6.2 反馈控制与极点配置
- 格式:ppt
- 大小:753.00 KB
- 文档页数:63
综合性实验 极点配置全状态反馈控制一、实验目的1.学习并掌握用极点配置方法设计全状态反馈控制系统的方法。
2.用电路模拟与软件仿真方法研究参数对系统性能的影响。
二、实验内容1.设计典型二阶系统的极点配置全状态反馈控制系统,并进行电路模拟与软件仿真研究。
2.设计典型三阶系统的极点配置全状态反馈控制系统,并进行电路模拟与软件仿真研究。
三、实验前准备工作1 推导图1的数学模型(状态空间表达式),分析系统的能控性。
2 若系统期望的性能指标为:超调量25%p M ≤,峰值时间0.5p t ≤,求出期望的极点值。
根据以上性能指标要求设计出状态反馈控制器。
3 推导图2的数学模型(传递函数),求出其单位阶跃响应的动态性能指标(超调量、调节时间、静态速度误差系数)。
4 推导图4的数学模型(状态空间表达式),分析系统的能控性。
5考虑系统稳定性等要求,选择理想极点为:S 1=-9,S 2 =-2+j2,S 3=-2-j2, 根据以上性能指标要求思考如何设计状态反馈控制器。
6 推导图7的数学模型(传递函数)。
四、实验步骤1.典型二阶系统(1)对一已知二阶系统(见图1)用极点配置方法设计全状态反馈系数。
(2)见图2和图3,利用实验箱上的电路单元U9、U11、U12和U8,按设计参数设计并连接成系统模拟电路,测取阶跃响应,并与软件仿真结果比较。
(3)改变系统模拟电路接线,使系统恢复到图1所示情况,测取阶跃响应,并与软件仿真结果比较。
(4)对实验结果进行比较、分析,并完成实验报告。
2.典型三阶系统(1)对一已知三阶系统(见图4)用极点配置方法设计全状态反馈系数。
(2)见图5和图7,利用实验箱上的电路单元U9、U11、U12、U15和U8,按设计参数设计并连接成系统模拟电路,测取阶跃响应,并与软件仿真结果比较。
(3)改变系统模拟电路接线,使系统恢复到图5所示情况,测取阶跃响应,并与软件仿真结果比较。
软件仿真直接在MATLAB 中实现。
线性系统的状态反馈及极点配置1.前言随着现代控制理论的不断发展和成熟,线性系统的状态反馈控制在控制理论中得到了广泛的应用,并成为了控制领域中重要的一种控制方法。
状态反馈控制能够将系统的状态进行反馈,并利用反馈得到的信息对系统进行控制,从而达到使系统达到预期控制目标的目的。
本文将从状态反馈控制的原理和实现方法两方面介绍线性系统的状态反馈及极点配置。
2.状态反馈控制的原理状态反馈控制是建立在现代控制理论的基础上的一种高级控制方法。
状态反馈控制的基本思想是在系统中引入反馈环节,设计一个反馈控制器,将系统的状态量反馈给控制器,控制器再根据反馈信号输出控制量,以期望控制系统按照预期的运动轨迹运行。
因此,状态反馈控制要实现以下两个步骤:- 系统状态量的测量:首先要在系统中安装测量传感器,实时地测量系统状态量,使得状态量可以被反馈到控制器中。
- 反馈控制器的设计:设计一个反馈控制器,将系统的状态量反馈给控制器,控制器再根据反馈信号输出控制量,实现对系统的精确控制。
因此,状态反馈控制的基本原理就是将系统状态量反馈到控制器中,以期望控制系统按照预期的运动轨迹运行。
2.2 状态空间模型与状态反馈控制状态空间模型是状态反馈控制的基础。
状态空间模型是一种方便描述线性系统动态行为和控制器的模型。
对于线性时不变系统,我们可以用如下的状态变量描述:x(t) = [x1(t),x2(t),...,xn(t)]T其中,x(t) 是系统在时刻 t 的状态量,n 是状态量的数量,x1(t),x2(t),...,xn(t) 分别是系统的每个状态量。
状态空间模型可以用一组线性常微分方程描述:dx/dt = Ax + Bu其中,A 是系统的状态方程矩阵,B 是输入矩阵,C 是输出矩阵,D 是直接耦合矩阵。
系统的状态反馈控制可以表示为:u(t) = -Kx(t)其中,K 是状态反馈矩阵。
将状态反馈控制引入到状态空间模型中,可以得到控制器的状态空间模型为:y = Cx上述控制器的状态空间模型就是一个闭环系统,通过反馈控制器将系统状态返回到系统,形成了一个反馈环。
极点配置的原理今天来聊聊极点配置的原理。
我不是一开始就接触到极点配置这个概念的,之前做项目的时候遇到了控制系统的性能优化问题,就开始研究起它来了。
极点配置就像是给控制系统这个大机器调音一样。
咱们先从生活现象说起,想象一下开车。
汽车有个速度控制系统,我们想要汽车的速度按照我们期望的方式变化,比如说快速稳定地达到一个设定速度,并且在遇到一些小干扰(像路面有点小坡度)的时候还能保持稳定。
这个时候极点配置就像调整汽车的“脾气秉性”的工具一样。
在控制系统里,系统的特性跟极点的位置密切相关。
从原理上讲呢,极点就是系统传递函数分母等于零的根。
我记得第一次接触这个理论公式的时候,觉得满脑袋都是浆糊。
比如说一个简单的二阶系统,它的极点会影响系统的响应速度和稳定性,就像一个跷跷板,两个极点要处于一个合适的位置,系统才会又快又稳。
这可是我琢磨了好久才有点理解的地方。
说到这里,你可能会问,这个极点怎么才能配置到我们想要的位置呢?这就要用到反馈控制理论了。
就像我们在训练宠物一样,通过反馈(知道宠物做的好不好,然后奖惩)来让系统的特性符合我们的要求。
比如说,通过调整反馈增益,就可以改变极点的位置。
老实说,我一开始也不明白极点配置到底为啥这么重要。
后来遇到好多实际例子才恍然大悟。
实际在航空航天领域,飞行器的姿态控制系统要很精确才行,极点配置就大有用武之地。
合理的极点配置能让飞行器快速准确地调整姿态且保持稳定,就像杂技演员总能在高空钢丝上保持平衡一样。
再讲讲相关的注意事项吧。
极点配置虽然很强大,但并不是随心所欲的,要考虑系统的物理可实现性以及对于外部干扰和不确定性的鲁棒性。
比如说,不能要求汽车做到像火箭那样的加速能力,因为汽车有它的物理限制。
这就像我们人一样,虽然有潜力可以挖掘,但是也有自身的极限。
我觉得极点配置这个原理还有很多可以延伸思考的地方。
比如如何在更加复杂多变的环境下进行适当地极点配置,这就像在不断变化的天气下管理一个大农场,要根据不同情况调整策略。
极点配置状态反馈控制器的设计王俊伟于新海(河套学院机电工程系)摘要围绕双级倒立摆案例,对极点配置状态反馈控制器的设计方法展开讨论,对最终的计算结果进行仿真,并通过仿真结果分析了系统的稳定性、动态性能和稳态误差情况。
倒立摆的开环系统状态空间模型状态不稳定且动态性能较差,通过引进极点配置状态反馈控制器,倒立摆的闭环系统状态达到稳定,而且动态性能得到改善。
关键词状态反馈控制器双级倒立摆极点配置能控标准型爱克曼公式动态特性稳态误差中图分类号TH865文献标识码B文章编号1000-3932(2021)01-0015-05极点配置状态反馈控制器设计得好坏直接决定了控制系统动态性能的优劣!配置极点的目的不仅是使系统稳定还要使系统的动态性能满足控制要求[1]!在配置状态反馈控制器时,根据被控制对象的要求,可以采用3种方法实现:极点配置状态反馈控制器的直接法、极点配置状态反馈控制器的变换法和爱克曼公式[2]'这3种方法仅适用于单输入系统,优点是只要系统能控,就可以实现极点配置的状态反馈,缺点是不能用于多输入系统的极点配置状态反馈控制器。
对于单输入系统,如果系统能控可以实现极点的任意配置,改善动态性能,但有可能使闭环控制系统的稳态误差变大[3]!1极点配置状态反馈控制器的直接法线性时不变系统如下:x=Ax+Bu(])'=Cx其中,X是系统的*维状态向量;*是状态向量对时间的导数;u是状态反馈控制律;#、B和C是适当维数的已知常数矩阵;'是系统的输出。
采用的状态反馈控制律是:u=-kx+v(2)其中,-是一维外部输入;k是反馈增益矩阵。
将式(2)代入式(1)得到闭环系统状态方程:*二(.-Bk)x+B-(3)极点配置状态反馈控制器的直接法分5步实现⑷。
第1步,检验系统(1)的能控性,如果系统能控,进行第2步。
第2步,计算闭环系统特征多项式:)et[!0—(#—Bk)]二!*+(3*_]+k*_14!*i1--------(3]+k])!+30+,0(4)其中,!是闭环极点。
实验报告课程名称:现代控制理论实验名称:线性系统状态反馈与极点配置一、实验目的1. 学习并掌握利用MATLAB编程平台进行控制系统设计与仿真的方法。
2. 通过仿真实验,研究并总结线性定常系统状态反馈对系统控制性能影响的规律。
3. 通过仿真实验,研究并总结状态反馈对状态不完全能控系统控制性能影响的规律。
二、实验内容(一)实验任务:1. 自行选择一个状态完全能控型SISO系统模型及参数,并设定系统控制性能指标,根据性能指标要求计算期望的极点并进行极点配置,设计MatLab实验程序(或SimuLink模拟图)及实验步骤,仿真研究状态反馈矩阵对系统控制性能的影响;2. 自行选择一个状态不完全能控型SISO系统模型及参数,并设定系统控制性能指标,根据性能指标要求进行极点配置,设计MatLab实验程序(或SimuLink模拟图)及实验步骤,仿真研究状态反馈矩阵对系统控制性能的影响;根据实验结果,总结各自的规律。
三、实验设计1.实验条件1.利用本学期所学的现代控制理论的知识为基础。
2.笔记本电脑,matlab四、实验过程1.设计状态完全能控型SISO系统模型及参数:X=(0101)X+(01)Xy=(11)Xa)首先判断系统的能控性[X XX] = [0111],是Rack([B AB]) = 2,因此此系统为可控的系统。
可以进行任意极点配置。
则期望极点配置二重根1。
b)再求状态反馈阵K=(X0 ,X1):X(x)=det[λI−(A+bK)]=X2−X1X−X0c)根据给定的极点,得到期望特征多项式:X∗(X)=(X−1)(X−1)d)比较X(x)和X∗(X)各对应项系数,可解得:X0=−1X1=2K=(−12)e)即状态反馈控制器:u=-K*x状态反馈闭环系统空间表达式x=A-B*K*xA1 = A – B*K = [0 1;1 -2]2.设计状态不完全能控型SISO系统模型及参数:X=(1001)X+(1)Xy=(11)Xa)首先判断系统的能控性[X XX] = [1100], Rank([B AB]) = 1,因此系统是不完全能控的,不能进行任意极点配置。
第2章 状态反馈极点配置设计基本理论2.1引言大多数的控制系统的基本结构是由被控对象和反馈控制器构成的闭环系统。
反馈的基本类型包括状态反馈和输出反馈。
其中状态反馈能够提供更加丰富的状态信息。
状态反馈是将系统的每一个状态变量乘相应的反馈系数,然后反馈到输入端与参考输入相加形成的控制规律,作为被控系统的控制输入。
图2.1是一个多输入多输出线性时不变系统状态反馈的基本结构:图2.1 多输入-多输出系统的状态反馈结构图其中受控系统的状态空间表达式为:x Ax Buy Cx=+= (2.1)由图2.1可知,加入状态反馈后,受控系统的输入为:u Fx v =+ (2.2)其中v 为参考输入,F 为状态反馈增益阵,因此可以得到状态反馈闭环系统的状态空间表达式:()x A BF x Bv y Cx=++= (2.3)闭环系统的传递函数矩阵:()()1s W s C sI A BF B -=-+⎡⎤⎣⎦ (2.4)由此可见,引入状态反馈后,通过F 的选择,可以改变闭环系统的特征值,是系统获得所要求的性能。
2.2极点配置方法的选择对于一个线性时不变系统进行状态反馈极点配置,一般有四种方法: (1) 传统方法—将系统转化为一个或多个单输入单输出系统。
(2) 直接法—使用稳定的酉矩阵,将这种系统转化为标准型。
(3) 矩阵方程法—对矩阵F ,直接解方程AX X BG -Λ= (2.5a) FX G = (2.5b)(4) 特征向量法—先找到特征向量x j (等式(2.5)中矩阵X 的列向量),然后利用等式(2.5b)求解F 。
方法(1)一般难以应用或者数值不稳定。
方法(3)需要解(2.5a)方程,并且对于系统矩阵A 的特征值不能再分配。
最有效并且数值稳定的方法是方法(2)和方法(4)。
其中方法(4)通过使用一系列的迭代算法找到最优解,所以比较复杂。
对于方法(2),当系统的输入多于一个信号输入时,不能确定系统的鲁棒性。
极点配置状态反馈控制器设计方法
嘿,朋友们!今天咱来聊聊极点配置状态反馈控制器设计方法。
这玩意儿啊,就像是给一个系统装上了精准的导航仪,能让它乖乖地按照咱的想法走。
你看啊,一个系统就好比是一辆汽车,而极点配置状态反馈控制器就是那个掌握方向盘的司机。
咱得通过巧妙的设计,让这个司机能精准地操控汽车,该加速的时候加速,该转弯的时候转弯,不能有一点儿含糊。
设计这个控制器就像是搭积木,一块一块地拼凑起来。
咱得先了解系统的特性,就像了解汽车的性能一样。
然后呢,根据这些特性来选择合适的参数,这可不能马虎,得仔细琢磨。
比如说,要是参数没选好,那可就糟糕啦!就像司机开车老是开歪一样,系统也会变得不稳定,那可不行!咱得让系统稳稳当当的,该干啥干啥。
这其中的学问可大着呢!就好像做菜一样,各种调料得搭配得恰到好处,才能做出美味的菜肴。
极点配置状态反馈控制器的设计也是如此,每个环节都得精心处理。
而且哦,这个设计方法可不是一成不变的。
不同的系统就像不同口味的人,得用不同的方法去对待。
有时候得灵活一点,不能太死板啦。
想想看,如果所有系统都用一种方法去设计控制器,那多无趣啊!就像所有人都穿一样的衣服,那还有啥意思呢?咱得根据实际情况来调整,找到最适合的方案。
在实际应用中,这可真是帮了大忙啦!它能让那些复杂的系统乖乖听话,按照我们的要求运行。
这多厉害呀!难道不是吗?
所以啊,极点配置状态反馈控制器设计方法可真是个宝贝!咱可得好好研究,好好利用。
让它为我们的各种系统服务,让它们变得更智能、更高效。
怎么样,是不是觉得很有意思呢?别犹豫啦,赶紧去试试吧!。