福建省普通高中2016届高三4月毕业班质量检测数学(文)试题
- 格式:doc
- 大小:4.79 MB
- 文档页数:18
2016届高三上学期第一次月考数学(文)试题Word版含答案2016届高三上学期第一次月考数学文试卷考试时间120分钟,满分150分一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合M ={x |x ≥0,x ∈R },N ={x |x 2<1,x ∈R },则M ∩N 等于( ) A .[0,1] B .[0,1) C .(0,1]D .(0,1)2.已知集合A ={1,2},B ={1,a ,b },则“a =2”是“A ?B ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.已知命题p :所有有理数都是实数;命题q :正数的对数都是负数,则下列命题中为真命题的是( ) A .﹁p 或q B .p 且q C .﹁p 且﹁qD .﹁p 或﹁q4.设函数f (x )=x 2+1,x ≤1,2x ,x >1,则f (f (3))等于( )A.15B .3C.23D.1395.函数f (x )=log 12(x 2-4)的单调递增区间是( )A .(0,+∞)B .(-∞,0)C .(2,+∞)D .(-∞,-2)6.已知函数f (x )为奇函数,且当x >0时,f (x )=x 2+1x ,则f (-1)等于( )A .-2B .0C .1D .27. 如果函数f (x )=x 2-ax -3在区间(-∞,4]上单调递减,则实数a 满足的条件是( ) A .a ≥8 B .a ≤8 C .a ≥4D .a ≥-48. 函数f (x )=a x -2+1(a >0且a ≠1)的图像必经过点( ) A .(0,1) B .(1,1) C .(2,0)D .(2,2)9. 函数f (x )=lg(|x |-1)的大致图像是( )10. 函数f (x )=2x +3x 的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0) C .(0,1)D .(1,2)11. 设f (x )=x ln x ,若f ′(x 0)=2,则x 0的值为( ) A .e 2B .eC.ln22D .ln212. 函数f (x )的定义域是R ,f (0)=2,对任意x ∈R ,f (x )+f ′(x )>1,则不等式e x ·f (x )>e x +1的解集为( ).A .{x |x >0}B .{x |x <0}C .{x |x <-1或x >1}D .{x |x <-1或0<1}<="" p="">二、填空题:本大题共4小题,每题5分.13. 已知函数y =f (x )及其导函数y =f ′(x )的图像如图所示,则曲线y =f (x )在点P 处的切线方程是__________.14. 若函数f (x )=x 2+ax +b 的两个零点是-2和3,则不等式af (-2x )>0的解集是________. 15. 函数y =12x 2-ln x 的单调递减区间为________.16. 若方程4-x 2=k (x -2)+3有两个不等的实根,则k 的取值范围是________.三、解答题:解答应写出文字说明、证明过程或演算步骤17.(10分) 化简:(1)3131421413223b a b a ab b a -(a >0,b >0);(2)(-278)23-+(0.002)12--10(5-2)-1+(2-3)0.18.(12分)已知函数f (x )=1a -1(a >0,x >0),(1)求证(用单调性的定义证明):f (x )在(0,+∞)上是增函数; (2)若f (x )在[12,2]上的值域是[12,2],求a 的值.19.(12分)已知定义在R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2x4x +1.(1)求f (1)和f (-1)的值; (2)求f (x )在[-1,1]上的解析式.20.(12分)已知函数f (x )=x 2+2ax +3,x ∈[-4,6]. (1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数;(3)当a =1时,求f (|x |)的单调区间. 21.(12分)已知函数f (x )=x 3+x -16. (1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程及切点坐标; 22.(12分)已知函数f (x )=x 3-3ax -1,a ≠0. (1)求f (x )的单调区间;(2)若f (x )在x =-1处取得极值,直线y =m 与y =f (x )的图像有三个不同的交点,求m 的取值范围.2016届高三上学期第一次月考数学答题卡一、选择题(共12小题,每小题5分,共60分,每小题有一个正确答案)13、 14、15、 16、三、解答题17.(10分) 化简:(1)131421413223b a b a ab b a -(a >0,b >0);(2)(-278)23-+(0.002)12--10(5-2)-1+(2-3)0.18.(10分)已知函数f (x )=1a -1x(a >0,x >0),(1)求证(用单调性的定义证明):f (x )在(0,+∞)上是增函数; (2)若f (x )在[12,2]上的值域是[12,2],求a 的值.19.(12分)已知定义在R 上的奇函数f (x )有最小正周期2,且当x ∈(0,1)时,f (x )=2x4x +1.(1)求f (1)和f (-1)的值; (2)求f (x )在[-1,1]上的解析式.20.(12分)已知函数f(x)=x3+x-16.(1)求曲线y=f(x)在点(2,-6)处的切线的方程;(2)直线l为曲线y=f(x)的切线,且经过原点,求直线l的方程及切点坐标;21.(13分)已知函数f(x)=x2+2ax+3,x∈[-4,6].(1)当a=-2时,求f(x)的最值;(2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数;(3)当a=1时,求f(|x|)的单调区间.22.(13分)已知函数f(x)=x3-3ax-1,a≠0.(1)求f(x)的单调区间;(2)若f(x)在x=-1处取得极值,直线y=m与y=f(x)的图像有三个不同的交点,求m的取值范围.2016届高三上学期第一次月考数学文试卷参考答案1.B2.A3.D4.D5.D6.A7.A8.D9.B10.B11.B12.A13. x -y -2=0 14. {x |-32<1}<="" p="">15. (0,1] 16. (512,34]17. 解 (1)原式=121311113233211212633311233().a b a b abab ab a b+-++----==(2)原式=(-278)23-+(1500)12--105-2+1=(-827)23+50012-10(5+2)+1=49+105-105-20+1=-1679. 18. (1)证明设x 2>x 1>0,则x 2-x 1>0,x 1x 2>0,∵f (x 2)-f (x 1)=(1a -1x 2)-(1a -1x 1)=1x 1-1x 2=x 2-x 1x 1x 2>0,∴f (x 2)>f (x 1),∴f (x )在(0,+∞)上是增函数. (2)解∵f (x )在[12,2]上的值域是[12,2],又f (x )在[12,2]上单调递增,∴f (12)=12,f (2)=2.易得a =25.19. 解(1)∵f (x )是周期为2的奇函数,∴f (1)=f (1-2)=f (-1)=-f (1),∴f (1)=0,f (-1)=0. (2)由题意知,f (0)=0. 当x ∈(-1,0)时,-x ∈(0,1).由f (x )是奇函数,∴f (x )=-f (-x )=-2-x4-x +1=-2x4x +1,综上,在[-1, 1]上,f (x )=2x4x +1,x ∈(0,1),-2x 4x+1,x ∈(-1,0),0,x ∈{-1,0,1}.20.解 (1)当a =-2时,f (x )=x 2-4x +3=(x -2)2-1,∵x ∈[-4,6],∴f (x )在[-4,2]上单调递减,在[2,6]上单调递增,∴f (x )的最小值是f (2)=-1,又f (-4)=35,f (6)=15,故f (x )的最大值是35. (2)∵函数f (x )的图像开口向上,对称轴是x =-a ,∴要使f (x )在[-4,6]上是单调函数,应有-a ≤-4或-a ≥6,即a ≤-6或a ≥4. (3)当a =1时,f (x )=x 2+2x +3,∴f (|x |)=x 2+2|x |+3,此时定义域为x ∈[-6,6],且f (x )=?x 2+2x +3,x ∈(0,6],x 2-2x +3,x ∈[-6,0],∴f (|x |)的单调递增区间是(0, 6],单调递减区间是[-6,0].21.解 (1)可判定点(2,-6)在曲线y =f (x )上.∵f ′(x )=(x 3+x -16)′=3x 2+1.∴f ′(x )在点(2,-6)处的切线的斜率为k =f ′(2)=13. ∴切线的方程为y =13(x -2)+(-6),即y =13x -32.(2)法一设切点为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 20+1,∴直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16,又∵直线l 过点(0,0),∴0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得,x 30=-8,∴x 0=-2,∴y 0=(-2)3+(-2)-16=-26,k =3×(-2)2+1=13. ∴直线l 的方程为y =13x ,切点坐标为(-2,-26.) 法二设直线l 的方程为y =kx ,切点为(x 0,y 0),则k=y0-0x0-0=x30+x0-16x0又∵k=f′(x0)=3x20+1,∴x30+x0-16x0=3x2+1,解之得x0=-2,∴y0=(-2) 3+(-2)-16=-26,k=3×(-2)2+1=13.∴直线l的方程为y=13x,切点坐标为(-2,-26).22.解(1)f′(x)=3x2-3a=3(x2-a),当a<0时,对x∈R,有f′(x)>0,∴当a<0时,f(x)的单调增区间为(-∞,+∞).当a>0时,由f′(x)>0,解得x<-a或x>a.由f′(x)<0,解得-a<x<a,< p="">∴当a>0时,f(x)的单调增区间为(-∞,-a),(a,+∞),单调减区间为(-a,a).(2)∵f(x)在x=-1处取得极值,∴f′(-1)=3×(-1)2-3a=0,∴a=1.∴f(x)=x3-3x-1,f′(x)=3x2-3,由f′(x)=0,解得x1=-1,x2=1.由(1)中f(x)的单调性可知,f(x)在x=-1处取得极大值f(-1)=1,在x=1处取得极小值f(1)=-3.∵直线y=m与函数y=f(x)的图像有三个不同的交点,结合如图所示f(x)的图像可知:实数m的取值范围是(-3,1).</x<a,<>。
2016高三毕业班总复习单元过关形成性测试卷(文科)圆锥曲线 厦门市数学组一、选择题:本大题共6小题,每小题6分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) “k >9”是“方程x 29-k +y 2k -4=1表示双曲线”的 ( )(A )充要条件 (B )充分不必要条件 (C )必要不充分条件 (D )既不充分也不必要条件(2)抛物线y =14x 2的准线方程是( )(A )y =-1 (B )y =-2 (C )x =-1 (D )x =-2 (3)设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为 ( )(A )36 (B )13 (C )12 (D )33(4)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为52,则C 的渐近线方程为 ( )(A )y =±14x (B )y =±13x (C )y =±12x (D )y =±x(5)抛物线y 2=4x 的焦点到双曲线x 2-y 23=1的渐近线的距离是 ( )(A )12 (B )32(C )1 (D ) 3(6)已知P 为抛物线y =12x 2上的动点,点P 在x 轴上的射影为M ,点A 的坐标是(6,172),则|P A |+|PM |的最小值是 ( )(A )8 (B )192 (C )10 (D )212二、填空题:本大题共4小题,每小题6分。
(7)已知双曲线()22210x y a a -=>0y +=,则a =_________.(8)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为4 3,则C 的方程为_________.(9)若双曲线x 2a 2-y 23=1的一条渐近线被圆(x -2)2+y 2=4所截得的弦长为2,则该双曲线的实轴长为_________.(10)椭圆x 24+y 23=1的左焦点为F ,直线x =m 与椭圆相交于点A 、B .当△F AB 的周长最大时,△F AB 的面积是________.三、解答题:解答应写出文字说明,证明过程或演算步骤。
福建省普通高中2017届高三数学毕业班4月质量检查试题文(扫描版)编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(福建省普通高中2017届高三数学毕业班4月质量检查试题文(扫描版))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为福建省普通高中2017届高三数学毕业班4月质量检查试题文(扫描版)的全部内容。
福建省普通高中2017届高三数学毕业班4月质量检查试题文(扫描版)。
2016年福建省普通高中毕业班质量检查文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷4至6页,满分150分. 考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.3.考试结束,监考员将试题卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1) 已知复数3i1iz +=-,则z = (A )1 (B )2 (C(D )5 (2)集合{{}2|,20A y y B x x x ===--≤,则A B =(A )[)2,+∞ (B )[]0,1 (C )[]1,2 (D )[]0,2 (3)已知1cos ,23απ⎛⎫+= ⎪⎝⎭则cos 2α的值等于(A )97 (B )97- (C )89 (D )89-(4) 执行如图所示的程序框图,如果输入的n 的值为4,则输出的S 的值为(A )15 (B )6 (C )10- (D )21-(5) 某公司为了增加其商品的销售利润,调查了该商品投入的广告费用x 与销售利润y 的统计数据如右表:由表中数据,得线性回归方程:l ˆˆˆybx a =+(121()()ˆˆˆ,()nii i nii xx y y ba y bx xx ==--==--∑∑),则下列结论错误的是(A )ˆ0b> (B )ˆ0a > (C )直线l 过点(4,8) (D )直线l 过点(2,5)输出 输入 为奇数?(6)如图,网格纸的各小格都是正方形,粗线画出的是一个几何体的三视图,则这个几何体是(A )三棱锥 (B )三棱柱 (C )四棱锥 (D )四棱柱 (7)在ABC △中,3B π=,2AB =,D 为AB 中点,△BCD,则AC 等于(A )2 (B(C(D(8)函数()e e ()ln 2x x x f x --=,则()f x 是(A )奇函数,且在(0,)+∞上单调递减 (B )奇函数,且在(0,)+∞上单调递增 (C )偶函数,且在(0,)+∞上单调递减(D )偶函数,且在(0,)+∞上单调递增(9)在空间直角坐标系O xyz -中,()0,0,2A ,()0,2,0B , ()2,2,2C ,则三棱锥O ABC -外接球的表面积为(A )3π (B) (C )12π (D )48π(10)若,x y 满足约束条件20,20,20,x y y x y -+⎧⎪+⎨⎪++⎩≥≥≥则22(2)(3)x y +++的最小值为(A )1 (B )92(C )5 (D )9 (11)已知过双曲线()2222:10,0x y C a b a b-=>>的焦点的直线l 与C 交于,A B 两点,且使4AB a =的直线l 恰好有3条,则双曲线C 的渐近线方程为(12) 已知函数()f x kx =,2()2ln 2e(e )eg x x x =+≤≤,若()f x 与()g x 的图象上分别存在点,M N ,使得,M N 关于直线e y =对称,则实数k 的取值范围是(A )24,e ⎡⎫-+∞⎪⎢⎣⎭ (B )224,e e ⎡⎤--⎢⎥⎣⎦ (C )24,2e e ⎡⎤-⎢⎥⎣⎦ (D )2,2e e ⎡⎤-⎢⎥⎣⎦第Ⅱ卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效. 本卷包括必考题和选考题两部分。
2016高三毕业班总复习单元过关形成性测试卷(文科)圆锥曲线厦门市数学组一、选择题:本大题共6小题,每小题6分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)“k>9”是“方程错误!+错误!=1表示双曲线"的()(A)充要条件(B)充分不必要条件(C)必要不充分条件(D)既不充分也不必要条件(2)抛物线y=错误!x2的准线方程是( )(A)y=-1 (B)y=-2 (C)x=-1 (D)x=-2(3)设椭圆C:错误!+错误!=1(a>b〉0)的左、右焦点分别为F1,F2,P是C上的点,PF2⊥F1F2,∠PF1F2=30°,则C的离心率为( )(A)错误!(B)错误!(C)错误!(D)错误!(4)已知双曲线C:错误!-错误!=1(a>0,b>0)的离心率为错误!,则C的渐近线方程为()(A)y=±错误!x (B)y=±错误!x (C)y=±错误!x (D)y =±x(5)抛物线y2=4x的焦点到双曲线x2-错误!=1的渐近线的距离是()(A )12 (B )错误! (C )1 (D )错误!(6)已知P 为抛物线y =12x 2上的动点,点P 在x 轴上的射影为M ,点A 的坐标是(6,172),则|PA |+|PM |的最小值是 ( )(A)8 (B )错误! (C )10 (D )错误!二、填空题:本大题共4小题,每小题6分。
(7)已知双曲线()22210x y a a-=>0y +=,则a =_________.(8)已知椭圆C :错误!+错误!=1(a >b >0)的左、右焦点为F 1,F 2,离心率为错误!,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为43,则C 的方程为_________.(9)若双曲线错误!-错误!=1的一条渐近线被圆(x -2)2+y 2=4所截得的弦长为2,则该双曲线的实轴长为_________.(10)椭圆错误!+错误!=1的左焦点为F ,直线x =m 与椭圆相交于点A 、B .当△FAB 的周长最大时,△FAB 的面积是________.三、解答题:解答应写出文字说明,证明过程或演算步骤。
2016年福州市普通高中毕业班质量检查数学(文科)试卷(完卷时间120分钟;满分150分)第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题所给的四个答案中有且只有一个答案是正确的.把正确选项涂在答题卡的相应位置上.) 1.设集合{}2320M x x x =++>,集合⎭⎬⎫⎩⎨⎧≤=4)21(x x N ,则 MN =( )A .{}2x x ≥-B .{}1x x >-C . {}2x x ≤-D .R2. 已知复数z 满足2zi i x =+()x R ∈,若z 的虚部为2,则z =( ).A . 2B .22C .5D .33.已知命题:p “,10xx e x ∃∈--≤R ”,则p ⌝为 ( ) A . ,10xx e x ∃∈--≥R B .,10xx e x ∃∈-->RC .,10x x e x ∀∈-->RD . ,10xx e x ∀∈--≥R4.若)4sin(2cos 2απα-=,且()2παπ∈,,则sin 2α的值为( )A .78-B .158-C .1D .1585.已知①1-=x x ,②2-=x x ,③3-=x x , ④4-=x x 在如右图所示的程序框图中,如果输入10=x ,而输出4=y ,则在空白处可填入( ).A .①②③B .②③C .③④D .②③④6.已知数列{}n a 是等差数列,且74326,2a a a -==,则公差=d ( )A .22B .4C .8D .167.在2015年全国青运会火炬传递活动中,有编号为1,2,3,4,5的5名火炬手.若从中任选2人,则选出的火炬手的编号相连的概率为 ( ) A .310B .58C .710D .258.某几何体的三视图如右图所示,则该几何体的表面积是( )A .12+B .2C .222+D .329.已知抛物线2:8C y x =与直线()()20y k x k =+>相交于,A B 两点,F 为C 的焦点,若2FA FB =,则k =( )A .13B .223C .23D .2310.已知函数32,2()(1),2x f x x x x ⎧≥⎪=⎨⎪-<⎩,若关于x 的方程()f x k =有两个不同的实根,则实数k 的取值范围是( ). A .(1,1)-B .(0,1)C .(0,1]D .(1,0)-111正视图俯视图侧视图11.已知双曲线()2222:1,0x y C a b a b -=>的左.右焦点分别为1F ,2F ,过2F 的直线与双曲线C 的右支相交于,P Q 两点,若1PQ PF ⊥,且1PF PQ =,则双曲线的离心率e =( )A . 21+B .221+ C .522+D .522-12.已知()f x 为定义在(0,)+∞上的可导函数,且()'()f x xf x >恒成立,则不等式0)()1(2>-x f xf x 的解集为( ). A . (0,1) B .(1,2)C .(1,)+∞D .(2,)+∞第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卡的相应位置上.)13. 已知向量, ), ,2( ),3 ,5(b a x b x a⊥=-=且则=x14.已知实数,x y 满足212x y x y x+≤⎧⎪⎪≥⎨⎪≥⎪⎩,且数列4,,2x z y 为等差数列,则实数z 的最大值是15.以下命题正确的是: .①把函数3sin(2)3y x π=+的图象向右平移6π个单位,可得到3sin 2y x =的图象;②四边形ABCD 为长方形,2,1,AB BC O ==为AB 中点,在长方形ABCD 内随机取一点P ,取得的P 点到O 的距离大于1的概率为12π-;③为了了解800名学生对学校某项教改试验的意见,打算从中抽取一个容量为40的样本,考虑用系统抽样,则分段的间隔为40;④已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为08.023.1ˆ+=x y. 16. 已知直线n l :2y x n =- 与圆n C :222n x y a n +=+ 交于不同的两点n A 、n B ,n N +∈,数列{}n a 满足:11a =,2114n n n a A B +=,则数列{}n a 的通项公式为三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分) 在ABC ∆中,角,,A B C 的对边分别为,,a b c ,满足(2)cos cos b c A a C -=. (I )求角A 的大小(II)若3a =,求ABC ∆的周长最大值.18.(本小题满分12分)长时间用手机上网严重影响着学生的身体健康,某校为了解A 、B 两班学生手机上网的时长,分别从这两个班中随机抽取5名同学进行调查,将他们平均每周手机上网的时长作为样本,绘制成茎叶图如图所示(图中的茎表示十位数字,叶表示个位数字).(Ⅰ)分别求出图中所给两组样本数据的平均值,并据此估计,哪个班的学生平均上网时间较长; (Ⅱ)从A 班的样本数据中随机抽取一个不超过19的数据记为a ,从B 班的样本数据中随机抽取一个不超过21的数据记为b ,求b a >的概率.19.(本小题满分12分)如图,平行四边形ABCD 中,1CD =,60OBCD ∠=,BD CD ⊥,正方形ADEF ,且面ADEF ⊥面ABCD .(I )求证:BD ⊥平面ECD . (II )求D 点到面CEB 的距离.FABDCE20. (本小题满分12分) 已知椭圆)0(12222>>=+b a b y a x 经过点)3,0(,离心率为21,且1F 、2F 分别为椭圆的左右焦点.(Ⅰ)求椭圆C 的方程;(Ⅱ)过点)0,4(-M 作斜率为)0(≠k k 的直线l ,交椭圆C 于B 、D 两点,N 为BD 中点,请说明存在实数k ,使得以1F 2F 为直径的圆经过N 点,(不要求求出实数k ).21.(本小题满分12分) 已知函数)(ln 2)(2R a x a x x x f ∈+-=. (Ⅰ)当2=a 时,求函数)(x f 在))1(,1(f 处的切线方程;(Ⅱ)当0>a 时,若函数)(x f 有两个极值点)(,2121x x x x <,不等式21)(mx x f ≥恒成立,求实数m 的取值范围.本题有(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题计分.作答时,先用2B 铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中. (22)(本小题满分10分)选修4-1:几何证明讲如图,已知AB 为圆O 的一条直径,以端点B 为圆心的圆交直线AB 于CD 两点,交圆O 于,E F 两点,过点D 作垂直于AD 的直线,交直线AF 于H 点.(Ⅰ)求证:,,,B D H F 四点共圆;(Ⅱ)若2,22AC AF ==,求BDF ∆外接圆的半径.(23)(本小题满分10分)选修4-4:坐标系与参数方程在极坐标系中,圆C 的极坐标方程为:24(cos sin )6ρρθθ=+-.若以极点O 为原点,极轴所在直线为x 轴建立平面直角坐标系.(Ⅰ)求圆C 的参数方程;(Ⅱ)在直角坐标系中,点(,)P x y 是圆C 上动点,试求x y +的最大值,并求出此时点P 的直角坐标. (24)(本小题满分10分)选修4-5:不等式选讲已知,m n 都是实数,0m ≠,()12f x x x =-+-.(I)若()2f x >,求实数x 的取值范围;(II)若()m n m n m f x ++-≥对满足条件的所有,m n 都成立,求实数x 的取值范围.2016年福州市普通高中毕业班质量检查数学(文科)答案第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题所给的四个答案中有且只有一个答案是正确的.把正确选项涂在答题卡的相应位置上.) 1. D 2. B 3. C 4. A 5. D 6. B 7.D 8.A 9.B 10. B 11. D 12.C第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卡的相应位置上.)13. 2 14.3 15.①④ 16.12-=n n a .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分) (I )解: 法一:由(2)cos cos b c A a C -=及正弦定理,得(2sin sin )cos sin cos B C A A C -=…………………………………………3分2sin cos sin cos sin cos B A C A A C ∴=+ 2sin cos sin()sin B A C A B ∴=+= (0,)B π∈ sin 0B ∴≠(0,)A π∈1cos 2A =3A π∴=…………………………………………6分法二:由(2)cos cos b c A a C -=及余弦定理,得222222(2)22b c a b a c b c a bc ba+-+--=……………………………………3分整理,得222b c a bc +-=2221cos 22b c a A bc +-==(0,)A π∈3A π∴=.………………………………………6分(II)解:由(I )得3A π∴=,由正弦定理得323sin sin sin 32b c a B C A ==== 所以23sin ;23sin b B c C ==ABC ∆的周长323sinB 23sin(B )3l π=+++ …………………………………9分323sinB 23(sinBcos cosBsin )33ππ=+++333sinB 3cosB =++36sin(B )6π=++2(0,)3B π∈当3B π=时,ABC ∆的周长取得最大值为9.…………………………………12分18.(本小题满分12分)解:(Ⅰ)A 班样本数据的平均值为1(911142031)175++++=………………3分 由此估计A 班学生每周平均上网时间17小时; B 班样本数据的平均值为1(1112212526)195++++=由此估计B 班学生每周平均上网时间较长. …………………6分 (Ⅱ)A 班的样本数据中不超过19的数据a 有3个,分别为:9,11,14, B 班的样本数据中不超过21的数据b 也有3个,分别为:11,12,21, 从A 班和B 班的样本数据中各随机抽取一个共有:9种不同情况,分别为:(9,11),(9,12),(9,21),(11,11),(11,12),(11,21),(14,11),(14,12),(14,21),…………………9分其中b a >的情况有(14,11),(14,12)两种, 故b a >的概率92=p .…………………2分 19.(本小题满分12分)FABDCE(I )证明:∵四边形ADEF 为正方形∴ED AD ⊥又∵平面ADEF ⊥平面ABCD ,平面ADEF ⋂平面ABCD =AD ,∴ED ⊥平面ABCD …………………………………………3分 ∴ED BD ⊥又∵BD CD ⊥, ED CD D ⋂=∴BD ⊥平面ECD …………………………………………6分 (II )解:1CD =,60OBCD ∠=,BD CD ⊥, 又∵ 正方形ADEF∴2CB =,5CE =,7BE =∴4575cos 10225BCE +-∠==⨯⨯ ∴19519252102CEB S ∆=⨯⨯⨯=…………………………8分 Rt BCD 的面积等于 131322BCD S ∆=⨯⨯=…………………9分 由得(I )ED ⊥平面ABCD∴点E 到平面BCD 的距离为2ED =…………………………10分∴113..1. 3.2323D CEBE CDB V V --===11932h =⨯⨯ ∴25719h =即点D 到平面CEB 的距离为25719. ……………………………12分20.(本小题满分12分)解:(I )∵椭圆经过点)3,0(,离心率为21, ∴⎪⎪⎪⎩⎪⎪⎪⎨⎧+===222321c b a b a c ,解得3,1,2===b c a . ∴椭圆C 的方程为13422=+y x .………………………………………4分(II )证明:设),(11y x B ,),(22y x D ,线段BD 的中点),(00y x N .由题意可得直线l 的方程为:)4(+=x k y ,且0≠k .联立⎪⎩⎪⎨⎧+==+)4(13422x k y y x ,化为12)4(43222=++x k x …………………………………6分 0126432)43(2222=-+++k x k x k ,由0)1264)(43(4)32(2222>-+-=∆k k k ,可得412<k ,且0≠k . ∴22214332k k x x +-=+2221431264.k k x x +-=.………………………………………8分 ∴222143162k k x x x o +-=+=,204312)4(k k x k y o+=+= 假设存在实数k ,使得1F 2F 为直径的圆过N 点,即12F N F N ⊥,则12.1F N F N k k =-,∵22220041414316431211k k k k k k x y k N F -=++-+=+=,2202202121234161203134F N ky k k k k x k k +===-----+ ∴22412114203k k k k ⨯=----,化为42804030k k +-=, 设2t k =,则2804030t t +-=∴关于t 的方程存在正解,这样实数k 存在.即存在实数k ,使得以1F 2F 为直径的圆过N 点.……………………………………12分 21.(本小题满分12分)解:(Ⅰ)当2=a 时,x x x x f ln 22)(2+-=;xx x f 222)(+-=' 则1)1(-=f ,2)1(='f 所以切线方程为)1(21-=+x y ,即为32-=x y .………………………………………4分 (Ⅱ))0(22)(>+-='x xax x f 令022)(=+-='xax x f ,则0222=+-a x x 当084≤-=∆a ,21≥a 时,0)(≥'x f ,函数)(x f 在),0(+∞上单调递增,无极值点;…………………6分(1)当084>-=∆a 且0>a ,210<<a 时,由0222=+-a x x 得221148422,1a a x -±=-±=当x 变化时,)(x f '与)(x f 的变化情况如下表:x1(0,)x1x12(,)x x2x2(,)x +∞)(x f ' +-+)(x f单调递增 极大值 单调递减 极小值 单调递增当210<<a 时,函数)(x f 有两个极值点)(,2121x x x x <,则121=+x x , 22111a x --=,22112ax -+=………………………………………8分由210<<a 可得2101<<x ,1212<<x21)(x x f 21121ln 2x x a x x +-=21211121ln )22(2x x x x x x -+-=112111211ln )22(2x x x x x x --+-=1111ln 2111x x x x +---= 令)210(ln 2111)(<<+---=x x x x x x h ………………………………………10分 x x x h ln 2)1(11)(2+--='因为210<<x ,所以2111-<-<-x ,1)1(412<-<x 0ln 2)1(11)(2<+--='x x x h ,即)(x h 在)21,0(递减, 即有2ln 23)21()(--=>h x h , 所以实数m 的取值范围为]2ln 23,(---∞.………………………………………12分本题有(22)、(23)、(24)三题中任选一题做答,如果多做,则按所做的第一题计分.作答时,先用2B 铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.(22)(本小题满分10分)选修4-1:几何证明讲证明:(I) AB 为圆O 的一条直径,BF FH DH BD ∴⊥⊥,,,B D H F ∴四点共圆 ……………………………………4分解:(II) AH 与圆B 相切于点F ,由切割线定理得2AF AC AD =⋅,即()2222AD =⋅, 解得4AD =,所以()11,12BD AD AC BF BD =-===, 又AFBADH ∆∆, 则DH AD BF AF=,得2DH =,……………………………………7分 连接BH ,由(1)知BH 为BDF ∆的外接圆直径,223BH BD DH =+=,故BDF ∆的外接圆半径为32.……………………………………10分 (23)(本小题满分10分)选修4-4:坐标系与参数方程解:(Ⅰ)因为24(cos sin )6ρρθθ=+-,所以22446x y x y +=+-,所以224460x y x y +--+=,即22(2)(2)2x y -+-=为圆C 的普通方程.…………………………………4分所以所求的圆C 的参数方程为22cos 22sin x y θθ⎧=+⎪⎨=+⎪⎩(θ为参数) .………………………6分(Ⅱ)由(Ⅰ)可得,42(sin cos )42sin()4x y πθθθ+=++=++ …………………………7分当 4πθ=时,即点P 的直角坐标为(3,3)时, ……………………………9分x y +取到最大值为6. …………………………………10分(24)(本小题满分10分)选修4-5:不等式选讲解:(I)⎪⎩⎪⎨⎧>-≤<≤-=2,3221,11,23)(x x x x x x f由2)(>x f 得⎩⎨⎧≤>-1223x x 或⎩⎨⎧>->2322x x , 解得21<x 或25>x . 故所求实数x 的取值范围为),25()21,(+∞⋃-∞.……5分 (II )由)(x f m n m n m ≥-++且0m ≠得 )(x f m nm n m ≥-++, 又∵2=-++≥-++m nm n m m nm n m , …………………………7分∴2)(≤x f ,∵2)(>x f 的解集为),25()21,(+∞⋃-∞,∴2)(≤x f 的解集为]25,21[,∴所求实数x 的取值范围为]25,21[.……10分。
准考证号: 姓名:(在此试卷上答题无效)保密★启用前2016年福建省普通高中毕业班质量检查文 科 数 学注意事项:1.本试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至5页;2.答题前,考生务必将自己的姓名、准考证号填写在答题卡上;3.请将全部答案答在答题卡上,答在本试卷上无效;4.考试结束或,将本试卷和答题卡一并收回。
第Ⅰ卷(选择题)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知复数iiz -+=13,则=z A.1 B.2 C.5 D.5 2.集合{}{}02|,1|2≤--=-==x x x B x y y A ,则=B AA.[)∞+,2B.[]0,1C.[]2,1D.[]2,0 3.已知312cos =⎪⎭⎫ ⎝⎛+πα,则 α2cos 的值等于 A.97 B.97- C.98 D.98-4.执行如图所示的程序框图,如果输入n 的值为4,则输出的S 的值为 A.15 B.6 C.-10 D.-215.某公司为了增加其商品的销售利润,调查了该商品投入的广告费用x 与销售利润y 的统计数据如下表: 广告费用x(万元) 2 3 5 6 销售利润y(万元)57911由表中数据,得线性回归方程()()()⎪⎪⎪⎪⎭⎫ ⎝⎛-=---=+=∑∑==x b y ax x y y x x b a x b yl ni ini i i ˆˆ,ˆˆˆˆ:121,则下列结论错误的是A.0ˆ>bB. 0ˆ>aC.直线l 过点(4,8)D.直线l 过点(2,5)6.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则这个几何体是A.三棱锥B.三棱柱C.四棱锥D.四棱柱 7.在∆ABC 中,D AB B ,23==,π为AB 中点,∆BCD 的面积为433,则AC 等于A.2B.7C.10D.198.函数()()2ln x x e e x x f --=,则()x f 是 A.奇函数,且在()∞+,0上单调递减 B.奇函数,且在()∞+,0上单调递增 C.偶函数,且在()∞+,0上单调递减 D.偶函数,且在()∞+,0上单调递增9. 在空间直角坐标系O -xyz 中,A (0,0,2),B (0,2,0),C (2,2,2),则三棱锥 O -ABC 外接球的表面积为A.π3B.π34C.π12D.π4810.若x ,y 满足约束条件⎪⎩⎪⎨⎧≥++≥+≥+-,02,02,02y x y y x 则()()2232+++y x 的最小值为A.1B.29C.5D.9 11.已知过双曲线()0,01:2222>>=-b a by a x C 的焦点的直线l 与C 交于A ,B 两点,且使a AB 4=,的直线l 恰好有3条,则C 的渐近线方程为 A.x y 2±= B.x y 22±= C.x y 2±= D.x y 21±=12.已知函数()()⎪⎭⎫⎝⎛≤≤+==212ln 2,e x e e x x g kx x f ,若()x f 与()x g 的图像上分别存在点M ,N ,使得M ,N 关于直线e y =对称,则实数k 的取值范围是A.⎪⎭⎫⎢⎣⎡∞+-,2e 4 B. ⎥⎦⎤⎢⎣⎡24-2-e e , C. ⎥⎦⎤⎢⎣⎡e e 24-2, D.⎥⎦⎤⎢⎣⎡2e 2-,e第Ⅱ卷(非选择题)本卷包括必考题和选考题两部分。
2016高三毕业班总复习单元过关形成性测试卷(文科)计数原理、概率统计一、选择题:本大题共6小题,每小题6分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 从一个含有100个个体的总体中,以简单随机抽样的方式抽取一个容量为5的样本,则其中的某个指定的个体被抽到的概率为( )A. B. C. D.【答案】B【解析】用简单随机抽样从含有个个体的总体中抽取一个容量为的样本时,每次抽取一个个体时任一个体被抽到的概率为;在整个抽样过程中各个个体被抽到的概率为,故选B.2. 将35个数据制成茎叶图如图所示.若将数据由大到小编为号,再用系统抽样方法从中抽取7个数据,则其中数据值落在区间的个数为( )A. 4B. 5C. 6D. 7【答案】A【解析】由茎叶图可知,在区间的个数为,再由系统抽样的性质可知个数为,故选A.3. 甲、乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种,则他们选择相同颜色运动服的概率为( )A. B. C. D.【答案】A【解析】甲,乙两名运动员各自等可能地从红、白、蓝3种颜色的运动服中选择1种有9种不同的结果,分别为(红,红),(红,白),(红,蓝),(白,红),(白,白),(白,蓝),(蓝,红),(蓝,白),(蓝,蓝).他们选择相同颜色运动服有3种不同的结果,即(红,红),(白,白),(蓝,蓝),故他们选择相同颜色运动服的概率为,故选A.点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.4. 设是变量和的个样本点,直线是由这些样本点通过最小二乘法得到的线性回归直线(如图),是以下结论中正确的是( )A. 和的相关系数为直线的斜率B. 和的相关系数在0到1之间C. 当为偶数时,分布在两侧的样本点的个数一定相同D. 直线过点【答案】D【解析】因回归直线一定过这组数据的样本中心点,故选D.点睛:函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系.如果线性相关,则直接根据用公式求,写出回归方程,回归直线方程恒过点.5. 在区间内随机取出两个数,则这两个数的平方和也在区间内的概率是( )A. B. C. D.【答案】B【解析】记随机取出两个数分别为,因所以点在直角坐标系内所占区域面积为若,则点在直角坐标系内所占区域面积为所以,概率故选B.点睛:(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.6. 某市在对两千多名出租车司机的年龄进行的调查中,从两千多名出租车司机中随机抽选100名司机,已知这100名司机的年龄都在20岁至50岁之间,且根据调查结果得出的年龄情况频率分布直方图如图所示(部分图表污损).利用这个残缺的频率分布直方图,可估计该市出租车司机年龄的中位数大约是( )A. 岁B. 岁C. 岁D. 岁【答案】A【解析】由频率分布直方图可知的频率为,的频率为,的频率为,因为,所以中位数,由,得,故选A.点睛:(1)频率分布直方图中小长方形面积等于对应概率,所有小长方形面积之和为1;(2)频率分布直方图中均值等于组中值与对应概率乘积的和(3)均值大小代表水平高低,方差大小代表稳定性二、填空题:本大题共4小题,每小题6分。
2016年福建省普通高中毕业班质量检查理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷4至6页,满分150分.考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.第Ⅱ卷用0.5毫米的黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效. 3.考试结束,监考员将试题卷和答题卡一并交回.第Ⅰ卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知,a b ∈R ,i 是虚数单位,若i a +与2i b -互为共轭复数,则2(i)a b += (A )34i - (B )34i + (C )54i - (D )54i +(2)执行如图所示的程序框图,若要使输出的y 的值等于3,则输入的x 的值可以是(A )1 (B )2 (C )8 (D )9(3)已知3cos 25απ⎛⎫+= ⎪⎝⎭,22αππ-<<,则sin 2α的值等于(A )1225 (B )1225- (C )2425 (D )2425-(4)已知0,0a b >>,则“1ab >”是“2a b +>”的(A )充分不必要条件(B )必要不充分条件 (C )充要条件(D )既不充分也不必要条件(5)若,x y 满足约束条件20,20,20,x y y x y -+≥⎧⎪+≥⎨⎪++≤⎩则11y x +-的取值范围为(A )11,35⎡⎤-⎢⎥⎣⎦(B )1,13⎡⎤-⎢⎥⎣⎦(C )11,,35⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭(D )[)1,1,3⎛⎤-∞-⋃+∞ ⎥⎝⎦(6)已知等比数列{}n a 的各项均为正数且公比大于1,前n 项积为n T ,且243a a a =,则使得1n T >的n 的最小值为(A )4 (B )5 (C )6 (D )7 (7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的各个面的面积中,最小的值为(A )25 (B )8 (C )45 (D )82 (8)在ABC ∆中,3A π=,2AB =,3AC =,2CM MB =u u u u r u u u r ,则AM BC ⋅=u u u u r u u u r (A )113-(B )43- (C )43 (D )113(9)若椭圆上存在三点,使得这三点与椭圆中心恰好是一个正方形的四个顶点,则该椭圆的离心率为(A )512- (B )33 (C )22 (D )63(10)在三棱锥P ABC -中,23PA =,2PC =,7AB =,3BC =,2ABC π∠=,则三棱锥P ABC -外接球的表面积为 (A )4π (B )163π (C )323π (D )16π (11)已知12,F F 分别为双曲线()222210,0x y C a b a b-=>>:的左、右焦点,若点P 是以12F F 为直径的圆与C 右支的一个交点, 1PF 交C 于另一点Q ,且12PQ QF =,则C 的渐近线方程为(A )2y x =± (B )12y x =± (C )2y x =± (D )22y x =±(12)已知)(x f 是定义在R 上的减函数,其导函数()f x '满足()()1f x x f x +<',则下列结论正确的是(A )对于任意R ∈x , )(x f <0 (B )对于任意R ∈x , )(x f >0 (C )当且仅当()1,∞-∈x ,)(x f <0 (D )当且仅当()+∞∈,1x ,)(x f >0第Ⅱ卷注意事项:第Ⅱ卷共3页,须用黑色墨水签字笔在答题卡上书写作答.若在试题卷上作答,答案无效.本卷包括必考题和选考题两部分。
2017年福建省普通高中毕业班质量检查文科数学第Ⅰ卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、已知集合2{1,0,1},{|,}U B x x m m U =-==∈,则U C A = A .{}0,1 B .{}1,0,1- C .φ D .{}1-2、已知正方形ABCD 的边长为1,,,AB a BC b CD c ===,则a b c ++等于 A .1 BC..33、某网店出售一种饼干,共有草莓味、巧克力味、香蕉味、香芋味四种口味,一位顾客在该店购买了两袋这种饼干,“口味”选择“随机派送”,则这位顾客买到的两袋饼干是同一种口味的概率是 A .116 B .14 C .25 D .234、若,x y 满足约束条件0230260x y x y x y -≥⎧⎪+-≥⎨⎪+-≤⎩,则2z x y =-的最小值为A .-6B .-2C .-1D .35、ABC ∆中,角,,A B C 的对边分别为,,a b c,若,22a A B ==,则cos B 等于 A6、已知递增等比数列{}n a 的公比为q ,其前n 项和为0n S <,则 A .10,01a q <<< B .10,1a q <> C .10,01a q ><< D .10,1a q >>7、右图中,小方格是边长为1的正方形,图中粗线画出的是 某几何体的三视图,则该几何体的体积为A .483π-B .8π-C .283π-D .183π-8、函数3)y x x =+的图象大致为9、执行如图所示的程序框图,若输入a 的值为2,则输出b A .-2 B .1 C .2 D .410、已知函数()22cos f x x x =+,下列结论正确的是 A .函数()f x 的最小正周期为2π B .函数()f x 在区间(,)124ππ上单调递增C .函数()f x 的图象关于直线6x π=对称 D .函数()f x 的图象关于(,0)12π-对称11、已知正三棱柱111ABC A B C -的顶点111,,A B C 在同一球面上,且平面ABC 经过球心,若此球的表面积为4π,则该三棱柱的侧面积的最大值为A .12、设F 是椭圆2222:1(0)x y C a b a b +=>>的一个焦点,P 是C 上的点,圆2229a x y +=与线段PF 交于A 、B 两点,若A 、B 三等分线段PF ,则C 的离心率为A .3 B .3 C .5第Ⅱ卷本卷包括必考题和选考题两个部分,第13题—第21题为必考题,每个考生都必须作答,第22题—第23题为选考题,考生根据要求作答二、填空题:本大题共4小题,每小题5分,共20分,把答案填在答题卷的横线上。
2016年福建省普通高中毕业班质量检查文科数学试题答案及评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分. 3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题和填空题不给中间分.一、选择题:本大题考查基础知识和基本运算.每小题5分,满分60分. (1)C (2)D (3)A (4)C (5)D (6)A (7)B (8)D (9)C (10)B (11)A (12)D 二、填空题:本大题考查基础知识和基本运算.每小题5分,满分20分. (13)8 (14(151 (16)sin x -π三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.本小题主要考查等比数列的通项公式、数列求和等基础知识,考查运算求解能力,考查函数与方程思想、化归与转化思想等.满分12分. 解:(Ⅰ)设{}n a 的公比为q ,依题意,得211211120,7,a q a q a a q a q ⎧-=⎪⎨++=⎪⎩ ················································································ 3分 解得11,2,a q =⎧⎨=⎩·················································································································· 5分所以12n n a -=. ············································································································ 6分 (Ⅱ)由(Ⅰ)得,12n n n n a -=,所以21231222n n nT -=++++,① ····················· 7分 所以21112122222n n nn nT --=++++,② ······································································ 8分 ①-②得,211111122222n n n nT -=++++- ···························································· 10分 1121212n n n -=--222nn +=-. ····················································································· 11分 所以1242n n n T -+=-. ·································································································· 12分 18.本小题主要考查频率分布直方图、平均数、众数、古典概率等基础知识,考查数据处理能力、运算求解能力以及应用意识,考查必然与或然思想等.满分12分.解:(Ⅰ)依题意可得,使用A 款订餐软件的50个商家的 “平均送达时间”的众数为55(分钟). ················································································································· 2分 使用A 款订餐软件的50个商家的 “平均送达时间”的平均数:150.06250.34350.12450.04550.4650.0440⨯+⨯+⨯+⨯+⨯+⨯=(分钟). ····································································································································· 6分(Ⅱ)(ⅰ)使用B 款订餐软件“平均送达时间”不超过40分钟的商家的比例估计值为0.04+0.20+0.56=0.80=80%>75%. ······································································ 8分故可认为使用B 款订餐软件“平均送达时间”不超过40分钟的商家达到75%. ································································································································· 9分(ⅱ)使用B 款订餐软件的50个商家的 “平均送达时间”的平均数: 150.04250.2350.56450.14550.04650.023540⨯+⨯+⨯+⨯+⨯+⨯=<,所以选B 款订餐软件. ····················································································· 12分注:本小题答案开放,只要能够按照统计知识合理作答,即给满分。