第1章 水分与作物
- 格式:doc
- 大小:49.50 KB
- 文档页数:7
第一章:植物对水分的需要名词解释:1、水势:表示衡量水分反应或做功能量的高低。
自由水水势最大,为零,溶液浓度越大,水势越低。
2、根压:由于水势梯度引起水分进入中柱后产生的压力成为根压。
3、蒸腾作用:是指水分以气态的状态,通过植物体表面,从体内散失到体外的现象。
4、水分利用率:指光合之用同化二氧化碳的速率与同时失去水分的速率的比值。
5、水分临界期:植物对水分不足特别敏感的时期。
思考题:1、从植物生理学角度,分析农谚“有收无收在于水”的道理。
答:(1、)从水在植物生命中的作用上看:水分是细胞质的主要成分,是代谢作用过程的反应物质,是植物对物质吸收运输的溶剂,能够保持植物的固有形态。
(2)、从作物的需水规律上看:从分蘖期到抽穗期、灌浆期、乳熟末期都需要大量的水分,如果水分供应不知,则会减产。
2、植物叶片的气孔为什么在光照条件下会张开,在黑暗条件下会关闭?●保卫细胞细胞壁具有伸缩性,细胞的体积能可逆性地增大40~100%。
●保卫细胞细胞壁的厚度不同,分布不均匀。
双子叶植物保卫细胞是肾形,内壁厚、外壁薄,外壁易于伸长,吸水时向外扩展,拉开气孔;禾本科植物的保卫细胞是哑铃形,中间厚、两头薄,吸水时,横向膨大,使气孔张开。
保卫细胞的叶绿体在光下会形成蔗糖,累积在液泡中,降低渗透势,于是吸水膨胀,气孔张开;在黑暗条件下,进行呼吸作用,消耗有机物,升高了渗透势,于是失水,气孔关闭。
3、在栽培作物时,如何才能做到合理灌溉?合理灌溉是依据作物需水规律和水源情况进行灌溉,调节植物体内的水分状况,满足作物生长发育的需要,用适量的水取得最大的效果。
要做到合理灌溉,就要掌握作物的需水规律。
通过观察作物的灌溉形态指标和生理指标、土壤含水量,并使用喷灌、滴灌、调亏灌溉、控制性分根交替灌溉等节水灌溉方法,还要注意水温和水质。
第二章1、矿质营养:植物对矿物质的吸收、转运和同化,称为矿质营养。
2、大量元素:植物对某些元素的需求量相对较大的,称为大量元素或大量营养,包括钾钙镁硫磷硅氮。
第一章植物的水分生理第一节植物对水分的需要一、植物的含水量(几-90以上%)主要影响因素:植物种类:水生植物、肉质植物>90%以上,草本植物为70-85%,在干旱环境中生长的低等植物(地衣、藓类)为6%。
生长环境:生长于阴蔽、潮湿环境中的植物较向阳、干燥环境中的高。
器官、组织种类:幼嫩>衰老。
根尖、茎尖、嫩幼苗、绿叶为60-90%,树干为40%,休眠芽为40%,风干种子为10-14%。
二、植物体内水分的存在状态1、束缚水—植物体内距离亲水物质(蛋白质、核酸等)较近而被之吸咐束缚不易自由移动的水分子。
2、自由水—植物体内距离亲水物质(蛋白质、核酸等)较远而不被吸咐束缚易自由移动的水分子。
自由水/束缚水:高,植物代谢旺,抗逆能力弱;低,植物代谢弱,抗逆能力强。
如:越冬植物和休眠的干燥种子,自由水/束缚水低,仅以极弱的代谢维持生命活动,但抗性却明显增强,能度过不良的逆境条件。
松、竹、梅,被称作“岁寒三友”,抗寒能力极强,也与体内束缚水多有关。
三、水分在植物生命活动中的作用1、水分是细胞质的主要成分2、水分是代谢过程的反应物质3、水分是植物对物质吸收和运输的溶剂4、水分能保持植物的固有姿态第二节植物细胞对水分的吸收吸水方式:扩散集流渗透性吸水(主要方式)三、渗透性吸水(一)概念1、渗透性吸水:细胞通过渗透作用吸水。
2、渗透作用:(广义)—物质由浓度高处向浓度低处扩散移动的现象。
(狭义)—水分子通过半透膜由水势高处向水势低处移动的现象。
3、半透膜:只能让水分子、葡萄糖分子等小分子物质自由通过,而不能让大分子物质自由通过的膜。
种子的种皮、细胞膜、猪膀胱等。
反之称为透性膜,如细胞壁。
4、水势—每偏摩尔体积水的化学势或水的偏摩尔自由能。
符号:ψ国际单位:兆帕(Mpa=106pa),1atm=1.013×103pa重要用途:衡量一个系统中水分子自由扩散能力的强弱,水势高,水分子自由扩散力强,反之则弱。
ao论文题目:土壤水分与作物的产量的关系**:***业:学号:一:土壤水分与作物产量关系第一:人类的生活水提依赖高,紧紧的依赖于再生的自然资源。
这种关系在几千年以前就已经十分密切了。
人类是生态系统中的一个组成的部分,通过采集植物和打猎,可以获得食品、衣物、房屋和燃料,以求生存。
随着人口的增加和新工具的应用,便产生了剥削者、农民和牧民。
迄今,人类生活仍然同气候、土壤、植物和动物资源,有着密切的关系。
由于人口的迅速增长,世界各地需要的粮食也不断增加。
为了保证粮食和棉花的供给,妥善管理和保护资源,已成为当务之急。
目前粮食增产的潜力有两种主要途径:一是扩大农作物种植面积;二是增加面积产量。
(1)、影响农作物产量的主要因素空气、阳光、温度、水、土壤是决定农作物产量的主要因素。
在很大程度上,人类难以控制这些因素。
其中土壤、水是影响农作物生长最重要的因素。
某种耕作制度的成功与否,关键在于水的科学管理。
土壤中的水必须在整个生长季节里,能够有效地补充土壤蒸发和作物蒸腾所消耗的水分土壤中的水含有农作物生长所需要的各种养分,而且对土壤的透气性和温度也有很大的影响。
作物要获得高产,土壤必须提供给作物所需要的水分。
水是作物的重要组成部分,一般作物体内含有大约60%--80%的水作物体内的大量水分,主要是从叶子表面以气体蒸腾到大气中,其消耗的水量,比自身新陈代谢所需要的水量要大许多倍。
这种水的的消耗称之为蒸腾作用。
(2)作物对土壤水分的利用率土壤的性质,影响着作物根系对土壤水分的利用率和土壤水分流动的速度。
而土壤质地则是最主要的影响因素。
其中壤质土壤比沙质土壤含水量大,所以壤质土壤耐旱,而且在雨后或渗水后,能较长时间的持续向植株供水。
土壤水分对作物的生长发育有明显的影响。
一般来说,土壤湿度大,则干物质积累的多,叶面积也就大。
冬小麦生长率和净同化率在开花期达到最大值,而后明显下降。
生长率与土壤湿度的关系呈抛物线形,土壤湿度在在占田间持水量的67%时,冬小麦生长率达到最大值。
植物生理学答案(1)第一章植物的水分生理一、名词解释。
渗透势(solute potential):由于溶液中溶质颗粒的存在,降低了水的自由能而引起的水势低于纯水水势的值,此值为负值.其也称为溶质势.质外体途径(apoplast pathway): 指水分通过细胞壁、细胞间隙等没有细胞质部分的移动,阻力小,移动方式速度快。
共质体途径(symplast pathway): 指水分从一个细胞的细胞质经过胞间连丝,移动到另一个细胞的细胞质,形成一个细胞质的连续体,移动速度较慢。
渗透作用(osmosis):物质依水势梯度而移动,指溶液中的溶剂分子通过半透膜扩散的现象.对于水溶液而言,就是指水分子从水势高的系统通过半透膜向水势低的系统移动的现象.蒸腾作用(transpiration): 指水分以气体状态,通过植物体的表面,从体内散失到体外的现象。
二、思考题1、将植物细胞分别放在纯水和1mo l/L蔗糖溶液中,细胞的渗透势、压力势、水势及细胞体积各会发生什么变化?答:在正常情况下,植物细胞的水势为负值,在土壤水分充足的条件下,一般植物的叶片水势为-0.8~-0.2MPa。
将植物细胞放在纯水中时,纯水的水势为0,故植物细胞会吸水,渗透势、压力势及水势均上升,细胞体积变大。
当吸水达到饱和时,细胞体积达最大,水势最终变为0,渗透势和压力势绝对值相等、符号相反,各组分不再变化。
当植物细胞放于1mo l /L蔗糖溶液中时,根据公式计算蔗糖溶液的水势(设温度为27 ℃,已知蔗糖的解离系数i=1)=-icRT=-1mol /L×0.0083L·MPa/(mol·K)×(273+27)K=-2.49MPa,由于细胞的水势大于蔗糖溶液的水势,因此细胞放入溶液后会失水,渗透势、压力势及水势均减少,体积也缩小,严重时还会发生质壁分离现象。
如果细胞处于初始质壁分离状态,其压力势为0,水势等于渗透势。
第一章植物的水分生理名词解释水势:每偏摩尔体积水的化学势差。
渗透压:恰好能够使从半透膜一侧通过到另一侧的水分子数目平衡的在较高浓度溶液的液面上施加的额外压强称为渗透压。
质外体:由细胞壁及细胞间隙等空间(包含导管与管胞)组成的体系。
渗透作用:指两种不同浓度的溶液隔以半透膜(允许溶剂分子通过,不允许溶质分子通过的膜),水分子或其它溶剂分子从低浓度的溶液通过半透膜进入高浓度溶液中的现象。
思考题4.水分是如何进入根部导管?水分优势如何运输到叶片?答:进入根部导管有三种途径:①质外体途径:水分通过细胞壁、细胞间隙等没有细胞质部分的移动,阻力小,移动速度快。
②跨膜途径:水分从一个细胞移动到另一个细胞,要两次通过质膜,还要通过液泡膜。
③共质体途径:水分从一个细胞的细胞质经过胞间连丝,移动到另一个细胞的细胞质,形成一个细胞质的连续体,移动速度较慢。
这三条途径共同作用,使根部吸收水分。
根系吸水的动力是根压和蒸腾拉力。
运输到叶片的方式:蒸腾拉力是水分上升的主要动力,使水分在茎内上升到达叶片,导管的水分必须形成连续的水柱。
造成的原因是:水分子的内聚力很大,足以抵抗张力,保证由叶至根水柱不断,从而使水分不断上升。
5.植物叶片的气孔为什么在光照条件下会张开,在黑暗条件下会关闭?答:气孔运动主要受保卫细胞的液泡水势的调节。
调节保卫细胞水势的渗透调节物有下列几种。
因为光照时保卫细胞内的叶绿体进行光合作用,水势降低,周围的水分流向保卫细胞,气孔就开(1)K+:在保卫细胞质膜上有ATP质子泵,分解由氧化磷酸化或光合磷酸化产生的ATP,将H+分泌到保卫细胞外,使得保卫细胞的pH升高。
质膜内侧的电势变得更负,驱动K+从表皮细胞经过保卫细胞质膜上的钾通道进入保卫细胞,再进入液泡。
在K+进入细胞内时,还伴随着少量氯离子的进入,以保持保卫细胞的电中性。
保卫细胞中积累较多的钾离子和氯离子,水势降低,水分进入保卫细胞,气孔就张开。
(2)苹果酸:照光下,保卫细胞内的二氧化碳用于光合碳循环,pH升高,导致淀粉分解生成PEP与二氧化碳反应,形成草酰乙酸转变成苹果酸,苹果酸和氯离子共同平衡钾离子。
第一章植物的水分代谢本章内容提要水是植物生命的基础。
植物水分代谢包括水的吸收、运输和散失过程。
植物细胞吸水有三种方式:渗透吸水、吸胀吸水和代谢性吸水,以渗透吸水为主。
根系是植物吸水的主要器官,吸水的主要区域为根毛区,吸水的方式有主动吸水和被动吸水,其吸水动力分别为根压和蒸腾拉力。
蒸腾拉力是植物主要的吸水动力。
水分在植物体内连续不断地运输是蒸腾拉力—内聚力克服水柱张力的结果。
植物主要通过叶片蒸腾散失水分,具有重要生理意义。
气孔蒸腾是植物叶片蒸腾的主要形式。
蒸腾速率与气孔的开闭关系很大。
气孔开闭可能是通过保卫细胞内K+的积累学说和苹果酸代谢来调节的。
许多外界因子能调节气孔开闭。
作物需水因作物种类不同而异,一般而论,植物的水分临界期是花粉母细胞四分体形成期,合理灌溉要综合考虑土壤含水量、作物形态指标及生理指标。
灌溉的生理指标能即使反映植物体内的水分状况,是较为科学的。
第一节水分在植物生命活动中的作用一、植物体内的含水量不同植物的含水量不同;同一种植物生长在不同的环境中含水量也有差异;在同一植株中不同器官和不同组织的含水量也不同。
二、水对植物的生理作用1、原生质的主要组分。
原生质一般含水量在70%~90%以上,这样才可使原生质保持溶胶状态,以保证各种生理生化过程的进行。
如果含水量减少,原生质由溶胶变成凝胶状态,细胞生命活动大大减缓(例如休眠种子)。
2、接参与植物体内重要的代谢过程。
在光合作用、呼吸作用、有机物质合成和分解的过程中均有水的参与。
3、多生化反应和物质吸收、运输的良好介质。
植物体内绝大多数生化过程都是在水介质中进行的。
水分子是极性分子,参与生化过程的反应物都溶于水,控制这些反应的酶类也是亲水性的。
各种物质在细胞内的合成、转化和运输分配,以及无机离子的吸收和运输在水介质中完成的。
4、使植物保持固有的姿态。
细胞含有大量的水分,维持细胞的紧张度,因而使植物枝叶挺立、花朵开放等。
3、分裂和延伸生长都需要足够的水。
第一章植物的水分生理一、名词解释1.水分代2.自由水3.束缚水4.扩散5.集流6.渗透作用7.水势8.渗透势9.压力势10.衬质势11.质外体途径12.共质体途径13.根压14.蒸腾拉力15.聚力学说16.蒸腾作用17.蒸腾速率18.蒸腾系数19.蒸腾比率20.水分临界期21.跨膜途径二、缩写符号翻译1. ψw2. ψp3. ψm4. ψs5. ψπ6. MPa7. WUE三、填空题1.植物细胞吸水方式有、和。
2.简单扩散是物质依而移动,集流是物质依而移动,而渗透作用是物质依而移动。
3.植物散失水分的方式有和。
4.植物细胞水分存在的状态有和。
5.细胞质含水较多呈状态,含水较少呈状态。
6.自由水/束缚水比值越大,则代;其比值越小,则植物的抗逆性。
7.一个典型细胞的水势等于;具有液泡的细胞的水势等于;干种子细胞的水势等于。
8.形成液泡后,细胞主要靠吸水。
9.风干种子的萌发吸水主要靠。
10.溶液的水势就是溶液的。
11.溶液的渗透势决定于溶液中。
12.在细胞初始质壁分离时,细胞的水势等于,压力势等于。
13.当细胞吸水达到饱和时,细胞的水势等于,渗透势与压力势绝对值。
14.相邻两细胞间水分的移动方向,决定于两细胞间的。
15.植物根系吸水方式有:和。
16.证明根压存在的证据有和。
17.叶片的蒸腾作用有两种方式:和。
18.某植物制造10克干物质需消耗5公斤水,其蒸腾系数。
19.小麦的第一个水分临界期是,第二个水分临界期是。
20.常用的蒸腾作用的指标有、和。
21.影响气孔开闭的因子主要有、和。
22.影响蒸腾作用的环境因子主要是、、和。
23.田间一次施肥过多,作物变得枯萎发黄,俗称,其原因是土壤溶液水势于作物体的水势,引起水分外渗。
24.可以较灵敏地反映出植物的水分状况的生理指标有、、和。
25.近年来出现的新型的灌溉方式有、和。
四、选择题1.植物的根系结构中,共质体是指()。
A.原生质B.胞间连丝C.细胞壁D.导管和管胞2.一般而言,进入冬季越冬作物组织自由水/束缚水的比值:()A.升高B.降低C.不变D.无规律3.有一个充分为水饱和的细胞,将其放入比细胞液浓度低10倍的溶液中,则细胞体积:()A.变大B.变小C.不变D.可能变小,也可能不变4.水势单位用帕(Pa)表示,一般用兆帕(MPa),两者关系为()A. 1MPa=l06PaB. 1MPa=105PaC. 1Pa=106MPaD. 1Pa=105Mpa5.已形成液泡的细胞,其衬质势通常省略不计,其原因是:()A.初质势很低B.衬质势不存在C.衬质势很高,绝对值很小D.衬质势很低,绝对值很小6.充分浸泡大豆和水稻子粒,结果大豆种子膨胀的体积比水稻的大,原因主要是大豆种子()。
植物生理学理论(第一章到第三章)植物生理学理论总结归纳第一篇植物的物质产生和光能利用第一章植物的水分生理水分生理包括水分的吸收、水分在植物体内的运输和水分的排出等3个过程。
第一节植物对水分的需要一、植物的含水量1、不同植物的含水量不同;2、同一种植物生长在不同环境中,含水量也不同;3、在同一植株种,不同器官和不同组织的含水量的差异也甚大。
二、植物体内水分存在的状态1、水分在植物细胞内通常呈束缚水和自由水两种状态(1)束缚水:靠近胶粒而被胶粒吸附束缚不易自由流动的水分(不参与代谢作用,但与植物抗性大小有密切关系)(2)距离胶粒较远而可以自由流动的水分(参与各种代谢作用,自由水占总含水量的百分比越大,则植物代谢越旺盛)①由于自由水含量多少不同,所以细胞质亲水胶体有两种不同的状态:一种是含水较多的溶胶(sol);另一种含水较少的凝胶(gel)2、水分子距离胶粒越近,吸附力越强;相反,则吸附力越弱。
3、自由水/束缚水低→凝胶耐旱自由水/束缚水高→溶胶三、水分在植物生命活动中的作用1、水分是细胞质的主要成分2、水分是代谢作用过程中的反应物质3、水分的植物对物质吸收和运输的溶剂4、水分能保持植物的固有姿态第二节植物细胞对水分的吸收植物细胞吸水主要有3中方式:扩散、集流、和渗透作用一、扩散:这是一种自发过程,指由于分子的随机热运动所造成的物质从浓度高的区域向浓度低的区域移动,扩散是物质顺着浓度梯度进行的。
二、集流:是指液体中成群的原子或分子在压力梯度下共同移动。
水分集流与溶质浓度梯度无关。
●水孔蛋白的作用:水分在细胞内的运输;水分长距离运输;调整细胞内的渗透压。
三、渗透作用:指溶剂分子通过半透膜而移动的现象。
渗透作用水势梯度儿移动。
1、水势的公式:ΨW=μW-μ0W/V W=△μW/V W2、水势=水的化学势/水的偏摩尔体积=N·m·mol-1/m3·mol-1=N·m-2=Pa3、溶液越浓,水势越低。
灌溉排水新技术百问百答(第一期)编者的话为了帮助做好中央广播电视大学水利水电工程专业“灌溉排水新技术”课程的教学工作,我们编写了这份课程辅导材料,供学员和辅导教师参考。
材料采用问答方式,对课程中的重点、难点内容作了讲解和提示。
课程辅导材料按照文字教材各章的顺序编写,依课程进度分为十期发布,其中第一期对应于文字教材绪论和第1章,第二期对应文字教材第2章,第三期和第四期对应文字教材第3章,第五期~第十期分别对应于文字教材的第4章至第9章。
绪论1、今后世界灌溉发展的趋势是什么?据预测,全世界人口到本世纪中叶,将增加47%,而耕地只能增加4%,为满足未来对粮食的需求,主要靠提高单位面积产量,因此,发展灌溉仍将是今后发展农业的重要措施之一。
今后世界灌溉发展的趋势是:①灌溉方面仍将以地面灌溉为主,喷灌、微灌等现代灌溉将有较大的发展;②为缓解水资源紧缺状况,提高灌溉水的利用系数,管道输水、渠道防渗、污水灌溉、雨水利用等可持续灌溉农业和科学的灌溉方法以及节水灌溉技术将日益发展;③改进农田水土管理,提高自动控制技术;④激光平地技术、红外线遥测、遥控等新技术将广泛地得到应用。
2、灌溉排水新技术的主要研究内容有哪些?灌溉排水的基本任务是研究技术上先进、经济上合理的各种工程技术措施,调节和改变土壤水分状况和有关地区水情的变化规律、消除水旱灾害和高效利用水资源,促进农业生产稳定的发展。
灌溉排水新技术主要研究以下一些基本内容。
⑴土壤水分、盐分的运移规律,探求作物生长与土壤水分状况、盐分状况之间的内在联系;⑵作物水分生产函数及其变化规律;⑶作物传统灌溉制度和非充分灌溉原理;⑷现代节水灌溉技术的理论与设计方法;⑸低洼易涝区治理和盐碱地改良的基本原理和工程技术措施;⑹灌区水资源优化管理的基本原理和计算方法;⑺灌溉管理理论、配水原理和计算方法;⑻灌区现代化管理理论及计算机在灌排管理现代化中的应用。
第1章水分与作物3、水对作物的生理作用主要表现在哪些方面?水是原生质的主要成分。
细胞作为植物的结构单位及功能单位,是由细胞壁和原生质体组成。
原生质体外面是质膜,里面是无数颗粒状和膜状的内容物浸埋在衬质中。
原生质含水量一般在80%以上才可以保持溶胶状态,以保证各种生理生化过程的进行。
如果含水量减少,原生质由溶胶状态变成凝胶状态,细胞生命活动将大大减缓(例如休眠种子)。
如果原生质失水过多,就会引起生物胶体的破坏,导致细胞的死亡。
另外,细胞膜和蛋白质等生物大分子表面存在大量的亲水基团,吸引着大量的水分子形成一种水膜,正是由于这些水分子层的存在,维系着膜分子以及其它生物大分子的正常结构。
水对作物的生理作用,主要表现在以下5个方面:⑴细胞原生质的重要成分:原生质是细胞的主体,很多生理过程都在原生质中进行。
在正常情况下,原生质内含水量为80%以上。
如果水分不足,原生质内的生理活动便会减弱,甚至停止。
⑵光合作用的重要原料:作物在生长发育过程中,能利用叶绿素吸收太阳的能量,同二氧化碳和水,制造出有机质,这就是光合作用。
光合作用所产生的有机质主要是碳水化合物(糖、淀粉等)。
在光合作用中,水是不可缺少的原料,水分不足,就会使光合作用受到抑制。
⑶一切生化反应的介质:例如CO2进入叶部后,只有溶于细胞液转成液相,才能参与光合作用。
各种有机质的合成与分解也必须以水为介质,在水的参与下才能进行。
⑷溶解和输送养分:作物所需的矿质养分必须溶解于水中才能被利用;各种有机质也只有溶于水才能输送至植物的各个部位。
⑸保持作物体处于一定形态:作物体内水分充足时,细胞常保持数个大气压的膨压以维持细胞及作物的形态,使正常的生长、生理活动得以进行。
例如,使叶片展开,以接受阳光和交换气体;使根尖具有刚性,能够伸入土壤,使花朵开放,便于授粉等。
4、水对作物的生态作用有哪些?作物从种子发芽到新种子成熟的一生中,其生长发育状态与水有着十分密切的关系。
大多数休眠种子必须吸收足够的水分才能恢复生命活动。
种子萌发需要更多的水分使种皮软化,氧气透入,呼吸加强。
同时水分能使种子内凝胶状态的原生质向溶胶状态转变,使生理活性增强,促进种子萌发。
土壤含水量的多少,直接影响根系的发育。
当土壤含水量降低到田间持水量以下时,根系生长速度显著增快,根冠比率相应增大。
在土壤较干的地方,根系往往较发达,主要的长度可比地上部分的高度大几倍甚至十几倍,并且根系扩展的范围广,以吸收更大范围的土壤水分。
水稻在长期淹水、氧气缺乏的土壤中,一般多长出生命力弱的黄根,甚至出现很多黑根,而在水、气较协调的稻田中,则能长出一些生命力强的白根。
土壤水分状况也明显地影响作物茎叶的生长。
当土壤水分缺乏时,茎叶生长缓慢,水分过多时往往使作物茎秆细长柔弱,后期容易倒伏。
水分对作物生长有一个最高、最适和最低的基点。
低于最低点,作物生长停止,甚至枯死。
高于最高点,根系缺氧、窒息、烂根,植株生长困难甚至死亡。
只有处于最适范围内,才能维持作物的水分平衡,保证作物生长发育良好。
土壤含水量对各种生理活动的影响是不一致的。
大多数作物的生长最适含水量较高,蒸腾最适土壤含水量较低,而同化的最适含水量则更低。
所以当土壤有效水分减少时,对生长的影响最大,其次是蒸腾,再次是同化。
实验表明,在作物萎蔫前蒸腾量减少到正常的65%,同化减少到55%,而此时呼吸却增加62%,从而导致生长基本停止。
土壤含水量还影响作物的产品质量。
作物氮素和蛋白质含量与土壤含水量有直接关系。
以小麦为例,在生长期土壤含水量较小时,小麦的氮素和蛋白质含量都有所增加,说明在大陆性气候的少雨地区,有利于氮和蛋白质的形成和积累。
碳水化合物和土壤含水量的关系与蛋白质不同。
土壤含水量减少时,淀粉含量相应减少,同时木质素和半纤维有所增加,纤维素不变,果胶质则减少。
脂肪含量与蛋白质的含量相反,土壤含水量增高时,脂肪含量和油的碘价(每一百克植物油因其所含不饱和脂肪酸的种类多寡不同所吸收碘的克数。
碘价高则油质好。
)都有增高的趋势。
纤维作物的纤维似乎也是在较干旱的环境下才比较发达。
棉花和黄麻最适生长的土壤水分比纤维发育的最适水分要高。
在土壤含水量较低的情况下,作物的导管发达。
输导组织充实,纤维质量好。
5、如何衡量作物蒸腾作用的强弱?衡量作物蒸腾强弱的表示方法有以下三种方法:Ⅰ蒸腾速率。
是指作物在一定时间内单位叶面面积蒸腾的水量,一般用每小时每平方分米叶面蒸腾水量的克数表示。
通常白天的叶面积蒸腾速率为0.5~2.5g/(h·dm2);晚上在0.1g/(h·dm2)以下。
Ⅱ蒸腾系数。
作物制造1克干物质所需要的水分克数。
大部分作物的蒸腾系数为100~500g/g。
例如:小麦为257~774g/g;玉米为174~406g/g;水稻为211~300g/g。
作物蒸腾系数越大,其利用水分的效率越低。
Ⅲ蒸腾效率。
作物每消耗1kg水所形式的干物质克数,大部分作物的蒸腾效率是2~10g/kg。
蒸腾效率是蒸腾系数的倒数。
6、如何理解土壤-作物-大气连续体(SPAC)的水分运动?水分经由土壤到达植物根系、进入根系、通过细胞传输,进入植物茎,由植物木质部到达叶片,再由叶气孔扩散到宁静空气层,最后参与大气的湍流交换。
这样一个过程形成了一个统一的、动态的系统,即土壤―作物―大气连续体(Soil-Plant-Atmosphere Continuum,简称SPAC )。
菲利普(Philip,1966 )提出了系统的、较完整的关于SPAC的概念:认为尽管介质不同,界面不一,但在物理上都是一个统一的连续体,水在该系统中的各种流动过程就像链环一样,互相衔接,而且完全可以应用统一的能量指标―“水势”来定量研究整个系统中各个环节能量水平的变化,并计算出水分通量。
现代农田水分循环与水分平衡的研究是以连续的、系统的、动态的观点和定量的方法为基础的。
即把土壤、植物、大气作为一个物理上的连续体,研究田间水分的循环过程和规律,以及与农田能量平衡和转化间的关系,揭示田间水循环工程的各个方面,探讨以土壤水和作物关系为中心的农田水分调控机理。
在SPAC中,水分运动的驱动力是水势梯度,即从水势高处向水势低处流动,其流动速度和水势梯度成正比,与水流阻力成反比。
象电容器一样,水贮存在薄壁组织细胞中用于补充蒸腾丧失的水分。
在叶片和茎的薄壁组织细胞中的水量很大,系统中任何部分单位水势变化所引起的细胞组织内含水量(W)的变化被定义为水容。
但SPAC中的水流过程是十分复杂的,在实际流动过程中各点的流速是不相等的,即使在叶片也会因为部位不同而在叶尖、叶中和叶基部有不同的蒸腾速率,各个部分的含水量也不同而且随时间产生变化。
SPAC中的水流阻力包括土壤阻力、土根接触阻力、根系吸收阻力、茎内和枝条的木质部阻力、叶肉阻力和叶片气孔阻力以及空气边界层阻力。
SPAC中主要的水流阻力发生在水分进入植物根系和离开植株叶片这两个部分。
植物根系吸收阻力和叶气孔阻力是决定SPAC中液态水流与气态水扩散的控制因素。
7、如何让对土壤水进行分类?根据作用力的类型和被作物利用的难易程度,常把土壤水中的液态水划分为以下几种类型:⑴吸湿水与膜状水(束缚水)由于土粒表面具有很大的吸附力,胶粒表面还有电场力和吸附离子的水合力,故当其与气态水和液态水接触时,即可在其表面吸持水分子而形成一定厚度的水膜。
根据膜内水分子受力的强弱,又可分为吸湿水和膜状水。
⑵毛管水当土壤孔隙小到足以产生液—气界面的凹形弯月面时,便会发生毛管现象。
存在于毛细管中的水,称为毛管水。
它能抗拒重力作用而不流失。
毛管水所受的吸持力远小于植物根系的吸水力,因而可全部被吸收利用。
同时,它的移动速度也快于膜状水。
按照根系分布土层中的毛管水与地下水的关系,可将毛管水分为两种:若地形部位较高,地下水埋藏较深,根系分布层中毛管水主要来自降水或灌溉,而与地下水毫无联系,这种毛管水称为毛管悬着水。
如果地下水埋藏较浅,可借毛管作用上升至根区的水,称为毛管上升水。
毛管悬着水的最大含量,称田间持水量,而毛管上升水的最大含量,则称为毛管持水量。
⑶ 重力水超过田间持水量的水分由于不能为毛管力保持,在重力作用下,沿着土壤中大孔隙向下渗透至根区以下,这种水分叫做重力水。
由于它在根系分布层停留时间很短,所以对植物的吸收利用并无多大意义。
当土壤全部孔隙都为水分所充满时,土壤便处于水分饱和状态,这时土壤的含水量称为饱和含水量或全持水量。
8、何谓土壤水分的有效性?处于有效水上下限之间的水分是否具有同等的有效性?土壤水分的有效性是指土壤水分是否能被作物利用及其被利用的难易程度。
土壤水分有效性的高低,主要取决于它存在的形态、性质和数量,以及作物吸水力与土壤持水力之差。
传统上认为凋萎系数是土壤中有效水的下限,田间持水量则是其上限,所以土壤最大有效水贮量(%)= 田间持水量(%)- 凋萎系数(%)土壤有效水贮量(%)= 土壤自然含水量(%)- 凋萎系数(%)土壤最大有效水贮量,受质地、结构、容重和有机质含量等的影响。