋅≥+. (1)讨论函数()f x 的单调性;(2)当[0,1)b ∈时,设函数22(3)()(2)(2)x e b x g x x x +-+=>-+有最小值()h b ,求()h b 的值域. 22.已知函数1()x f x xe alnx -=-(无理数 2.718e =…).(1)若()f x 在(1,)+∞单调递增,求实数a 的取值范围:(2)当0a =时,设2()()e g x f x x x x=⋅--, 证明:当0x >时,ln 2ln 2()122g x ⎛⎫>-- ⎪⎝⎭.。