专题16 坐标系与参数方程(高考押题)-2017年高考数学(理)考纲解读与热点难点突破(解析版)
- 格式:doc
- 大小:372.61 KB
- 文档页数:11
选修4-4《坐标系与参数方程》复习讲义一、选考内容《坐标系与参数方程》高考考试大纲要求:1.坐标系:①理解坐标系的作用.②了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.③能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.④能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义. 2.参数方程:①了解参数方程,了解参数的意义. ②能选择适当的参数写出直线、圆和圆锥曲线的参数方程.二、基础知识归纳总结:1.伸缩变换:设点P(x,y)是平面直角坐标系中的任意一点,在变换⎩⎨⎧>⋅='>⋅=').0(,y y 0),(x,x :μμλλϕ的作用下, 点P(x,y)对应到点)y ,x (P ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。
2.极坐标系的概念:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。
3.点M 的极坐标:设M 是平面内一点,极点O与点M 的距离OM 叫做点M 的极径,记为ρ;以极轴Ox为始边,射线OM 为终边的∠XOM 叫做点M 的极角,记为θ。
有序数对),(θρ叫做点M 的极坐标,记为M ),(θρ.极坐标),(θρ与)Z k )(2k ,(∈+πθρ表示同一个点。
极点O 的坐标为)R )(,0(∈θθ. 4.若0<ρ,则0>-ρ,规定点),(θρ-与点),(θρ关于极点对称,即),(θρ-与),(θπρ+表示同一点。
如果规定πθρ20,0≤≤>,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是唯一确定的。
专题21 坐标系与参数方程(仿真押题)2017年高考数学(理)命题猜想与仿真押题1.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为ρsin(θ-错误!)=错误!,曲线C的参数方程为错误!(1)写出直线l的直角坐标方程;(2)求曲线C上的点到直线l的距离的最大值.解:(1)∵ρsin(θ-错误!)=错误!,∴ρ(错误!sinθ-错误!cosθ)=错误!,∴错误!y-错误!x=错误!,即x-错误!y+1=0。
故直线l的直角坐标方程是x-3y+1=0.(2)方法一:由已知可得,曲线C上的点的坐标为(2+2cos α,2sinα),∴曲线C上的点到直线l的距离d=错误!=错误!≤错误!,故最大距离是错误!.方法二:曲线C是以(2,0)为圆心,以2为半径的圆,圆心到直线l的距离为错误!,∴最大距离为错误!+2=错误!。
2.在直角坐标系xOy中,圆C的参数方程为错误!(α为参数).(1)以原点为极点、x轴正半轴为极轴建立极坐标系,求圆C的极坐标方程;(2)已知A(-2,0),B(0,2),圆C上任意一点M(x,y),求△ABM面积的最大值.解:(1)圆C的参数方程为错误!(α为参数),所以其普通方程为(x-3)2+(y+4)2=4,所以圆C的极坐标方程为ρ2-6ρcosθ+8ρsinθ+21=0。
(2)点M(x,y)到直线AB:x-y+2=0的距离d=错误!,故△ABM的面积S=错误!×|AB|×d=|2cosα-2sinα+9|=|2 错误!sin(错误!-α)+9|,所以△ABM面积的最大值为9+2 错误!.3.在平面直角坐标系xOy中,直线l的参数方程为错误!(t 为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=4cosθ。
(1)将直线l的参数方程化为极坐标方程;(2)求直线l和曲线C交点的极坐标(ρ≥0,0≤θ〈2π).解:(1)将直线l:错误!(t为参数)消去参数t,化为普通方程错误! x-y-2 错误!=0,将错误!代入错误!x-y-2 错误!=0,得错误!ρcosθ-ρsinθ-2 3=0.4.已知曲线C的极坐标方程为ρ=2cosθ-4sinθ。
第1讲坐标系与参数方程极坐标方程及其应用共研典例类题通法1.圆的极坐标方程若圆心为M(ρ0,θ0),半径为r,则圆的方程为:ρ2-2ρ0ρcos(θ-θ0)+ρ错误!-r2=0.几个特殊位置的圆的极坐标方程:(1)当圆心位于极点,半径为r:ρ=r;(2)当圆心位于M(a,0),半径为a:ρ=2a cos θ;(3)当圆心位于M(a,错误!),半径为a:ρ=2a sin θ.2.直线的极坐标方程若直线过点M(ρ0,θ0),且极轴到此直线的角为α,则它的方程为:ρsin(θ-α)=ρ0sin(θ0-α).几个特殊位置的直线的极坐标方程:(1)直线过极点:θ=θ0和θ=π+θ0;(2)直线过点M(a,0)且垂直于极轴:ρcos θ=a;(3)直线过点M(b,π2)且平行于极轴:ρsin θ=b.3.极坐标与直角坐标的互化方法点M 直角坐标(x,y)极坐标(ρ,θ)互化公式错误!错误!(2016·高考全国卷乙)在直角坐标系xOy中,曲线C1的参数方程为错误!(t为参数,a>0).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,曲线C2:ρ=4cos θ.(1)说明C1是哪一种曲线,并将C1的方程化为极坐标方程;(2)直线C3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C1与C2的公共点都在C3上,求a。
【解】(1)消去参数t得到C1的普通方程x2+(y-1)2=a2。
C1是以(0,1)为圆心,a为半径的圆.将x=ρcos θ,y=ρsin θ代入C1的普通方程中,得到C1的极坐标方程为ρ2-2ρsin θ+1-a2=0。
(2)曲线C1,C2的公共点的极坐标满足方程组错误!若ρ≠0,由方程组得16cos 2θ-8sin θcos θ+1-a 2=0,由已知tan θ=2,可得16cos 2θ-8sin θcos θ=0,从而1-a 2=0,解得a =-1(舍去)或a =1.当a =1时,极点也为C 1,C 2的公共点,在C 3上.所以a =1。
湖北省各地2017届高三最新考试数学理试题分类汇编坐标系与参数方程2017.021、(荆、荆、襄、宜四地七校考试联盟2017届高三2月联考)在直角坐标系xoy 中,直线l 经过点()1,0P -,其倾斜角为α,在以原点O 为极点,x 轴非负半轴为极轴的极坐标系中(取相同的长度单位),曲线C 的极坐标方程为26cos 10ρρθ-+=. (Ⅰ)若直线l 与曲线C 有公共点,求α的取值范围; (Ⅱ)设()y x M ,为曲线C 上任意一点,求y x +的取值范围.2、(荆门市2017届高三元月调考)在直角坐标系xoy 中,曲线C 的参数方程为32cos ,2sin x y θθ=+⎧⎨=⎩(θ为参数), (Ⅰ)以坐标原点为极点,以x 轴的正半轴为极轴建立极坐标系,求曲线C 的极坐标方程;(Ⅱ)直线l 的方程为πsin()4ρθ+l 被曲线C 截得的弦长.3、(荆州市五县市区2017届高三上学期期末)在直角坐标系xOy 中,圆C 的参数方程1cos (sin x y ϕϕϕ=+⎧⎨=⎩为参数).以O 为极点,x 轴的非负半轴为极轴建立极坐标系. (Ⅰ)求C 的极坐标方程;(Ⅱ)直线l 的极坐标方程是2sin()3πρθ+=OM :3π=θ与C 分别交于点O ,P ,与l 交于点Q ,求PQ 的长.4、(天门、仙桃、潜江市2017届高三上学期期末联合考试)在平面直角坐标系xOy 中,曲线C 1的参数方程为cos (sin x y ϕϕϕ=⎧⎨=⎩为参数),曲线C 2的参数方程为cos (0,sin x a a b y b ϕϕϕ=⎧>>⎨=⎩为参数),在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线:l θα=与C 1,C 2各有一个交点,当0α=时,这两个交点间的距离为2,当2πα=时,这两个交点重合.(Ⅰ)分别说明C 1,C 2是什么曲线,并求a 与b 的值; (Ⅱ)设当4πα=时,l 与C 1,C 2的交点分别为A 1,B 1,当4πα=-时,l 与C 1,C 2的交点分别为A 2,B 2,求直线A 1 A 2 、B 1B 2的极坐标方程.5、(武汉市2017届高三毕业生二月调研考) 以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的方程为2sin 3πρθ⎛⎫-= ⎪⎝⎭,C 的极坐标方程为4cos 2sin .ρθθ=+(1)求直线l 和C 的普通方程;(2)若直线l 与圆C 交于,A B 两点,求弦AB 的长.6、(武汉市武昌区2017届高三1月调研)在直角坐标系xoy 中,曲线C 的参数方程为cos 2sin x a ty t =⎧⎨=⎩(t 为参数,0a > )以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,已知直线l 的极坐标方程为cos 4πρθ⎛⎫+=- ⎪⎝⎭(Ⅰ)设P 是曲线C 上的一个动点,当2a =时,求点P 到直线l 的距离的最小值; (Ⅱ)若曲线C 上的所有点均在直线l 的右下方,求a 的取值范围.7、(襄阳市2017届高三1月调研)在直角坐标系xoy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求12,C C 的极坐标方程; (2))若直线3C 的极坐标方程为()4R πρρ=∈,设2C 与3C 的交点为M,N 求2MNC ∆的面积.8、(襄阳市优质高中2017届高三1月联考) 在直角坐标系xoy 中,直线的参数方程为1cos sin x t t t αα=+⎧⎨=⎩(t 为参数),以原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,曲线C的极坐标方程为.4πρθ⎛⎫=+⎪⎝⎭(1)求曲线C 的直角坐标方程,并指出其表示何种曲线;(2)设直线l 与曲线C 交于,A B 两点,若点P 的直角坐标为()1,0,试求当4πα=时,PA PB +的值.9、(湖北省部分重点中学2017届高三上学期第二次联考)在直角坐标系xoy 中,圆C 的参数方程为22cos 2sin x y ϕϕ=+⎧⎨=⎩(ϕ为参数),以O 为极点,x 轴的非负半轴为极轴建立极坐标系.(1)求圆C 的极坐标方程;(2)若直线2:12x m t l y t ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数)与圆C 交于A,B两点,且AB =m 的值.10、(荆州中学2017届高三1月质量检测)已知在直角坐标系xoy 中,曲线C 的参数方程为()22cos ,2sin ,x y θθθ=+⎧⎨=⎩为参数,在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,直线l 的方程为sin()4πρθ+=(Ⅰ)求曲线C 在极坐标系中的方程; (Ⅱ)求直线l 被曲线C 截得的弦长.参考答案1、(Ⅰ)∵曲线C 的极坐标方程为26cos 10ρρθ-+=,∴曲线C 的直角坐标方程为22610x y x +-+=∵直线l 经过点()1,0P -,其倾斜角为α,∴直线l 的参数方程为1cos sin x t y t αα=-+⎧⎨=⎩(t 为参数)将1cos sin x t y t αα=-+⎧⎨=⎩,代入22610x y x +-+=整理得28cos 80t t α-+=∵直线l 与曲线C 有公共点,∴264cos 320α∆=-≥即cos 2α≥或cos α≤ ∵[)0,απ∈ ∴α的取值范围是30,,44πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭………5分(Ⅱ)曲线C 的直角坐标方程为22610x y x +-+=可化为22(3)8x y -+=其参数方程为3x y θθ⎧=+⎪⎨=⎪⎩(θ为参数) ………7分∵(),M x y 为曲线C 上任意一点,∴334sin()4x y πθθθ+=++=++∴x y +的取值范围是[]1,7-.………10分2、(Ⅰ)曲线C 的普通方程为22(3)4x y -+=,即05622=+-+x y x ,………………2分将cos ,sin x y ρθρθ==代入,得26cos 50ρρθ-+=;所以,曲线C 的极坐标方程是26cos 50ρρθ-+=. (5)分 (Ⅱ)曲线l 的方程sin cos 1ρθρθ+=,则1x y +=, ………………………………………7分将1x y =-代入22(3)4x y -+=解得0y =和2y =- 即交点(1A ,(3,2)B -,弦长为AB =…………………………………………10分3、解:(Ⅰ)消去参数,得到圆的普通方程为,令代入的普通方程,得的极坐标方程为,即. 5分 (Ⅱ)在的极坐标方程中令,得,所以.在的极坐标方程中令,得,所以.所以.10分4、 (Ⅰ) C 1是圆,C 2是椭圆当0α=时,射线l 与C 1,C 2交点的直角坐标分别为(1,0),(a ,0),因为这两点间的距离为2,所以a =3…………………………………………2分 当2πα=时,射线l 与C 1,C 2交点的直角坐标分别为(0,1),(0,b ),因为这两点重合,所以b =1……………………………………………………5分(Ⅱ) C 1,C 2的普通方程分别为221x y +=和2219x y += ………………………6分当4πα=时,射线l 与C 1的交点A 1的横坐标为x =与C 2的交点B 1的横坐标为x '= 当4πα=-时,射线l 与C 1,C 2的交点A 2,分别与A 1,B 1关于x 轴对称因此直线A 1 A 2 、B 1B 2垂直于极轴,故直线A 1 A 2 和B 1B 2的极坐标方程分别为sin ρθ=sin ρθ=10分 5、6、(Ⅰ)由cos 4πρθ⎛⎫+=- ⎪⎝⎭)cos sin ρθρθ-=-化成直角坐标方程,得)2x y -=-l 的方程为40x y -+=. 依题意,设()2cos ,2sin P t t ,则P 到直线l的距离2cos 4d t π⎛⎫===+ ⎪⎝⎭,当24t k πππ+=+,即32,4t k k Z ππ=+∈时,min 2d =. 故点P 到直线l的距离的最小值为2. (Ⅱ) 曲线C 上的所有点均在直线l 的右下方,∴对t R ∀∈,有cos 2sin 40a t t -+>恒成立,()4t ϕ+>-(其中2tan aϕ=)恒成立,4<,又0a >,解得0a <<故a的取值范围为(0,. 7、(Ⅰ)解:C 1:cos 2ρθ=-2分由22(1)(2)1x y -+-=得:222440x y x y +--+=∴C 2:2cos 4sin 40ρρθρθ--+=5分 (Ⅱ)解:直线C 3的直角坐标方程为:0x y -= 6分 C 2到直线C 3的距离为d ==,||MN ==8分 211||22MNC S MN d ∆=⋅=. 10分8、解:(Ⅰ)曲线2C :)4cos(22πθρ+=,可以化为)4cos (222πθρρ+=,θρθρρsin 2cos 22-=,因此,曲线C 的直角坐标方程为02222=+-+y x y x ………………4分 它表示以)1,1(-为圆心、2为半径的圆. ………………5分(Ⅱ)法一:当4πα=时,直线的参数方程为⎪⎪⎩⎪⎪⎨⎧=+=ty t x 22221(为参数) 点P )0,1(在直线上,且在圆C 内,把⎪⎪⎩⎪⎪⎨⎧=+=t y t x 22221 代入02222=+-+y x y x中得210t -= ………………6分 设两个实数根为21,t t ,则B A ,两点所对应的参数为21,t t ,则12t t +=121-=t t ………………8分64)(||||||2122121=-+=-=+∴t t t t t t PB PA ………………10分法二:由(Ⅰ)知圆的标准方程为2)1()1(22=++-y x即圆心C 的坐标为)1,1(-半径为2,点P )0,1(在直线01:=-+y x l 上,且在圆C 内||||||AB PB PA =+∴ ………………6分圆心C 到直线的距离2211|1)1(1|22=+--+=d ………………8分所以弦||AB 的长满足621222||22=-=-=dr AB 6||||=+∴PB PA ………………10分9、解(1)由圆C 的参数方程可得圆C 的圆心为(2,0),半径为2,所以圆C 的极坐标方程为θρcos 4= .………………………………………………………4分(2)由直线)(2123:为参数t t y t m x l ⎪⎪⎩⎪⎪⎨⎧=+=可求得直线l 的直角坐标方程为03=--m y x .由15=AB 知圆心)0,2(C 到l 距离2122=-=m d ,可得1=m 或3=m .………10分10、解:(Ⅰ)曲线C 的普通方程为22(2)4x y -+=, 即2240x y x +-=,将cos sin x y ρθρθ=⎧⎨=⎩代入方程2240x y x +-=化简得θρcos 4=.所以,曲线C 的极坐标方程是θρcos 4=. ………………5分(Ⅱ) 直线l 的直角坐标方程为40x y +-=,由2240,4,x y x x y ⎧+-=⎨+=⎩得直线l 与曲线C 的交点坐标为(2,2),(4,0),所以弦长22=OA . ……10分。
1.在极坐标系中,过点2,π2且与极轴平行的直线方程是()A.ρ=2 B.θ=π2C.ρcos θ=2 D.ρsin θ=2[来源学科网ZXXK]2.在直角坐标系xOy中,曲线C的参数方程为x=t,y=2t(t为参数),以原点O为极点,x轴的非负半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos θ-ρsin θ+1=0.则l与C的交点直角坐标为________.[来源学科网ZXXK]3.在极坐标系中,曲线C1:ρ(2cos θ+sin θ)=1与曲线C2:ρ=a(a>0)的一个交点在极轴上,则a的值为________.4.已知曲线C1:ρ=22和曲线C2:ρcosθ+π4=2,则C1上到C2的距离等于2的点的个数为________.5.在直角坐标系xOy中,曲线C1参数方程为x=cos α,y=1+sin α(α为参数),在极坐标系(与直角坐标系xOy相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,曲线C2的方程为ρ(cos θ-sin θ)+1=0,则曲线C1与C2的交点个数为________.6.在极坐标系中,ρ=4sin θ是圆的极坐标方程,则点A4,π6到圆心C的距离是________.7.在极坐标系中,点M4,π3到曲线ρcosθ-π3=2上的点的距离的最小值为________.8.在平面直角坐标系下,曲线C1:x=2t+2a,y=-t(t为参数),曲线C2:x=2sin θ,y=1+2cos θ(θ为参数),若曲线C1,C2有公共点,则实数a的取值范围是________.9.已知曲线C的参数方程为x=2cos t,y=2sin t(t为参数),曲线C在点(1,1)处的切线为l,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,则l的极坐标方程为________.[来源:]10.已知点P(x,y)在曲线x=-2+cos θ,y=sin θ(θ为参数,θ∈R)上,则yx的取值范围是________.11.在平面直角坐标系xOy中,曲线C1的参数方程是x=2+2cos θ,y=2sin θ(θ为参数).[来源:](1)将C1的方程化为普通方程;(2)以O为极点,x轴的正半轴为极轴建立极坐标系.设曲线C2的极坐标方程是θ=π3,求曲线C1与C2的交点的极坐标.12.(2014·郑州质检)已知曲线C1:x=-2+cos t,y=1+sin t(t为参数),C2:x=4cos θ,y=3sin θ(θ为参数).。
专题16 坐标系与参数方程【2017年高考考纲解读】 高考对本内容的考查主要有: (1)直线、曲线的极坐标方程; (2)直线、曲线的参数方程; (3)参数方程与普通方程的互化;(4)极坐标与直角坐标的互化 ,本内容的考查要求为B 级. 【重点、难点剖析】 1.直角坐标与极坐标的互化把直角坐标系的原点作为极点,x 轴正半轴作为极轴,且在两坐标系中取相同的长度单位.设M 是平面内的任意一点,它的直角坐标、极坐标分别为(x ,y )和(ρ,θ),则⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,⎩⎪⎨⎪⎧ρ2=x 2+y 2,tan θ=y x x2.直线的极坐标方程若直线过点M (ρ0,θ0),且极轴到此直线的角为α,则它的方程为:ρsin(θ-α)=ρ0sin(θ0-α). 几个特殊位置的直线的极坐标方程 (1)直线过极点:θ=α;(2)直线过点M (a,0)(a >0)且垂直于极轴:ρcos θ=a ;(3)直线过M ⎝⎛⎭⎫b ,π2且平行于极轴:ρsin θ=b .3.圆的极坐标方程若圆心为M (ρ0,θ0),半径为r 的圆方程为: ρ2-2ρ0ρcos(θ-θ0)+ρ20-r 2=0. 几个特殊位置的圆的极坐标方程(1)当圆心位于极点,半径为r :ρ=r ; (2)当圆心位于M (r,0),半径为r :ρ=2r cos θ;(3)当圆心位于M ⎝⎛⎭⎫r ,π2,半径为r :ρ=2r sin θ.(4)圆心在点M (x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数,0≤θ≤2π).圆心在点A (ρ0,θ0),半径为r 的圆的方程为r 2=ρ2+ρ20-2ρρ0cos(θ-θ0). 4.直线的参数方程经过点P 0(x 0,y 0),倾斜角为α的直线的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).设P 是直线上的任一点,则t 表示有向线段P 0P →的数量. 5.圆的参数方程圆心在点M (x 0,y 0),半径为r 的圆的参数方程为⎩⎪⎨⎪⎧x =x 0+r cos θ,y =y 0+r sin θ(θ为参数,0≤θ≤2π).6.圆锥曲线的参数方程(1)椭圆x 2a 2+y 2b 2=1的参数方程为⎩⎪⎨⎪⎧x =a cos θ,y =b sin θ(θ为参数).(2)双曲线x 2a 2-y 2b 2=1的参数方程为⎩⎪⎨⎪⎧x =a sec θ,y =b tan θ(θ为参数).(3)抛物线y 2=2px (p >0)的参数方程为⎩⎪⎨⎪⎧x =2pt 2,y =2pt (t 为参数). 【题型示例】题型一 极坐标方程和参数方程【例1】【2016年高考北京理数】在极坐标2cos ρθ=交于A ,B 两点,则||AB =______.【答案】2过圆22(1)1x y -+=的圆心,因此【举一反三】 (2015·广东,14)已知直线l 的极坐标方程为2ρsin ⎝⎛⎭⎫θ-π4=2,点A 的极坐标为A ⎝⎛⎭⎫22,7π4,则点A 到直线l 的距离为________.解析 依题已知直线l :2ρsin ⎝⎛⎭⎫θ-π4=2和点A ⎝⎛⎭⎫22,7π4可化为l :x -y +1=0和A (2,-2),所以点A 到直线l 的距离为d =|2-(-2)+1|12+(-1)2=522.答案522【变式探究】(2015·北京,11)在极坐标系中,点⎝⎛⎭⎫2,π3到直线ρ(cos θ+3sin θ)=6的距离为________.解析 在平面直角坐标系下,点⎝⎛⎭⎫2,π3化为(1,3),直线方程为:x +3y =6,∴点(1,3)到直线的距离为d =|1+3×3-6|2=|-2|2=1. 答案 1【举一反三】(2015·安徽,12)在极坐标系中,圆ρ=8sin θ上的点到直线θ=π3(ρ∈R )距离的最大值是________.【变式探究】(2014·辽宁)将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .(1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程.【命题意图】本题主要考查参数方程与普通方程、极坐标方程与普通方程间的转化.结合方程的转化和应用考查考生的应用意识和转化思想. 【思路方法】(1)先列方程,再进一步转化为参数方程. (2)解出交点,再求得直线方程,最后转化为极坐标方程.【解析】(1)设(x 1,y 1)为圆上的点,在已知变换下变为曲线C 上的点(x ,y ),依题意,得⎩⎪⎨⎪⎧x =x 1,y =2y 1. 由x 21+y 21=1,得x 2+⎝⎛⎭⎫y 22=1, 即曲线C 的方程为x 2+y 24=1.故C 的参数方程为⎩⎪⎨⎪⎧x =cos t ,y =2sin t (t 为参数).【感悟提升】若极坐标系的极点与直角坐标系的原点重合,极轴与x 轴正半轴重合,两坐标系的长度单位相同,则极坐标方程与直角坐标方程可以互化.求解与极坐标方程有关的问题时,可以转化为熟悉的直角坐标方程求解.若最终结果要求用极坐标表示,则需将直角坐标转化为极坐标.题型二 极坐标方程与直角坐标方程、参数方程与普通方程的互化 【例2】【2016高考新课标2理数】选修4—4:坐标系与参数方程在直角坐标系xOy 中,圆C 的方程为22(6)25x y ++=. (Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线的参数方程是cos sin x t y t αα=⎧⎨=⎩(为参数),与C 交于,A B率.【答案】(Ⅰ)212cos 110ρρθ++=;【解析】(I )由cos ,sin x y ρθρθ==可得C 的极坐标方程212cos 110.ρρθ++= (II )在(I )中建立的极坐标系中,直线的极坐标方程为()R θαρ=∈ 由,A B 所对应的极径分别为12,,ρρ将的极坐标方程代入C 的极坐标方程得212cos 110.ρρα++=于是121212cos ,11,ρραρρ+=-=【变式探究】 (2015·新课标全国Ⅰ,23)在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系. (1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.【变式探究】在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2cos α,y =2+2sin α(α为参数),M 是C 1上的动点,P 点满足OP →=2OM →,点P 的轨迹为曲线C 2. (1)求C 2的方程;(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π3与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求AB .【解析】(1)设P (x ,y ),则由条件知M ⎝⎛⎭⎫x 2,y 2,由于M 点在C 1上,所以⎩⎨⎧x2=2cos α,y2=2+2sin α,即⎩⎪⎨⎪⎧x =4cos α,y =4+4sin α. 从而C 2的参数方程为⎩⎪⎨⎪⎧x =4cos α,y =4+4sin α(α为参数).(2)曲线C 1的极坐标方程为ρ=4sin θ,曲线C 2的极坐标方程为ρ=8sin θ.射线θ=π3与C 1的交点A 的极径为ρ1=4sin π3,射线θ=π3与C 2的交点B 的极径为ρ2=8sin π3.所以AB =|ρ2-ρ1|=2 3. 【规律方法】解决这类问题一般有两种思路,一是将极坐标方程化为直角坐标方程,求出交点的直角坐标,再将其化为极坐标;二是将曲线的极坐标方程联立,根据限制条件求出极坐标.要注意题目所给的限制条件及隐含条件.【变式探究】(2014·辽宁,23)将圆x 2+y 2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C .(1)写出C 的参数方程;(2)设直线l :2x +y -2=0与C 的交点为P 1,P 2,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段P 1P 2的中点且与l 垂直的直线的极坐标方程. 解 (1)设(x 1,y 1)为圆上的点,在已知变换下变为C 上点(x ,y ),依题意,得1,2,x x y y =⎧⎨=⎩由x 21+y 21=1得x 2+⎝⎛⎭⎫y 22=1,即曲线C 的方程为x 2+y 24=1.故C 的参数方程为cos 2sin x t y t =⎧⎨=⎩(t 为参数).(2)解得:1,0x y =⎧⎨=⎩或0,2.x y =⎧⎨=⎩不妨设P 1 (1,0),P 2(0,2),则线段P 1P 2的中点坐标为⎝⎛⎭⎫12,1,所求直线斜率为k =12,于是所求直线方程为y -1=12⎝⎛⎭⎫x -12,化为极坐标方程,并整理得 2ρcos θ-4ρsin θ=-3, 即ρ=34sin θ-2cos θ.题型三 参数方程及其应用【例3】 【2016高考新课标1卷】(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系x O y 中,曲线C 1的参数方程为cos 1sin x a ty a t =⎧⎨=+⎩(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(I )说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程; (II )直线C 3的极坐标方程为0θα=,其中0α满足tan 0α=2,若曲线C 1与C 2的公共点都在C 3上,求a .【答案】(I )圆,222sin 10a ρρθ-+-=(II )1 【解析】解:(Ⅰ)消去参数得到1C 的普通方程222)1(a y x =-+.1C 是以)1,0(为圆心,为半径的圆.将θρθρsin ,cos ==y x 代入1C 的普通方程中,得到1C 的极坐标方程为01sin 222=-+-a θρρ.【举一反三】(2015·重庆,15)已知直线l 的参数方程为1,1x t y t =-+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2cos 2θ=4⎝⎛⎭⎫ρ>0,3π4<θ<5π4,则直线l 与曲线C 的交点的极坐标为________.解析 直线l 的直角坐标方程为y =x +2,由ρ2cos 2θ=4得ρ2(cos 2θ-sin 2θ)=4,直角坐标方程为x 2-y 2=4,把y =x +2代入双曲线方程解得x =-2,因此交点为(-2,0),其极坐标为(2,π). 答案 (2,π)【变式探究】(2014·福建)已知直线l 的参数方程为⎩⎪⎨⎪⎧x =a -2t ,y =-4t (t 为参数),圆C 的参数方程为⎩⎪⎨⎪⎧x =4cos θ,y =4sin θ (θ为参数).(1)求直线l 和圆C 的普通方程;(2)若直线l 与圆C 有公共点,求实数a 的取值范围.【命题意图】本小题主要考查直线与圆的参数方程等基础知识,意在考查考生的运算求解能力及化归与转化思想.【解题思路】(1)消去参数,即可求出直线l 与圆C 的普通方程.(2)求出圆心的坐标,利用圆心到直线l 的距离不大于半径,得到关于参数a 的不等式,即可求出参数a 的取值范围.【感悟提升】1.将参数方程化为普通方程的过程就是消去参数的过程,常用的消参方法有代入消参、加减消参和三角恒等式消参等,往往需要对参数方程进行变形,为消去参数创造条件.2.在与直线、圆、椭圆有关的题目中,参数方程的使用会使问题的解决事半功倍,尤其是求取值范围和最值问题,可将参数方程代入相关曲线的普通方程中,根据参数的取值条件求解.【变式探究】(2015·福建,21(2))在平面直角坐标系xOy 中,圆C 的参数方程为13cos ,23sin x t y t =+⎧⎨=-+⎩(t 为参数).在极坐标系(与平面直角坐标系xOy 取相同的长度单位,且以原点O 为极点,以x轴非负半轴为极轴)中,直线l 的方程为2ρsin ⎝⎛⎭⎫θ-π4=m (m ∈R ).①求圆C 的普通方程及直线l 的直角坐标方程; ②设圆心C 到直线l 的距离等于2,求m 的值.解 ①消去参数t ,得到圆C 的普通方程为(x -1)2+(y +2)2=9.由2ρsin ⎝⎛⎭⎫θ-π4=m ,得ρsin θ-ρcos θ-m =0.所以直线l 的直角坐标方程为x -y +m =0. ②依题意,圆心C 到直线l 的距离等于2,即|1-(-2)+m|2=2,解得m=-3±2 2.【举一反三】(2015·湖南,16Ⅱ)已知直线l(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cos θ.(1)将曲线C的极坐标方程化为直角坐标方程;(2)设点M的直角坐标为(5,3),直线l与曲线C的交点为A,B,求|MA|·|MB|的值.。
专题21 坐标系与参数方程(命题猜想)2017年高考数学(理)命题猜想与仿真押题【命题热点突破一】极坐标系与简单曲线的极坐标方程 例1、【2016年高考北京理数】在极坐标系中,直线cos 3sin 10ρθρθ--=与圆2cos ρθ=交于A ,B 两点,则||AB =______。
【答案】2【解析】直线310x y --=过圆22(1)1x y -+=的圆心,因此 2.AB =【变式探究】2015·全国卷] 在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程是θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.【特别提醒】根据直角坐标化为极坐标的公式,可以把直线、曲线的直角坐标方程化为极坐标方程,反之亦然.使用直线、曲线的直角坐标方程和极坐标方程解题各有利弊,要根据情况灵活选取.【变式探究】在直角坐标系xOy 中,曲线C :错误!(t 为参数).以原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为θ=π3(ρ∈R ),l 与C 相交于A ,B 两点. (1)写出直线l 的参数方程和曲线C 的普通方程;(2)设线段AB 的中点为M ,求点M 的极坐标.解:(1)直线l 的直角坐标方程为y =3x ,则直线l 的参数方程为错误!(t 为参数).曲线C 的普通方程为y =x 2-6.(2)设A ,B 两点对应的参数分别为t 1,t 2,将错误!代入y =x 2-6,得t 2-2 错误!t -24=0,∴Δ=108>0,t 1+t 2=2 3,∴错误!=错误!,即点M 所对应的参数为错误!,∴点M 的直角坐标为(错误!,错误!),∴点M 的极坐标为(错误!,错误!).【命题热点突破二】简单曲线的参数方程例2、【2016高考新课标1卷】(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系x O y 中,曲线C 1的参数方程为cos 1sin x a t y a t =⎧⎨=+⎩(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ。
2017年高考全国卷(坐标系与参数方程)分析与启示一、特色解读2017年高考新课标卷对《坐标系与参数方程》的考查,题型没有变、第23题位置没有变,文理同题没有变,分值10分没有变,命题本源为选修内容没有变,命题延续了以往对主干知识的考查,以直线、椭圆参数方程为背景,求曲线的交点坐标和最值问题,注重基本运算及知识的应用,中规中矩,基本符合预期.近6年的全国课标卷在本专题考查的知识点如下:根据(2012—2017)的考查统计,可以看出,高考课标卷对《坐标系与参数方程》的考查主要体现在平面直角坐标系中的伸缩变换、直线和圆的极坐标方程;常见曲线(直线、圆、椭圆、抛物线)的参数方程及参数方程的简单应用,以极坐标、参数方程与普通方程的互化,直线与曲线位置关系为主要考查形式.知识:极坐标方程⇔普通方程⇔参数方程之间转化;方程 椭圆 表示出椭圆上的点(ϕϕsin ,cos b a ); 离(最值)等问题;抛物线 表示出抛物线上的点(22,2pt pt ); 2.能力(1)通过不同坐标系或不同形式的方程之间转换,考查运算求解能力.(2)某些情景下普通方程不易解决的问题,利用极坐标方程和参数方程解题具有优越性,因些,极坐标的几何意义,参数方程的应用是高考命题的频点.3.思想方法(1)通过极坐标或参数方程解决直线、圆、椭圆等问题,考查数形结合思想.(2)解决问题时采用何种形式的方程比较方便,考查化归与转化思想.二、亮点扫描【例题一】(2016课标Ⅱ)在直角坐标系xOy 中,圆C 的方程为22(6)25x y ++=.(Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程; (Ⅱ)直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数), l 与C 交于,A B 两点,||10AB =,求l 的斜率.【解析】(Ⅰ)C 的极坐标方程为2+12cos 110ρρα+=.(Ⅱ)【解法一】直线l 的极坐标方程为()R θαρ=∈∈;联立圆C 的极坐标方程;由 2+12cos 110θαρρθ=⎧⎨+=⎩ 得2+12cos 110ρρα+=,22121212()4144cos 44AB ρρρρρρα=-=+-=-.【解法二】直线l 的参数方程cos sin x t y t αα=⎧⎨=⎩(t 为参数)代入圆C 的普通方程22(6)25x y ++=, 得2+12cos 110t t α+=,22121212()4144cos 44AB t t t t t t α=-=+-=-.【解法三】直线l 的普通方程为tan y kx α==,由22(6)25y kx x y =⎧⎨++=⎩ 得22(1)12110k x x +++=, 222121212214411()4441AB k x x k x x x x k=+-=++-=-+. 知识:圆的普通方程化为极坐标方程,直线参数方程参数和极坐标极角,极径的应用. 方法:求过原点的直线与曲线相交距离问题.(1)把直线的极坐标方程()R θαρ=∈∈与曲线的极坐标方程联立,两个交点距离为2121212()4ρρρρρρ-=+-.(2)把直线的参数方程与曲线的普通方程联立,两个交点距离为2121212()4t t t t t t -=+-.(3)把直线与曲线全部化为普通方程,两个交点距离为22212121211()4k x x k x x x x +-=++-.【例题二】(2017全国课标Ⅱ)在直角坐标系xoy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(Ⅰ)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(Ⅱ)设点A 的极坐标为(2,)3π,点B 在曲线2C 上,求OAB ∆面积的最大值.【解析】(Ⅰ)设点P 的极坐标为(,)ρθ,点M 的极坐标为1(,)ρθ,OP ρ= 14cos OM ρθ==,||||16OM OP ⋅=,1.16ρρ=,点P 的轨迹2C 的极坐标方4cos ρθ=,从而2C 的普通方程;22(2)4x y -+=(Ⅱ)点B 在曲线2C 上,点B 的极坐标为2(,)ρθ,24cos ρθ=,OAB ∆面积 213.sin 4cos sin()2sin(2)2332S OA AOB ππρααα=∠=-=--. 知识:极坐标方程化普通方程,轨迹问题,极坐标极角,极经的几何意义及其应用应用. 方法:某些情景下普通方程不易解决的问题,利用极坐标方程和参数方程解题具有优越性,在教学中要十分重视极坐标方程,极坐标极角,极经的几何意义,而不是一味的转化为普通方程问题处理. 【例题三】(2017全国课标III ) 在直角坐标系xoy 中,直线1l 的参数方程为2+,,x t y kt =⎧⎨=⎩(t 为参数),直线2l 的参数方为2,,x m m m y k =-+⎧⎪⎨=⎪⎩(为参数).设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线C . (Ⅰ)写出C 的普通方程;(Ⅱ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设3:(cos sin )20l ρθθ+-=,M 为3l 与C 的交点,求M 的极径.【解析】(Ⅰ)直线1l 的普通方程为(2)y k x =-,直线2l 的普通方程为1(2)y x k=+,由(2)1(x 2)y k x y k =+⎧⎪⎨=-⎪⎩,消去k 得224(0)x y y -=≠.(Ⅱ) 【解法一】直线3l 的普通方程为20x y +=,曲线C 的普通方程为224x y -=,两曲线的交点322()22M 求得M 的极径. 【解法二】直线3l 的参数方程为22222y y t ⎧=⎪⎪⎨⎪=⎪⎩代入曲线C 的普通方程224x y -=,得1t =-,322(,)M -求得M 的极径. 【解法二】曲线C 的极坐标方程为2222cos sin 4ρθρθ-=(02,θπθπ<<≠)直线3l 的极坐标方程为(cos sin )20ρθθ+-=,联立2222cos sin 4(cos sin )20ρθρθρθθ⎧-=⎪⎨+-=⎪⎩,5ρ=. 知识:直线参数方程化为普通方程,轨迹问题,极坐标方程和参数方程的应用, 方法:求直线与曲线的交点坐标问题.(1)把直线与曲线分别化为普通方程,联立求交点坐标.(2)把直线与曲线分别化为参数方程和普通方程,联立求参数,得交点坐标.(3)把直线与曲线分别化为极坐标方程,求交点极坐标,获得极径,【例题四】(2017江苏高考)在平面坐标系中xOy 中,已知直线l 的参考方程为x 82t t y =-+⎧⎪⎨=⎪⎩(t 为参数),曲线C 参数方程为22,22x s y s ⎧=⎪⎨=⎪⎩(s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值. 【解析】直线l 的普通方程为280x y -+=.因为点P 在曲线C 上,设2(2,22)P s s , 点P 到直线l 的的距离2222|2428|2(2)45(1)(2)s s s d -+-+==-+-,知识:直线的参数方程化为普通方程,参数的应用.方法:抛物线的普通方程为22y px =,参数方程为22,2,x pt y pt ⎧=⎨=⎩(t 为参数),抛物线上的点可以设为2(2,2)P pt pt ,转化为数形结合思想.三、佳题欣赏【例题一】(2017年厦门市第二次检测)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧+=+=ααsin 3cos 1t y t x (t 为参数),其中πα<≤0.在以O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线1C :θρcos 4=.直线l 与曲线1C 相切.(Ⅰ)将曲线1C 的极坐标方程化为直角坐标方程,并求α的值;(Ⅱ)已知点)02(,Q ,直线l 与2C :1322=+y x 交于B A ,两点,求ABQ ∆面积. 【解析】(Ⅰ)1C 的普通方程为0422=-+x y x ,将直线l 参数方程代入曲线得0)cos 2sin 32(2=-+t t αα,0∆=6πα=∴(Ⅱ)将直线l 的参数方程为31132x y t ⎧=⎪⎪⎨⎪=⎪⎩代入曲线得063852=++t t21221214)(t t t t t t AB -+=-=.考查知识:把圆的极坐标方程化为普通方程,直线与圆相切,直线与曲线相交的距离.【例题二】(2017年福州市第一次检测)在平面直角坐标系xOy 中,在以O 为极点,x 轴的正半轴为极轴的极坐标系中, 曲线[]214cos 30,02:,C ρρθθπ-+=∈,曲线[]23,0,24sin()6:C ρθππθ=∈-.(Ⅰ)求1C 的一个参数方程;(Ⅱ)若曲线1C 和曲线2C 相交于A 、B 两点,求AB 值.【解析】(Ⅰ)曲线1C 的普通方程为:22(2)1x y -+=,从而1C 的一个参数方程为2cos sin x y αα=+⎧⎨=⎩(α为参数)(Ⅱ)【解法一】曲线2C 的普通方程为22330x y --= 因为直线2C :22330x y --=与曲线1C :22(2)1x y -+=相交于A 、B 两点, 所以圆心到直线的距离为14d =,222AB r d =- . 【解法二】直线2C 过点3(,0)2,倾斜角为6π,曲线2C 的参数方程为332212x t y t ⎧=+⎪⎪⎨⎪=⎪⎩ 代入1C :22(2)1x y -+=,得242330t t --=, 2121212()4t t t t t AB t -==+-.考查知识:将圆的极坐标化为普通方程,再把圆的普通方程转化为参数方程,直线与圆的位置关系,由于直线2C 没有过原点,因此使用极坐标方程方法比较困难.【例题三】(2017年三明市第二次检测)在平面直角坐标系xOy 中,以坐标原点为极点,以X 轴的正半轴为极轴,建立极坐标系,若直线2cos()204πρθ--=,曲线C 极坐标2sin cos ρθθ=,将曲线C 上所有点的横坐标缩短为原来的一半,纵坐标不变,然后再向右平移一个单位得到曲线为参数)1C .(Ⅰ)求曲线1C 的直角坐标方程;(Ⅱ)已知直线l 与曲线1C 交于,A B 两点,点(2,0)P ,求PA PB +的值.【解析】(Ⅰ)1C 的直角坐标方程为222y x =-. (Ⅱ)直线l 的普通方程20x y +-=,(2,0)P 在l 上,l 参数方程为22222x y t ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数)代入曲线1C 方程得22240t t +-=,120,0t t ><,212121212()4PA PB t t t t t t t t +=+=-=+-.考查知识:把直线方程化为参数方程,极坐标方程化为直角坐标方程,利用直线参数的几何意义.212121212()4PA PB t t t t t t t t +=+=-=+-四、复习启示1. 重视基础知识的复习①写出点的极坐标,与直角坐标的互化;②写出圆、椭圆、抛物线或相关轨迹的参数方程;③极坐标方程、参数方程、普通方程的互化;不断强化,提高准确率,减少失误. 2. 重视化归与转化思想方法较多关注参数方程和极坐标方程的应用,如:①极坐标ρ的几何意义;②直线标准参数t 的几何意义;③圆、椭圆的三角参数;提高应用意识.3. 重视知识的交汇联系①解析几何中直线与圆、椭圆、抛物线的交点、距离等问题;②三角恒等变换(辅助角公式)等知识;以横向联系和纵向联系为主线,对模块内容加以整合,优化认知结构,构建良序的知识网络.教学反思:对于极坐标和参数方程的题目,关键在于画图,利用数形结合,采用三种不同的方法,某些情景下普通方程不易解决的问题,利用极坐标方程和参数方程解题具有优越性,在教学中要十分重视极坐标方程,极坐标极角,极经的几何意义,而不是一味的转化为普通方程问题处理.。
选考内容(一)坐标系与参数方程1.坐标系(1)理解坐标系的作用。
(2)了解在平面直角坐标系伸缩变换作用下平面图形的变化情况。
(3)能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.(4)能在极坐标系中给出简单图形的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义。
(5)了解柱坐标系、球坐标系中表示空间中点的位置的方法,并与空间直角坐标系中表示点的位置的方法相比较,了解它们的区别.2。
参数方程(1)了解参数方程,了解参数的意义.(2)能选择适当的参数写出直线、圆和圆锥曲线的参数方程.(3)了解平摆线、渐开线的生成过程,并能推导出它们的参数方程.学%(4)了解其他摆线的生成过程,了解摆线在实际中的应用,了解摆线在表示行星运动轨道中的作用。
(二)不等式选讲1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式: (1) a b a b +≤+ . (2) a b a c c b -≤-+-.(3)会利用绝对值的几何意义求解以下类型的不等式:; ; ax b c ax b c x a x b c +≤+≥-+-≥.(2)了解下列柯西不等式的几种不同形式,理解它们的几何意义, 并会证明.①柯西不等式的向量形式:||||||.⋅≥⋅αβαβ ②22222()(+)()a b c d ac bd +≥+。
③222222121223231313()()()()()()x x y y x x y y x x y y -+-+-+-≥-+-。
(此不等式通常称为平面三角不等式。
)3.会用参数配方法讨论柯西不等式的一般情形:4。
会用向量递归方法讨论排序不等式.5.了解数学归纳法的原理及其使用范围,会用数学归纳法证明 一些简单问题。
6.会用数学归纳法证明伯努利不等式:了解当n 为大于1的实数时伯努利不等式也成立。
第十六章 选讲内容第一节 极坐标与参数方程(选修4-4)题型160 极坐标方程化直角坐标方程1.(2017天津理11)在极坐标系中,直线4cos 106ρθπ⎛⎫-+= ⎪⎝⎭与圆2sin ρθ=的公共点的个数为___________. 1.解析直线14sin 1022ρθθ⎛⎫++=⎪ ⎪⎝⎭化直角坐标方程为210y ++=,由圆22sin 2sin ρθρρθ=⇒=,得其直角坐标方程为222x y y +=,即()2211x y +-=,则圆心()0,1到直线的距离31=4d r ==<,知直线与圆相交,得它们的公共点的个数为2.2.(2017北京理11)在极坐标系中,点A 在圆22cos 4sin 40ρρθρθ--+=上,点P 的坐标为()1,0,则AP 的最小值为___________.2. 解析 由22cos 4sin 40ρρθρθ--+=,化为普通方程为222440x y x y +--+=, 即()()22121x y -+-=,由圆心为()1,2,P 为()1,0,则AP 最小值为1.故选D.3.(2107全国2卷理科22)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴,建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程; (2)设点A 的极坐标为2,3π⎛⎫⎪⎝⎭,点B 在曲线2C 上,求OAB △面积的最大值. 3.解析 (1)设()()00M P ρθρθ,,,,则0||OM OP ρρ==,. 由000016cos 4ρρρθθθ=⎧⎪=⎨⎪=⎩,解得4cos ρθ=,化直角坐标方程为()2224x y -+=()0x ≠.(2)联结AC ,易知AOC △为正三角形,||OA 为定值.所以当高最大时,AOB △的面积最大,如图所示,过圆心C 作AO 垂线,交AO 于点H ,交圆C 于B 点,此时AOB S △最大, max 1||||2S AO HB =⋅()12AO HC BC =+2.题型161 直角坐标方程化为极坐标方程 题型162 参数方程化普通方程4.(17江苏21 C )在平面坐标系xOy 中,已知直线l 的参数方程为82x t ty =-+⎧⎪⎨=⎪⎩ (t 为参数),曲线C 的参数方程为22x sy ⎧=⎪⎨=⎪⎩(s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.4.解析 直线l 的普通方程为280x y -+=. 因为点P 在曲线C 上,设()22P s ,从而点P 到直线l的距离224sd +==当s =min d =因此当点P 的坐标为()4,4时,曲线C 上点P 到直线l 的距离取到最小值为5.5.(2017全国1卷理科22)在直角坐标系xOy 中,曲线C 的参数方程为3cos sin x y θθ=⎧⎨=⎩(θ为参数),直线l 的参数方程为()41x a tt y t =+⎧⎨=-⎩为参数. (1)若1a =-,求C 与l 的交点坐标;(2)若C 上的点到la .5.解析 (1)当1a =-时,直线l 的方程为430x y +-=,曲线C 的标准方程为2219xy +=.联立方程2243019x y x y +-=⎧⎪⎨+=⎪⎩,解得30x y =⎧⎨=⎩或21252425x y ⎧=-⎪⎪⎨⎪=⎪⎩,则C 与l 交点坐标是()30,和21242525⎛⎫- ⎪⎝⎭,. (2)直线l 一般式方程为440x y a +--=,设曲线C 上点()3cos sin p θθ,. 则点P 到l的距离d ==3tan 4ϕ=. 依题意得max d 16a =-或8a =.6.(2017全国3卷理科22)在平面直角坐标系xOy 中,直线1l 的参数方程为2+x ty kt =⎧⎨=⎩(t 为参数),直线2l 的参数方程为2x mm m y k =-+⎧⎪⎨=⎪⎩(为参数).设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设()3cos sin 0l ρθθ+=:,M 为3l 与C 的交点,求M 的极径.6.解析 ⑴将参数方程转化为一般方程()1:2l y k x =- ① ()21:2l y x k=+ ② ⨯①②,消k 可得224x y -=,即点P 的轨迹方程为224x y -=()0y ≠.⑵将极坐标方程转化为一般方程3:0l x y +=,联立2204x y x y ⎧+-=⎪⎨-=⎪⎩,解得x y ⎧=⎪⎪⎨⎪=⎪⎩. 由cos sin x y ρθρθ=⎧⎨=⎩,解得ρ=M.题型163 普通方程化参数方程——暂无 题型164 参数方程与极坐标方程的互化——暂无第二节 不等式选讲(选修4-5)题型165 含绝对值的不等式7.(2017全国1卷理科23)已知函数()2–4f x x ax =++,()11g x x x =++-.(1)当1a =时,求不等式()()f x g x …的解集; (2)若不等式()()f x g x …的解集包含[]–11,,求a 的取值范围. 7.解析 (1)当1a =时,()24f x x x =-++为开口向下,对称轴为12x =的二次函数, ()211121121x x g x x x x x x >⎧⎪=++-=-⎨⎪-<-⎩,,,剟,当(1,)x ∈+∞时,令()()f x g x 単,即242x x x -++…,解得x ⎛∈ ⎝⎦.当[]11x ∈-,时,令()()f x g x 単,即242x x -++…,解得[]1,1x ∈-. 当()1x ∈-∞-,时,令()()f x g x 単,即242x x x -++-…,解得x ∈∅. 综上所述,()()f x g x …的解集为1⎡-⎢⎣⎦.(2)依题意得242x ax -++≥在[]11-,上恒成立,即220x ax --≤在[]11-,恒成立, 则只需()()2211201120a a ⎧-⋅-⎪⎨----⎪⎩……,解得11a -剟. 故a 取值范围是[]11-,. 8.(2017全国3卷理科23)已知函数()12f x x x =+--.(1)求不等式()1f x …的解集; (2)若不等式()2–f x x x m+…的解集非空,求m 的取值范围.8.解析 (1)()12f x x x =+--可等价为()3,121,123,2x f x x x x --⎧⎪=--<<⎨⎪⎩…….由()1f x …,可得①当1x -…时显然不满足题意; ② 当12x -<<时,211x -…,解得1x …; ③ 当2x …时,()31f x =…恒成立.综上,()1f x …的解集为{}1x x …. ⑵不等式()2f x x x m -+…等价于()2f x x x m -+…, 令()()2g x f x x x =-+,则()g x m …的解集非空只需要()max g x m ⎡⎤⎣⎦…. 而()2223,131,123,2x x x g x x x x x x x ⎧-+--⎪=-+--<<⎨⎪-++⎩…….①当1x -…时,()()max 13115g x g =-=---=-⎡⎤⎣⎦; ②当12x -<<时,()2max3335312224g x g ⎛⎫⎛⎫==-+⋅-=⎡⎤ ⎪ ⎪⎣⎦⎝⎭⎝⎭;④ 当2x …时,()()2max 22231g x g ==-++=⎡⎤⎣⎦.综上所述,()max 54g x =⎡⎤⎣⎦,故54m ….题型166 不等式的证明题型167 函数单调性在证明不等式中的应用 题型168 柯西不等式在证明不等式中的应用——暂无9.(2017江苏21 D )已知,,,a b c d 为实数,且224a b +=,2216c d +=,证明:8ac bd +….9.解析 由柯西不等式可得()()()22222ac bd a bcd +++…,因为224a b +=,2216c d +=,所以()264ac bd +…,因此8ac bd +…. 10.(2107全国2卷理科23)已知0a >,0b >,332a b +=,求证:(1)()()554a b a b ++…; (2)2a b +….10.解析 (1)由柯西不等式得()()()2255334a b a b a b ++=+=≥,1a b ==时取等号. (2)因为()()()()()33232233333232244a b a b a a b ab b ab a b a b a b ++=+++=+++++=+…,所以()38a b +≤,即2a b +≤,当且仅当1a b ==时等号成立.。
专题16 坐标系与参数方程(高考押题) 2017年高考数学(理)考纲解读与热点难点突破1.在极坐标系中,已知直线l 的极坐标方程为ρsin ⎝⎛⎭⎫θ+π4=1,圆C 的圆心的极坐标是C ⎝⎛⎭⎫1,π4,圆的半径为1.(1)求圆C 的极坐标方程; (2)求直线l 被圆C 所截得的弦长.2.已知直线l :⎩⎨⎧x =5+32t ,y =3+12t(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2cos θ.(1)将曲线C 的极坐标方程化为直角坐标方程;(2)设点M 的直角坐标为(5,3),直线l 与曲线C 的交点为A ,B ,求|MA |·|MB |的值. 解:(1)ρ=2cos θ等价于ρ2=2ρcos θ.①将ρ2=x 2+y 2,ρcos θ=x 代入①即得曲线C 的直角坐标方程为x 2+y 2-2x =0.②(2)将⎩⎨⎧x =5+32t ,y =3+12t(t 为参数)代入②式,得t 2+53+18=0.设这个方程的两个实根分别为t 1,t 2,则由参数t 的几何意义即知,|MA |·|MB |=|t 1t 2|=18.3.在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =sin α+cos α,y =1+sin 2α(α为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsin ⎝⎛⎭⎫θ+π4=2,曲线C 2的极坐标方程为ρ=22a cos ⎝⎛⎭⎫θ-3π4(a >0). (1)求直线l 与曲线C 1的交点的极坐标(ρ,θ)(ρ≥0,0≤θ<2π); (2)若直线l 与C 2相切,求a 的值.4.已知曲线C 1:x +3y =3和C 2:⎩⎨⎧x =6cos φ,y =2sin φ(φ为参数).以原点O 为极点,x 轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位. (1)把曲线C 1和C 2的方程化为极坐标方程;(2)设C 1与x ,y 轴交于M ,N 两点,且线段MN 的中点为P ,若射线OP 与C 1,C 2交于P ,Q 两点,求P ,Q 两点间的距离.解:(1)曲线C 1化为ρcos θ+3ρsin θ=3, ∴ρsin ⎝⎛⎭⎫θ+π6=32. 曲线C 2化为x 26+y 22=1.(*)将x =ρcos θ,y =ρsin θ代入(*)式,得ρ26cos 2θ+ρ22sin 2θ=1,即ρ2(cos 2θ+3sin 2θ)=6, ∴曲线C 2的极坐标方程为ρ2=61+2sin 2θ.(2)∵M (3,0),N (0,1),所以P ⎝⎛⎭⎫32,12,∴OP 的极坐标方程为θ=π6,把θ=π6代入ρsin ⎝⎛⎭⎫θ+π6=32得ρ1=1,P ⎝⎛⎭⎫1,π6. 把θ=π6代入ρ2=61+2sin 2θ得ρ2=2,Q ⎝⎛⎭⎫2,π6. ∴|PQ |=|ρ2-ρ1|=1,即P ,Q 两点间的距离为1.5.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2sin θ,θ∈[0,2π). (1)求曲线C 的直角坐标方程;(2)在曲线C 上求一点D ,使它到直线l :⎩⎨⎧x =3t +3,y =-3t +2(t 为参数,t ∈R)的距离最短,并求出点D 的直角坐标.解:(1)由ρ=2sin θ,θ∈[0,2π),可得ρ2=2ρsin θ. ∵ρ2=x 2+y 2,ρsin θ=y ,∴曲线C 的直角坐标方程为x 2+(y -1)2=1.(2)∵直线l 的参数方程为⎩⎨⎧x =3t +3,y =-3t +2(t 为参数,t ∈R),t 得直线l 的普通方程为y =-3x +5.∵曲线C :x 2+(y -1)2=1是以C (0,1)为圆心,1为半径的圆,设点D (x 0,y 0),且点D 到直线l :y =-3x +5的距离最短,曲线C 在点D 处的切线与直线l :y =-3x +5平行, 即直线CD 与l 的斜率的乘积等于-1, 即y 0-1x 0×(-3)=-1.① ∵x 20+(y 0-1)2=1,②由①②解得x 0=-32或x 0=32, ∴点D 的直角坐标为⎝⎛⎭⎫-32,12或⎝⎛⎭⎫32,32. 由于点D 到直线y =-3x +5的距离最短, ∴点D 的直角坐标为⎝⎛⎭⎫32,32.6.已知曲线C 1:ρ=22和曲线C 2:ρcos ⎝⎛⎭⎫θ+π4=2,则C 1上到C 2的距离等于2的点的个数为________.解析 将方程ρ=22与ρcos ⎝⎛⎭⎫θ+π4=2化为直角坐标方程得x 2+y 2=(22)2与x -y -2=0,知C 1为以坐标原点为圆心,半径为22的圆,C 2为直线,因圆心到直线x -y -2=0的距离为2,故满足条件的点的个数为3. 答案 37.在直角坐标系xOy 中,曲线C 1参数方程为⎩⎪⎨⎪⎧x =cos α,y =1+sin α(α为参数),在极坐标系(与直角坐标系xOy 相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,曲线C 2的方程为ρ(cos θ-sin θ)+1=0,则曲线C 1与C 2的交点个数为________.8.在极坐标系中,ρ=4sin θ是圆的极坐标方程,则点A ⎝⎛⎭⎫4,π6到圆心C 的距离是________. 解析 将圆的极坐标方程ρ=4sin θ化为直角坐标方程为x 2+y 2-4y =0,圆心坐标为(0,2).又易知点A ⎝⎛⎭⎫4,π6的直角坐标系为(23,2),故点A 到圆心的距离为(0-23)2+(2-2)2=2 3. 答案 2 39.在极坐标系中,点M ⎝⎛⎭⎫4,π3到曲线ρcos ⎝⎛⎭⎫θ-π3=2上的点的距离的最小值为________. 解析 依题意知,点M 的直角坐标是(2,23),曲线的直角坐标方程是x +3y -4=0,因此所求的距离的最小值等于点M 到该直线的距离,即为|2+23×3-4|12+(3)2=2. 答案 210.在平面直角坐标系下,曲线C 1:⎩⎪⎨⎪⎧x =2t +2a ,y =-t (t 为参数),曲线C 2:⎩⎪⎨⎪⎧x =2sin θ,y =1+2cos θ(θ为参数),若曲线C 1,C 2有公共点,则实数a 的取值范围是________.解析 曲线C 1的直角坐标方程为x +2y -2a =0,曲线C 2的直角坐标方程为x 2+(y -1)2=4,圆心为(0,1),半径为2,若曲线C 1,C 2有公共点, 则有圆心到直线的距离|2-2a |1+22≤2, 即|a -1|≤5, ∴1-5≤a ≤1+5,即实数a 的取值范围是[1-5,1+5]. 答案 [1-5,1+5]11.已知曲线C 的参数方程为⎩⎨⎧x =2cos t ,y =2sin t(t 为参数),曲线C 在点(1,1)处的切线为l ,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,则l 的极坐标方程为________.12.已知点P (x ,y )在曲线⎩⎪⎨⎪⎧x =-2+cos θ,y =sin θ(θ为参数,θ∈R )上,则yx 的取值范围是________.解析 消去参数θ得曲线的标准方程为(x +2)2+y 2=1, 圆心为(-2,0),半径为1. 设yx=k ,则直线y =kx , 即kx -y =0,当直线与圆相切时,圆心到直线的距离d =|-2k |k 2+1=1,即|2k |=k 2+1,平方得4k 2=k 2+1,k 2=13,解得k =±33,由图形知k 的取值范围是-33≤k ≤33, 即y x 的取值范围是⎣⎡⎦⎤-33,33. 答案 ⎣⎡⎦⎤-33,3313.在平面直角坐标系xOy 中,曲线C 1的参数方程是⎩⎪⎨⎪⎧x =2+2cos θ,y =2sin θ(θ为参数).(1)将C 1的方程化为普通方程;(2)以O 为极点,x 轴的正半轴为极轴建立极坐标系.设曲线C 2的极坐标方程是θ=π3,求曲线C 1与C 2的交点的极坐标.14.已知曲线C 1:⎩⎪⎨⎪⎧x =-2+cos t ,y =1+sin t (t 为参数),C 2:⎩⎪⎨⎪⎧x =4cos θ,y =3sin θ(θ为参数).(1)化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线;(2)过曲线C 2的左顶点且倾斜角为π4的直线l 交曲线C 1于A ,B 两点,求|AB |的值.解 (1)C 1:(x +2)2+(y -1)2=1,C 2:x 216+y 29=1.曲线C 1为圆心是(-2,1)、半径是1的圆.曲线C 2为中心是坐标原点、焦点在x 轴上、长轴长是8、短轴长是6的椭圆.(2)曲线C 2的左顶点为(-4,0),则直线l 的参数方程为⎩⎨⎧x =-4+22s ,y =22s(s 为参数),将其代入曲线C 1整理可得:s 2-32s +4=0,设A ,B 对应参数分别为s 1,s 2,则s 1+s 2=32,s 1s 2=4. 所以|AB |=|s 1-s 2|2=(s 1+s 2)2-4s 1s 2= 2.15.在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C :ρsin 2θ=2a cos θ(a >0),已知过点P (-2,-4)的直线l 的参数方程为:⎩⎨⎧x =-2+22t ,y =-4+22t (t 为参数),直线l 与曲线C 分别交于M ,N两点.(1)写出曲线C 和直线l 的普通方程;(2)若|PM |,|MN |,|PN |成等比数列,求a 的值. 解 (1)y 2=2ax ,y =x -2.16.在直角坐标系中,曲线C 1的参数方程为⎩⎨⎧x =2cos α,y =2sin α(α为参数),以原点为极点,x 轴的正半轴为极轴,并取与直角坐标系相同的长度单位,建立极坐标系,曲线C 2的极坐标方程为ρ=cos θ. (1)求曲线C 2的直角坐标方程;(2)若P ,Q 分别是曲线C 1和C 2上的任意一点,求|PQ |的最小值. 解:(1)∵ρ=cos θ,∴x 2+y 2=x ,即⎝⎛⎭⎫x -122+y 2=14. (2)设P (2cos α,2sin α),易知C 2⎝⎛⎭⎫12,0, ∴|PC 2| =⎝⎛⎭⎫2cos α-122+(2sin α)2=4cos 2α-2cos α+14+2sin 2α=2cos 2α-2cos α+94,当cos α=12时,|PC 2|取得最小值,|PC 2|min =72, ∴|PQ |min =7-12. 17.在直角坐标系xOy 中,以原点O 为极点,以x 轴非负半轴为极轴,与直角坐标系xOy 取相同的长度单位,建立极坐标系.设曲线C 的参数方程为⎩⎨⎧x =3cos θ,y =sin θ(θ为参数),直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ-π4=2 2.(1)写出曲线C 的普通方程和直线l 的直角坐标方程; (2)求曲线C 上的点到直线l 的最大距离.解:(1)由ρcos ⎝⎛⎭⎫θ-π4=22,得ρ(cos θ+sin θ)=4,∴直线l 的直角坐标方程为x +y -4=0.由⎩⎨⎧x =3cos θ,y =sin θ得C 的普通方程为x 23+y 2=1.(2)在曲线C :x 23+y 2=1上任取一点P (3cos θ,sin θ),则点P 到直线l 的距离为 d =|3cos θ+sin θ-4|2=⎪⎪⎪⎪2sin ⎝⎛⎭⎫θ+π3-42≤3 2.∴曲线C 上的点到直线l 的最大距离为3 2.18.在直角坐标平面内,直线l 过点P (1,1),且倾斜角α=π4.以坐标原点O 为极点,x 轴的非负半轴为极轴建立极坐标系,已知圆C 的极坐标方程为ρ=4sin θ. (1)求圆C 的直角坐标方程;(2)设直线l 与圆C 交于A ,B 两点,求|P A |·|PB |的值.19.在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的参数方程为⎩⎪⎨⎪⎧x =t ,y =at (t为参数),曲线C 1的方程为ρ(ρ-4sin θ)=12,定点A (6,0),点P 是曲线C 1上的动点,Q 为AP 的中点.(1)求点Q 的轨迹C 2的直角坐标方程;(2)直线l 与直线C 2交于A ,B 两点,若|AB |≥23,求实数a 的取值范围. 解:(1)根据题意得,曲线C 1的直角坐标方程为x 2+y 2-4y =12, 设点P (x ′,y ′),Q (x ,y ), 根据中点坐标公式,得⎩⎪⎨⎪⎧x ′=2x -6,y ′=2y代入x 2+y 2-4y =12, 得点Q 的轨迹C 2的直角坐标方程为(x -3)2+(y -1)2=4,(2)直线l 的直角坐标方程为y =ax ,根据题意,得圆心(3,1)到直线的距离d ≤22-(3)2=1,即|3a -1|a 2+1≤1, 解得0≤a ≤34.∴实数a 的取值范围为⎣⎡⎦⎤0,34. 20.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-2+t cos α,y =t sin α(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=2sin θ-2cos θ. (1)求曲线C 的参数方程;(2)当α=π4时,求直线l 与曲线C 交点的极坐标.解:(1)由ρ=2sin θ-2cos θ, 可得ρ2=2ρsin θ-2ρcos θ.所以曲线C 的直角坐标方程为x 2+y 2=2y -2x , 化为标准方程为(x +1)2+(y -1)2=2. 曲线C 的参数方程为⎩⎨⎧x =-1+2cos φ,y =1+2sin φ(φ为参数). (2)当α=π4时,直线l 的方程为⎩⎨⎧x =-2+22t ,y =22t ,化成普通方程为y =x +2.由⎩⎪⎨⎪⎧x 2+y 2=2y -2x ,y =x +2, 解得⎩⎪⎨⎪⎧x =0,y =2或⎩⎪⎨⎪⎧x =-2,y =0. 所以直线l 与曲线C 交点的极坐标分别为⎝⎛⎭⎫2,π2,(2,π).21.在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C :ρsin 2θ=2a cos θ(a >0),过点P (-2,-4)的直线l :⎩⎨⎧x =-2+22t ,y =-4+22t (t 为参数)与曲线C 相交于M ,N 两点.(1)求曲线C 的直角坐标方程和直线l 的普通方程; (2)若|PM |,|MN |,|PN |成等比数列,求实数a 的值.(2)将⎩⎨⎧x =-2+22t ,y =-4+22t(t 为参数)代入y 2=2ax ,整理得t 2-22(4+a )t +8(4+a )=0. 设t 1,t 2是该方程的两根,则t 1+t 2=2 2 (4+a ),t 1·t 2=8(4+a ), ∵|MN |2=|PM |·|PN |,∴(t 1-t 2)2=(t 1+t 2)2-4t 1·t 2=t 1·t 2, ∴8(4+a )2-4×8(4+a )=8(4+a ), ∴a =1.。