—逆矩阵
- 格式:ppt
- 大小:1.12 MB
- 文档页数:48
求逆矩阵的方法逆矩阵是矩阵理论中非常重要的概念,它在线性代数、微积分、概率统计等领域都有着广泛的应用。
在实际问题中,我们常常需要对矩阵进行逆运算,以便求解方程组、进行线性变换等。
那么,如何求逆矩阵呢?下面我们将介绍几种常用的方法。
1. 初等变换法。
初等变换法是求逆矩阵的一种常用方法。
首先,我们将待求逆的矩阵写成增广矩阵的形式,即将单位矩阵拼接在原矩阵的右侧,然后通过一系列的初等行变换,将原矩阵变为单位矩阵,此时增广矩阵的右侧就是所求的逆矩阵。
这种方法简单直观,适用于小规模矩阵的求逆运算。
2. 初等矩阵法。
初等矩阵法是另一种常用的求逆矩阵的方法。
我们知道,对一个矩阵进行一系列的初等行变换,实质上可以看作是左乘一个初等矩阵,因此,如果我们能够找到一系列的初等矩阵,使得它们的乘积等于单位矩阵,那么这些初等矩阵的逆矩阵的乘积就是原矩阵的逆矩阵。
这种方法适用于大规模矩阵的求逆运算,因为可以通过计算初等矩阵的逆矩阵,避免直接进行行变换。
3. 克拉默法则。
克拉默法则是另一种求逆矩阵的方法,它适用于方阵且可逆的情况。
根据克拉默法则,一个矩阵的逆矩阵可以通过它的伴随矩阵来求解,具体的求解过程可以通过矩阵的代数余子式和行列式来完成。
这种方法在理论上很有意义,但在实际计算中往往效率较低,因此一般不适用于大规模矩阵的求逆运算。
4. 特征值和特征向量法。
特征值和特征向量法是一种更加高级的求逆矩阵的方法。
通过求解矩阵的特征值和特征向量,我们可以得到矩阵的对角化形式,从而进一步求得矩阵的逆矩阵。
这种方法在理论上非常有深度和广泛的适用性,但在实际计算中往往较为复杂,因此一般适用于特定的矩阵结构和特定的求逆问题。
综上所述,求逆矩阵的方法有很多种,我们可以根据具体的问题和需求选择合适的方法。
在实际应用中,我们往往会结合多种方法,以求得更加高效和精确的结果。
希望本文介绍的方法能够对您有所帮助,谢谢阅读!。
. .. . .. ..逆矩阵的几种求法与解析矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法.1.利用定义求逆矩阵定义: 设A、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A为可逆矩阵, 而称B为A 的逆矩阵.下面举例说明这种方法的应用.例1求证: 如果方阵A 满足A K= 0, 那么E-A是可逆矩阵, 且(E-A)1-= E + A + A2+…+A1-K证明因为E 与A 可以交换, 所以(E- A )(E+A + A2+…+ A1-K)= E-A K,因A K= 0 ,于是得(E-A)(E+A+A2+…+A1-K)=E,同理可得(E + A + A2+…+A1-K)(E-A)=E,因此E-A是可逆矩阵,且(E-A)1-= E + A + A2+…+A1-K.同理可以证明(E+ A)也可逆,且(E+ A)1-= E -A + A2+…+(-1)1-K A1-K.由此可知, 只要满足A K=0,就可以利用此题求出一类矩阵E±A的逆矩阵.例2 设 A =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000300000200010,求 E-A 的逆矩阵.分析由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵.解容易验证A 2=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000060000200, A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000000006000, A 4=0而 (E-A)(E+A+ A 2+ A 3)=E,所以(E-A)1-= E+A+ A 2+ A 3=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1000310062106211.2.初等变换法求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21 使(1)s p p p 21A=I ,用A 1-右乘上式两端,得:(2) s p p p 21I= A 1-比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-.用矩阵表示(A I )−−−→−初等行变换为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.例1 求矩阵A 的逆矩阵.已知A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡521310132.解 [A I]→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100521010310001132→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001132010310100521→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--3/16/16/1100010310100521→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/110012/32/10103/46/136/1001 故 A 1-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3/16/16/112/32/13/46/136/1. 在事先不知道n 阶矩阵是否可逆的情况下,也可以直接用此方法.如果在初等变换过程中发现左边的矩阵有一行元素全为0,则意味着A 不可逆,因为此时表明A =0,则A 1-不存在.例2 求A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡987654321.解 [A E]=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100987010654001321→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------1071260014630001321→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----121000014630001321. 由于左端矩阵中有一行元素全为0,于是它不可逆,因此A 不可逆.3.伴随阵法定理 n 阶矩阵A=[a ij ]为可逆的充分必要条件是A 非奇异.且A 1-=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A .....................212221212111 其中A ij 是A 中元素a ij 的代数余子式.矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nn n n A A A A A AA A A (2122212)12111称为矩阵A 的伴随矩阵,记作A *,于是有A 1-=A 1 A *.证明 必要性:设A 可逆,由A A 1-=I ,有1-AA =I ,则A 1-A =I ,所以A ≠0,即A 为非奇异.充分性: 设A 为非奇异,存在矩阵B=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A .....................212221212111, 其中AB=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n a a a a a a a a a (2)12222111211⨯A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn nnn n A A A A A A A A A ............... (2122212)12111=A 1⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡A A A A ............0...00...0=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡1 (00)...1......0...100...01=I同理可证BA=I.由此可知,若A 可逆,则A 1-=A1 A *. 用此方法求逆矩阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循.因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,次对角线的元素变号即可.若可逆矩阵是三阶或三阶以上矩阵,在求逆矩阵的过程中,需要求9个或9个以上代数余子式,还要计算一个三阶或三阶以上行列式,工作量大且中途难免 出现符号及计算的差错.对于求出的逆矩阵是否正确,一般要通过AA 1-=I 来检验.一旦发现错误,必须对每一计算逐一排查.4.分块矩阵求逆法4.1.准对角形矩阵的求逆命题 设A 11、A 22都是非奇异矩阵,且A 11为n 阶方阵,A 22为m 阶方阵⎥⎦⎤⎢⎣⎡221100A A ⎥⎦⎤⎢⎣⎡--12211100A A 证明 因为A =221100A A =11A 22A ≠0, 所以A 可逆.设A 1-=⎥⎦⎤⎢⎣⎡WZY X,于是有⎥⎦⎤⎢⎣⎡W Z Y X ⎥⎦⎤⎢⎣⎡221100A A =⎥⎦⎤⎢⎣⎡m nI I 00, 其中 X A 11=I n , Y A 22=0,Z A 11=0,W A 22=I m .又因为A 11、A 22都可逆,用A 111-、A 122-分别右乘上面左右两组等式得:X= A 111-,Y=0,Z=0,W= A 122-故 A 21= ⎥⎦⎤⎢⎣⎡--12211100A A 把上述结论推广到每一个子块都是非奇异矩阵的准对角形状矩阵中去,即:121...-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡k A A A =⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---11211...k A A A4.2.准三角形矩阵求逆命题 设A 11、A 22都是非奇异矩阵,则有12212110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A证明 因为⎥⎦⎤⎢⎣⎡2212110A A A⎥⎦⎤⎢⎣⎡--I A A I 012111=⎥⎦⎤⎢⎣⎡221100A A 两边求逆得1121110--⎥⎦⎤⎢⎣⎡-I A A I 1221211-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡--12211100A A 所以 1221211-⎥⎦⎤⎢⎣⎡A A A=⎥⎦⎤⎢⎣⎡--I A A I 012111⎥⎦⎤⎢⎣⎡--12211100A A =⎥⎦⎤⎢⎣⎡-----122122121111110A A A A A同理可证12221110-⎥⎦⎤⎢⎣⎡A A A =⎥⎦⎤⎢⎣⎡-----122122211111110A A A A A 此方法适用于大型且能化成对角子块阵或三角块阵的矩阵. 是特殊方阵求逆的一种方法,并且在求逆矩阵之前,首先要将已给定矩阵进行合理分块后方能使用.5.恒等变形法恒等变形法求逆矩阵的理论依据为逆矩阵的定义,此方法也常用与矩阵的理论推导上.就是通过恒等变形把要求的值化简出来,题目中的逆矩阵可以不求,利用AA 1-=E ,把题目中的逆矩阵化简掉。
逆矩阵三个公式逆矩阵是线性代数中一个重要的概念,它在求解线性方程组、计算矩阵的行列式、求解线性变换等问题中都有广泛的应用。
在本文中,我们将介绍逆矩阵的三个公式,并通过实例展示其应用。
一、逆矩阵的定义逆矩阵是指对于一个给定的方阵A,存在一个矩阵B,使得AB=BA=I,其中I为单位矩阵。
如果一个矩阵存在逆矩阵,则称之为可逆矩阵或非奇异矩阵,反之则称为奇异矩阵。
二、逆矩阵的计算公式1. 克拉默法则克拉默法则是求解线性方程组的一种方法,它可以通过逆矩阵的概念来推导。
对于一个n阶方阵A,如果det(A)≠0,则A可逆,且其逆矩阵为A^-1=1/det(A)·adj(A),其中det(A)为A的行列式,adj(A)为A的伴随矩阵。
2. 初等变换法通过初等变换法,我们可以将方阵A通过一系列初等行变换或初等列变换转化为单位矩阵I,此时我们所做的变换操作在另一个矩阵上执行,得到的矩阵即为A的逆矩阵。
具体而言,设A经过一系列初等行变换得到I,则对应的初等行变换矩阵记为E1,同理,设A经过一系列初等列变换得到I,则对应的初等列变换矩阵记为E2,则A的逆矩阵为A^-1=E1·E2。
3. 公式法对于一个2阶方阵A,如果det(A)≠0,则A可逆,且其逆矩阵为A^-1=1/det(A)·[d -b;-c a],其中a、b、c、d分别为A的元素。
对于一个3阶方阵A,如果det(A)≠0,则A可逆,且其逆矩阵为A^-1=1/det(A)·[A11 A12 A13;A21 A22 A23;A31 A32 A33]的转置矩阵,其中Aij为A的代数余子式。
三、逆矩阵的应用实例为了更好地理解逆矩阵的应用,我们以线性方程组的求解为例进行说明。
考虑一个线性方程组:2x + 3y = 84x - 2y = 2我们可以将其表示为矩阵形式Ax=b,其中A为系数矩阵,x为未知数向量,b为常数向量。
我们可以通过求解逆矩阵来解得未知数向量x。
华北水利水电学院总结求矩阵的逆矩阵方法课程名称:线性代数专业班级:成员组成:联系方式:浅析求矩阵的逆矩阵方法摘要:矩阵理论在《线性代数》课程中有着重要的地位,矩阵和数相仿可以运算,特别是乘法和数一样有逆运算,其定义为:对于 n 阶方阵 A,如果存在 n 个阶段 B 使得 AB=BA=E,则 n 个阶方阵 A 为可逆的,B 为 A 的逆矩阵。
下面对求逆矩阵方法进行全面论述,并做一步探讨。
关键字 矩阵 逆矩阵 可逆1矩阵求逆常见的几种方法 1.1 用伴随矩阵法求逆矩定理1.1.1:n 阶矩阵)(ij a A =可逆的充要条件0≠A ,而且当)2(≥n 阶矩阵A 有逆矩阵,*-=A AA11,其中*A 伴随矩阵。
例1 矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=412112013A 是否可逆?若可逆,求1-A 解:A A ∴≠=05可逆又511=A ,421=A ,3131=A ,1012=A ,1222=A ,332-=A ,013=A ,123=A ,133=A∴*-=A AA11例 2 设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=543022001A ,*A 是A 的伴随矩阵,求()1-*A解:1-*=A A A ,又()kB kB 11--=,所以()()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡====---*5430220011011011111A A A AA A且有规律可循。
对于三阶以上方阵用该方法逆矩阵,不仅计算量大且易出错,一般不用此种方法。
对求出逆矩阵正确与否,一般用E AA A A ==--11来检验是否正确。
1.2 用初等变换法求逆矩阵定理 1.2.1 如果n 阶方阵A 可逆,则存在有限个初等矩阵,l P P P 21,使得l P P P A 21=。
如果A 可逆,则1-A 也可逆,由上述定理, 存在初等矩阵l Q Q Q ,,,21 使得l Q Q Q A 211=-那么A A AAE 11--==即A Q Q Q E l 21= E Q Q Q Al 211=-于是我们得到一个求逆矩阵的方法如下:如果n 阶方阵A 可逆,作一个n n 2⨯的矩阵E A ,然后对此矩阵施以初等行换,使A 化为单位矩阵E 同时化为1-A ,即:E A 1-−−−→−A E 初等行变换例1 用初等行变换求矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=521310132A 的逆矩阵解:=E A →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡001010100132310521100010001521310132→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--201010100910310521211010100600310521⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--→316161100123210103461361001316161100010310100521 故⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----=-3161611232134613611A 同理,如果n 阶矩阵A 可逆,作一个n n ⨯2的矩阵⎥⎦⎤⎢⎣⎡E A ,然后此矩阵施以初等变换,使矩阵A 化为单位阵E ,则同时E 化为1-A ,即⎥⎦⎤⎢⎣⎡−−−→−⎥⎦⎤⎢⎣⎡-1A E E A 初等列变换。
矩阵和逆矩阵的关系公式
摘要:
一、矩阵和逆矩阵的定义
二、矩阵和逆矩阵的关系公式
三、逆矩阵的应用场景
正文:
矩阵和逆矩阵的关系公式在数学领域具有重要的地位。
矩阵是一个由数值排列成的矩形阵列,通常用于表示线性方程组。
逆矩阵则是矩阵的逆矩阵,是一个与其相乘后等于单位矩阵的矩阵。
矩阵和逆矩阵的关系公式是矩阵乘法的逆矩阵公式,即若A 是一个n 阶矩阵,则其逆矩阵A^-1 存在当且仅当矩阵A 的行列式不为零,此时A^-1 的元素是矩阵A 的元素的反转。
矩阵和逆矩阵的关系公式在解决线性方程组时非常有用。
设线性方程组的系数矩阵为A,增广矩阵为[A|I],其中I 是单位矩阵。
若A 的行列式不为零,则可以使用矩阵乘法的逆矩阵公式来求解该线性方程组,即X=A^-1*B,其中B 是方程组的常数项向量。
逆矩阵的应用场景包括但不限于以下几个方面:
1.求解线性方程组:逆矩阵可以用于求解线性方程组,尤其是当系数矩阵的行列式不为零时,逆矩阵是解决该线性方程组的高效方法。
2.矩阵的幂:设矩阵A 的逆矩阵为A^-1,则矩阵A 的幂可以表示为
A^n = A*A^(n-1) = A*(A^-1)^(n-1)。
3.矩阵的行列式:逆矩阵可以用于计算矩阵的行列式,若矩阵A 的逆矩阵
为A^-1,则|A| = 1/|A^-1|。