硬质合金刀具并使用高效率的切削条件
- 格式:doc
- 大小:13.50 KB
- 文档页数:2
四大材料刀具的性能与选择刀具材料的发展对切削技术的进步起着决定性的作用。
本文介绍了切削中所使用的金刚石、聚晶立方氮化硼、陶瓷、硬质合金、高速钢等刀具材料的性能及适用范围。
刀具损坏机理是刀具材料合理选用的理论基础,刀具材料与工件材料的性能匹配合理是切削刀具材料选择的关键依据,要根据刀具材料与工件材料的力学、物理和化学性能选择刀具材料,才能获得良好的切削效果。
就活塞在切削加工时的刀具材料选用作了阐述。
高速钢:活塞加工中铣浇冒口、铣横槽及铣膨胀槽用铣刀,钻油孔用钻头等都为高速钢材料。
硬质合金:YG、YD系列硬质合金刀具被广泛应用于铝活塞加工的各个工序中,特别是活塞粗加工和半精加工工序。
立方氮化硼:立方氮化硼刀具被用于镶铸铁环活塞的车削铸铁环槽工序中。
同时也应用于活塞立体靠模的加工中。
金刚石:金刚石刀具可利用金刚石材料的高硬度、高耐磨性、高导热性及低摩擦系数实现有色金属及耐磨非金属材料的高精度、高效率、高稳定性和高表面光洁度加工。
在切削铝合金时,PCD刀具的寿命是硬质合金刀具的几十倍甚至几百倍,是目前铝活塞精密加工的理想刀具,已经应用于精车活塞环槽、精镗活塞销孔、精车活塞外圆、精车活塞顶面及精车活塞燃烧室等精加工工序中。
刀具材料性能的优劣是影响加工表面质量、切削加工效率、刀具寿命的基本因素。
切削加工时,直接担负切削工作的是刀具的切削部分。
刀具切削性能的好坏大多取决于构成刀具切削部分的材料、切削部分的几何参数及刀具结构的选择和设计是否合理。
切削加工生产率和刀具耐用度的高低、刀具消耗和加工成本的多少、加工精度和表面质量的优劣等等,在很大程度上都取决于刀具材料的合理选择。
正确选择刀具材料是设计和选用刀具的重要内容之一。
每一品种刀具材料都有其特定的加工范围,只能适用于一定的工件材料和切削速度范围。
不同的刀具材料和同种刀具加工不同的工件材料时刀具寿命往往存在很大的差别,例如:加工铝活塞时,金刚石刀具的寿命是YG类硬质合金刀具寿命的几倍到几十倍;YG类硬质合金刀具加工含硅量高、中、低的铝合金时其寿命也有很大的差别。
高速切削技术研究第一部分高速切削技术的定义与特点 (2)第二部分高速切削刀具材料与磨损机理 (4)第三部分高速切削机床的选型与应用 (7)第四部分高速切削参数优化方法 (10)第五部分高速切削过程的热控制技术 (13)第六部分高速切削加工精度与表面质量 (15)第七部分高速切削在典型零件加工中的应用 (17)第八部分高速切削技术的发展趋势与挑战 (20)第一部分高速切削技术的定义与特点高速切削技术是一种先进的制造工艺,它通过使用高转速的刀具和优化的切削参数来提高材料去除率、加工精度和表面质量。
该技术的核心在于实现高效率、高质量和高精度的加工过程。
在高速切削过程中,刀具以极高的速度旋转(通常超过每分钟数千转),同时进给速度也相应提高。
这种高速旋转产生的离心力有助于减小切削力和切削热,从而延长刀具寿命并减少工件的热变形。
此外,由于切削力的降低,高速切削还可以减少振动,进一步提高加工精度。
高速切削技术的优势主要体现在以下几个方面:1.高效率:与传统切削相比,高速切削可以显著提高材料去除率,缩短加工时间。
研究表明,高速切削可以提高生产效率达 30%至50%。
2.高精度:高速切削过程中的低切削力可以减少工件的振动,从而提高加工精度。
此外,由于切削热的影响较小,工件的热变形也得到了控制。
3.高质量表面:高速切削产生的切削热较低,这有助于减少工件的烧伤和裂纹,从而获得更好的表面质量。
4.刀具寿命延长:高速切削可以降低切削力,减少刀具磨损,从而延长刀具的使用寿命。
5.节能减排:高速切削技术可以实现更高的材料去除率,从而减少能源消耗和碳排放。
然而,高速切削技术也存在一些挑战,如刀具成本较高、对机床性能要求较高等。
因此,在实际应用中,需要根据具体加工需求和技术条件,合理选择切削参数和刀具,以确保高速切削技术的有效性和经济性。
总之,高速切削技术作为一种先进的制造工艺,具有高效率、高精度、高质量表面等优势,但在实际应用中需充分考虑其成本和设备要求。
机床加工过程中的刀具使用寿命分析机床加工是制造业中最重要的一环,而刀具则是机床加工的核心。
刀具是指用于切削加工材料的工具,如车刀、铣刀、钻头等。
刀具的使用寿命是指刀具在正常使用条件下,能够切削工件所需的时间。
因为刀具的使用寿命直接影响到加工效率和加工质量,因此在机床加工过程中,刀具使用寿命的分析十分重要。
一、刀具使用寿命的影响因素1. 材质刀具的材质是影响其使用寿命的主要因素之一。
目前市场上常见的刀具材料有高速钢、硬质合金、陶瓷等。
其中,硬质合金刀具具有硬度高、耐磨性好等优点,适用于高速、高效率的加工,但价格也相对较高。
2. 加工材料不同的加工材料对刀具的磨损程度也有所不同。
例如,钢材比铸铁要坚硬,因此使用同一种刀具切削这两种材料,钢材会对刀具的磨损产生更大的影响。
3. 加工条件刀具的使用寿命还受到加工条件的影响。
加工条件包括刀具的进给速度、转速、切削深度等参数。
如果这些参数的设置不当,都会导致刀具的磨损加剧,从而影响其使用寿命。
4. 加工环境加工环境也是一个影响刀具寿命的因素。
如果加工环境中存在大量的灰尘、水分或者化学物质,都会对刀具的表面产生影响,加速刀具的磨损。
二、刀具使用寿命的分析方法1. 经验法经验法是一种比较简单的分析方法,该方法是通过经验总结得出,并不能保证分析的准确性。
例如,我们可以通过对不同切削条件下的刀具使用寿命进行统计,以此得出刀具在各种条件下的使用寿命范围。
但这种方法并不能保证其适用性,因为实际情况会受到多种因素的影响。
2. 统计法统计法是一种相对较为科学的分析方法,该方法通常采用大量的实验数据进行分析。
例如,可以对同一种刀具在不同加工条件下的使用寿命进行统计,以此得出其使用寿命和不同加工条件的关系,从而预测出在其他特定条件下的使用寿命。
3. 数学模型法数学模型法是最为科学的一种分析方法,该方法通常需要进行较为复杂的计算和建模。
例如,可以基于刀具与工件之间的相互作用,建立一种动态刀具磨损模型,以模拟刀具在不同加工条件下的使用寿命。
机床加工过程中的刀具选型技巧机床加工是现代制造业中必不可少的一环,而刀具作为机床加工过程中的关键工具,对于加工质量和效率起着决定性的作用。
正确选择和使用刀具可以提高加工效率、降低成本、保证产品质量。
本文将介绍机床加工过程中的刀具选型技巧,以帮助读者更好地应对加工过程中的挑战。
一、了解加工材料特性首先,在选择刀具之前,有必要对待加工材料的特性有所了解。
不同的材料具有不同的硬度、韧性、导热性等特点,这些特点将直接影响刀具的选择。
例如,对于硬度较高的材料,应选用硬质合金刀具或刚性足够的切削刀具,以确保刀具的寿命和加工效果。
二、选择合适的刀具类型根据不同的加工需求,可以选择不同类型的刀具。
常见的刀具类型有立铣刀、立铣头、车刀、钻刀等。
选择合适的刀具类型能够更好地适应加工工艺和材料特性。
例如,在进行铣削加工时,可以选择立铣头进行面铣或者选用铣刀进行侧铣。
三、考虑加工条件在选择刀具时,还需要考虑加工条件。
加工条件包括切削速度、进给速度、切削深度等因素。
不同的切削条件将对刀具产生不同的影响。
一般来说,较高的切削速度和进给速度可以提高加工效率,但对刀具的寿命和稳定性要求更高。
因此,在实际选择刀具时,需要综合考虑加工条件的方方面面,以达到最佳的加工效果。
四、关注刀具材料与涂层刀具的材料和涂层也是刀具选型的重要考虑因素。
常见的刀具材料有高速钢、硬质合金和陶瓷等,而涂层可以增加刀具的耐磨性和热稳定性。
选择合适的刀具材料和涂层可以延长刀具的使用寿命和提高切削质量。
五、了解刀具参数除了上述因素外,还需要了解刀具的一些参数,如刀具直径、切削边数、刀柄类型等。
这些参数将直接影响切削力、切削表面质量和加工稳定性。
在选择刀具时,需要根据具体加工需求来合理配置这些参数,以获得最佳的加工效果。
六、定期维护刀具刀具的维护也是保证刀具寿命和加工质量的关键。
定期清洁、修磨和涂覆刀具润滑剂可以延长刀具的使用寿命。
此外,在加工过程中,还应定期检查刀具的磨损情况,并及时更换损坏的刀具,以确保加工的准确性和效率。
第一章常用刀具材料介绍一.刀具材料的基本性能在切削过程中,刀具切削部分是在很大的切削力、较高的切削温度及剧烈摩擦等条件下工作的,同时,由于切削余量和工件材质不均匀或切削时形不成带状切屑,还伴随冲击和振动,因此刀具切削部分的材料应具备以下几方面的性能:1.高的硬度刀具材料的硬度必须高于工件材料的硬度,以便切入工件。
一般常温时硬度在60HRC以上,对某些难切除材料,刀具的硬度要求在HRC65以上。
2.高的耐磨性刀具在切削加工中经受剧烈摩擦,要求其磨损要小,通常刀具材料的硬度越高,耐磨性越好。
3.高的耐热性耐热性(又称红硬性)是指刀具在高温下能够保持其硬度的性能。
它是衡量刀具材料切削性能的主要指标。
4.足够的强度和韧性在切削过程中,刀具要经得起所承受的各种应力和冲击,才能防止刀具的崩刃或脆性断裂。
5.良好的工艺性刀具材料应具备良好的可加工性和垫处理性。
此外,还应考虑到刀具材料的经济性。
经济性差的刀具材料难以推广使用。
二.刀具材料的种类及选用常用的刀具材料有碳素工具钢、合金工具钢、高速钢、硬质合金及陶瓷材料等,其中应用最多的是高速钢和硬质合金。
1.碳素工具钢碳素工具钢是指含碳量为0.65%-1.35%的优质高碳钢,淬火硬度可达HRC60~65。
刀具刃磨时容易达到锋利,价格低廉。
这类钢由于耐热性很差(200-250℃),允许的切削速度很低(V≤10m/min),只适宜做一些低速手动工具,如板牙、手工锯条、锉刀等。
常用的牌号是T7A、T8A……T13A等。
2.合金工具钢合金工具钢是指含铬、钨、硅、锰等合金元素的低碳合金钢。
其碳的质量分数为0.85%-1.5%,合金元素的总质量分数在5%以下。
合金工具钢有较高的耐热性(300-400℃),可以允许有较高的切削速度下工作;此外这类钢淬透性较好,热处理变形小,耐磨性较好,因此可以用于截面积较大要求热处理变形较小,对耐磨性及韧度有一定要求的低速切削刀具,如板牙、丝锥、铰刀、拉刀等。
数控刀具分类知识点总结一、按照功能划分1. 钻头钻头是一种用于在工件上形成圆孔的切削工具。
根据其结构可以分为普通钻头、中心钻头、深孔钻头等,根据材料和涂层的不同可以分为硬质合金钻头、涂层钻头等。
钻头的主要特点是加工精度高、速度快,适用于各种材料的孔加工。
2. 铣刀铣刀是一种用于在工件上进行平面、曲面和槽的切削工具。
根据其结构可以分为面铣刀、立铣刀、侧铣刀等,根据刃口数和形状可以分为单刃铣刀、多刃铣刀、球头铣刀等。
铣刀的主要特点是加工效率高、切削质量好,适用于各种复杂形状的加工。
3. 刀具夹持系统刀具夹持系统包括夹持器、刀柄和刀片等组成,用于固定和传递切削力。
根据其结构和工作原理可以分为机械夹持系统、液压夹持系统、磁力夹持系统等,根据其用途可以分为铣削刀具夹持系统、车削刀具夹持系统等。
刀具夹持系统的主要特点是夹持力大、刚性好,适用于各种切削条件下的加工。
4. 其他还有一些特殊功能的数控刀具,如车刀、车刨刀、切断刀、攻丝刀、整平刀等。
这些刀具根据其特殊的用途和结构可以分为不同的类型,主要用于金属加工中的车削、铣削、切割、攻丝等工艺。
二、按照加工方式划分1. 铣削刀具铣削刀具是用于在工件上进行铣削加工的切削工具,可以分为面铣刀、立铣刀、侧铣刀等。
铣削刀具的特点是具有较高的切削速度和切削厚度,适用于大尺寸零件的加工。
2. 车削刀具车削刀具是用于在工件上进行车削加工的切削工具,可以分为外圆刀具、内圆刀具、切断刀具等。
车削刀具的特点是具有较高的精度和表面质量,适用于高精度零件的加工。
3. 钻削刀具钻削刀具是用于在工件上进行钻削加工的切削工具,可以分为钻头、刀片等。
钻削刀具的特点是具有较高的切削速度和切削精度,适用于孔加工和钻削加工。
4. 其他还有一些特殊加工方式的刀具,如攻丝刀、切断刀、整平刀等。
这些刀具根据其特殊的用途和结构可以分为不同的类型,主要用于金属加工中的攻丝、切割、整平等工艺。
三、按照刀具材料划分1. 钢质刀具钢质刀具是使用高速度钢或碳钢材料制成的刀具,具有良好的耐磨性和刚性,适用于一般的金属切削加工。
不同材质刀具切削参数在机械加工中,刀具的选择和切削参数的设置对于生产效率和产品质量具有重要影响。
不同的材料对切削条件有不同的需求,因此了解各种材料的特性并相应地调整切削参数是至关重要的。
本文将探讨几种常见金属材料的刀具切削参数。
一、不锈钢不锈钢具有良好的强度和耐腐蚀性,但相对较硬,切削时需要较高的切削力和适当的冷却。
一般建议使用硬度较高(如高速钢)的刀具,以避免过度磨损。
切削速度应保持在较低水平,进给量也应适当控制。
为了确保良好的冷却效果,通常会使用水基或油基切削液。
二、铝合金铝合金轻便且易于加工,但其易脆性和敏感性使得切削过程需要特别注意。
推荐使用硬质合金或涂层刀具,因为它们能够抵抗铝的氧化作用。
切削速度应控制在中等范围,进给量也需适度降低。
为防止粘刀现象,可以使用乳化油或极压切削油。
三、碳钢碳钢是常用的结构材料,其质地均匀、韧性好。
对于碳钢的切削,可以选择钨钻类刀具,由于其高硬度和高温性能良好,可以有效地进行切削。
切削速度可在中等偏高的范围内,进给量和背吃力矩应适中。
推荐使用润滑性能好的乳化油。
四、钛合金钛合金具有优异的抗腐蚀性和高强度,但也因此而变得异常敏感和脆弱。
钛合金的切削要求非常精确的控制,包括缓慢的切削速度、小直径的切入和切出路径以及充分冷却等。
通常建议使用金刚石涂层的高速钢刀具或者超细颗粒硬质合金涂层刀具,这样可以更好地适应钛合金的高温高压环境。
此外,还需根据实际情况选择合适的冷却剂来减少热变形和提高加工质量。
五、铜合金铜合金具有良好的导电性和导热性,适合于制造电气元件和其他相关产品。
然而,由于其软性,需要更小的切削力和更大的容屑空间。
一般来说,高速钢或硬质合金刀具都能满足这种材料的切割需求。
切削速度应在低速范围内,进给量也要适当减小。
同时,为了防止过热和粘刀现象,我们推荐使用水溶性切削液。
六、高强度钢高强度钢具有较高的硬度和强度,因此需要更高的切削力和更大的切削深度。
推荐使用硬度较高(如超细颗粒硬质合金)的刀具,并适当提高切削速度和进给量。
机床刀具的正确选择与使用方法在机床加工过程中,刀具的选择和使用是至关重要的。
一个合适的刀具不仅可以提高加工质量和效率,还能延长机床的使用寿命。
因此,了解机床刀具的正确选择和使用方法对于提高加工效率具有重要意义。
一、刀具的选择1. 根据加工材料选择刀具材质不同的加工材料需要选择不同的刀具材质,以确保加工效果。
通常情况下,硬度较高的工件应选用硬质合金刀具,而对于较软的材料,则可选择高速钢刀具。
此外,还需要考虑工件的导热性、韧性等因素,综合选择最适合的刀具材质。
2. 根据切削条件选择刀具类型在确定了刀具材质后,需要根据具体的切削条件选择刀具类型。
例如,对于高速切削,可以选择高速钢或硬质合金刀具;而对于深孔加工,则需要选择特殊的深孔钻刀具。
因此,在选择刀具时,需要充分考虑切削条件,以确保刀具能够正常工作。
3. 根据加工要求选择刀具形状不同的加工要求需要选择不同形状的刀具。
例如,对于铣削加工,可选择平底刀、球头刀等不同形状的铣刀;而对于车削加工,则可以选择内外圆刀具等。
因此,在选择刀具时,需要根据具体的加工要求来确定刀具的形状。
二、刀具的使用方法1. 切勿超负荷使用刀具刀具在工作时会受到一定的负荷,如果超负荷使用,容易导致刀具磨损过快甚至断裂。
因此,在使用刀具时,需要根据切削条件合理设置切削参数,避免超负荷使用刀具。
2. 定期检查刀具状态刀具在使用过程中会出现磨损,因此需要定期检查刀具状态。
一旦发现刀具磨损严重或者出现其他异常情况,应及时更换或修磨刀具,以确保刀具的正常使用。
3. 注意刀具的保养刀具在使用过程中需要定期进行清洁和保养,以延长刀具的使用寿命。
在清洁时,应使用专用清洁剂擦拭刀具表面,防止刀具受到腐蚀。
同时,在使用完毕后,应将刀具储存在干燥通风的环境中,避免受潮生锈。
总结:正确选择和使用机床刀具对于提高加工效率和质量具有重要意义。
通过根据加工材料选择刀具材质、根据切削条件选择刀具类型、根据加工要求选择刀具形状等方法,能够有效提高刀具的使用效率和寿命。
高速钢刀具与硬质合金刀具比较分析刀具是工业生产中必不可少的工具,其中高速钢刀具和硬质合金刀具是常用的两种刀具材料。
本文将对这两种刀具进行比较分析,探讨它们的特点和适用领域,以便读者更好地理解和选择合适的刀具。
首先,我们来看高速钢刀具。
高速钢是一种含有多种合金元素(如钼、钨、钴、铬等)的高碳钢。
这种刀具具有以下特点:1. 高硬度和耐磨性:高速钢刀具经过热处理具有较高的硬度,能够在切削过程中保持刀刃的尖锐。
同时,高速钢具有出色的耐磨性,可以长时间保持刀刃的锋利。
2. 良好的韧性:高速钢具有较高的韧性,能够抵抗较大的冲击和振动。
这使得它在切削过程中不易断裂,提高了使用寿命。
3. 较低的成本:相比于硬质合金刀具,高速钢刀具的制造成本较低。
这使得它成为广泛应用于一般金属切削加工中的经济型选择。
然而,高速钢刀具也存在一些局限性。
尽管它在一般金属加工中具有出色的性能,但在高强度、高硬度和耐高温材料的切削中性能可能有所不足。
此外,高速钢刀具在切削速度较高时容易发生刀尖火花,从而影响切削质量。
接下来,我们来看硬质合金刀具。
硬质合金刀具以钨钴碳合金为主要材料,与高速钢相比它具有以下特点:1. 极高的硬度:硬质合金刀具具有极高的硬度,通常在摩氏硬度达到90以上。
这使得它具有出色的耐磨性和耐热性,能够在高温、高硬度和高强度材料切削中发挥较好的性能。
2. 较好的切削性能:硬质合金刀具由于硬度高、切削角度容易控制,可以获得更高的切削速度和更好的切削质量。
它能够完成更高效、更精细的切削加工,提高生产效率。
3. 长寿命:硬质合金刀具的耐磨性能非常突出,因此它的使用寿命通常比高速钢刀具更长。
这进一步降低了生产成本和换刀频次。
然而,硬质合金刀具的制造成本较高,在某些应用领域可能不太经济。
此外,硬质合金刀具的韧性相对较差,容易受到冲击和振动的影响,因此需要在使用过程中加以注意,以防止刃口断裂。
综上所述,高速钢刀具和硬质合金刀具在不同应用领域有各自的优势和局限性。
铣削加工中的刀具材料选择铣削加工是现代制造业中不可或缺的一部分,在汽车、航空、家电、通讯等领域中扮演着重要的角色。
而刀具材料的选择则直接关系到铣削加工的效率、质量和成本。
本文将详细介绍铣削加工中的刀具材料选择,以便读者更好地了解它的重要性和影响。
一、刀具材料的种类刀具材料按照其物理和化学性质的不同,可以分为硬质合金、高速钢、陶瓷、PCD和CBN五种类型。
1、硬质合金(WC)硬质合金最大的特点是硬度高,在磨削和抗磨损等方面表现出色。
它主要由钨钴碳和钨钴钛碳等复合材料构成。
在加工锻件、不锈钢、镍基合金等材料时,尤为适用。
2、高速钢(HSS)高速钢是一种由钼、钴、钢和其他元素制成的合金材料,它也是铣削加工中最常用的刀具材料之一。
高速钢刀具具有良好的切削性和强度,在适当的条件下可以进行高速切削。
但是在加工难加工材料时容易断刃和变形。
3、陶瓷陶瓷刀具是一种无机非金属材料,它具有高硬度、高耐磨性和高耐腐蚀性等特点。
陶瓷刀具适用于加工高硬度、脆性材料,例如钢化玻璃、陶瓷、石英和高分子材料等。
4、PCD聚晶金刚石(PCD)刀具是一种由聚晶金刚石颗粒和金属粉末制成的高强度复合材料,它的硬度比陶瓷还要高。
PCD刀具适用于铣削加工铝合金、纤维强化塑料、合成材料、铜等材料的高效率切削。
5、CBN晶体立方氮化硼(CBN)刀具是一种由晶体立方氮化硼和金属粉末制成的材料,它的热稳定性非常好,在高温和高速切削中表现优异,适用于铣削加工高温合金、镍合金、钢等难加工材料。
二、刀具材料选择的依据正确的刀具材料选择可以极大地提高加工效率和产品品质。
因此在选择刀具材料时,需要考虑如下因素。
1、被加工材料的性质材料的硬度、塑性和耐热性等性质,直接影响了刀具材料的选择。
例如硬质合金适用于加工材料硬度较大的材料,高速钢适用于加工硬度适中的材料,而陶瓷和PCD适用于加工高硬度、脆性材料等。
2、切削工况切削速度、冷却液、进给量、切削深度等切削条件,对刀具材料选择有重要的影响。
硬质合金刀具并使用高效率的切削条件为了确保硬质合金刀具能够发挥高效率的切削作用,我们需要注意以下几点:1.选择合适的切削参数:切削速度、进给速度和切削深度是影响切削效率的主要参数。
需要根据材料的硬度、切削性能和刀具的耐磨性来选择合适的切削参数。
一般来说,对于较硬的材料,可以适当提高切削速度,而对于较脆的材料,则应降低切削速度。
2.正确选择刀具形状和刀具材料:不同形状的刀具适用于不同类型的切削操作。
例如,球头刀具适用于球面加工,直柄刀具适用于平面加工等。
此外,刀具的材料也会对切削效率有很大的影响。
一般来说,刀具的刚度越大,切削效率也越高。
硬质合金刀具通常有不同的牌号和涂层,可以根据具体的切削需求选择合适的刀具材料。
3.保持刀具的锋利度:刀具的锋利度对切削效率有很大的影响。
锋利的刀具可以减小切削力和摩擦力,提高切削效率。
因此,我们需要及时检查和更换磨损的刀具,并使用合适的刀具磨削工具进行刀具维护。
4.采用适当的冷却润滑方式:在高效率的切削条件下,刀具会产生大量的热量。
如果不及时散热,可能导致刀具变形、退火等问题。
因此,采用适当的冷却润滑方式是非常重要的。
常见的冷却润滑方式包括切削液冷却、喷雾冷却等,可以根据具体的切削条件选择合适的冷却润滑方式。
总之,通过选择合适的切削参数、正确选择刀具形状和刀具材料、保持刀具的锋利度以及采用适当的冷却润滑方式,我们可以使硬质合金刀具发挥高效率的切削作用。
在实际应用中,还需根据具体的切削需求进行优化,不断探索和改进切削条件,进一步提高切削效率。
硬质合金刀具成分
一、硬质合金刀具简介
硬质合金刀具是指以碳化钨(WC)和钴(Co)为主要成分的刀具。
它具有极高的硬度和耐磨性,因此广泛应用于加工各种钢材、铸铁、有色金属等材料。
与高速钢刀具相比,硬质合金刀具具有更高的切削速度和更长的使用寿命,从而提高了加工效率。
二、硬质合金刀具的成分
硬质合金刀具的主要成分是碳化钨(WC)和钴(Co)。
其中,碳化钨是硬质合金刀具的主要成分,提供了刀具的高硬度和耐磨性。
钴则作为粘结剂,将碳化钨粉末粘结在一起,形成具有一定强度的硬质合金材料。
此外,为了调节硬质合金的性能,还可以添加其他元素,如碳化钛(TiC)、碳化钽(TaC)等。
这些添加元素可以改善硬质合金的韧性、抗热性、抗腐蚀性等性能。
三、硬质合金刀具成分的重要性
碳化钨的含量决定了硬质合金刀具的硬度、耐磨性和耐热性。
碳化钨含量越高,硬度越高,耐磨性越好,但韧性会降低。
因此,需要根据不同的加工需求选择不同碳化钨含量的硬质合金刀具。
钴作为粘结剂,对于保持硬质合金的结构稳定性和抗热性起着重要作用。
在高温下,钴可以减缓碳化钨的聚集速度,从而提高硬质合金的抗热性。
其他添加元素如碳化钛、碳化钽等可以改善硬质合金的韧性、抗热性和抗腐蚀性。
这些元素可以在硬质合金中形成复合碳化物,提高硬质合金的耐磨性和韧性。
四、总结
硬质合金刀具的成分对于其性能具有重要影响。
通过调整碳化钨、钴以及其他添加元素的含量,可以获得不同性能特点的硬质合金刀具,以满足不同的加工需求。
在选择和使用硬质合金刀具时,需要充分考虑其成分和性能特点,以达到最佳的加工效果。
第一章常用刀具材料介绍一.刀具材料的基本性能在切削过程中,刀具切削部分是在很大的切削力、较高的切削温度及剧烈摩擦等条件下工作的,同时,由于切削余量和工件材质不均匀或切削时形不成带状切屑,还伴随冲击和振动,因此刀具切削部分的材料应具备以下几方面的性能:1.高的硬度刀具材料的硬度必须高于工件材料的硬度,以便切入工件。
一般常温时硬度在60HRC以上,对某些难切除材料,刀具的硬度要求在HRC65以上。
2.高的耐磨性刀具在切削加工中经受剧烈摩擦,要求其磨损要小,通常刀具材料的硬度越高,耐磨性越好。
3.高的耐热性耐热性(又称红硬性)是指刀具在高温下能够保持其硬度的性能。
它是衡量刀具材料切削性能的主要指标。
4.足够的强度和韧性在切削过程中,刀具要经得起所承受的各种应力和冲击,才能防止刀具的崩刃或脆性断裂。
5.良好的工艺性刀具材料应具备良好的可加工性和垫处理性。
此外,还应考虑到刀具材料的经济性。
经济性差的刀具材料难以推广使用。
二.刀具材料的种类及选用常用的刀具材料有碳素工具钢、合金工具钢、高速钢、硬质合金及陶瓷材料等,其中应用最多的是高速钢和硬质合金。
1.碳素工具钢碳素工具钢是指含碳量为0.65%-1.35%的优质高碳钢,淬火硬度可达HRC60~65。
刀具刃磨时容易达到锋利,价格低廉。
这类钢由于耐热性很差(200-250℃),允许的切削速度很低(V≤10m/min),只适宜做一些低速手动工具,如板牙、手工锯条、锉刀等。
常用的牌号是T7A、T8A……T13A等。
2.合金工具钢合金工具钢是指含铬、钨、硅、锰等合金元素的低碳合金钢。
其碳的质量分数为0.85%-1.5%,合金元素的总质量分数在5%以下。
合金工具钢有较高的耐热性(300-400℃),可以允许有较高的切削速度下工作;此外这类钢淬透性较好,热处理变形小,耐磨性较好,因此可以用于截面积较大要求热处理变形较小,对耐磨性及韧度有一定要求的低速切削刀具,如板牙、丝锥、铰刀、拉刀等。
CNC机床加工中的刀具材料与涂层选择CNC机床是现代制造业中常见的重要设备,其高精度、高效率的加工效果受到了广泛的认可。
在CNC机床的加工过程中,刀具的材料和涂层选择是至关重要的因素,对于保证加工质量和提高生产效率起着至关重要的作用。
本文将论述CNC机床加工中刀具材料与涂层选择的相关问题。
一、刀具材料选择刀具材料是决定刀具硬度、韧性和耐磨性的重要因素。
常见的刀具材料包括高速钢、硬质合金、陶瓷、CBN和PCD等。
1. 高速钢高速钢是一种经济实用的刀具材料,具有良好的韧性和切削性能。
它适用于一般中低速切削,并且价格相对较低,广泛应用于一些传统的CNC机床加工中。
2. 硬质合金硬质合金,又称硬质合金立式铣刀杆,其硬度高、耐磨性好,在高速切削条件下表现出色。
因此,硬质合金刀具特别适用于高速切削和加工难加工材料,如不锈钢、钛合金等。
3. 陶瓷陶瓷刀具因其良好的耐磨性和高温稳定性而备受青睐。
它在高速切削和高温环境下表现出色,能够有效延长刀具使用寿命。
然而,由于陶瓷刀具脆性较大,容易受到冲击而破裂,因此在实际应用中需要注意避免猛烈冲击和负载。
4. CBN和PCDCBN和PCD是新一代超硬刀具材料,其硬度远远超过传统材料,具有优异的耐磨性和热稳定性。
它们特别适用于加工硬度高的材料,如高速切削钢、铸铁、铝合金等。
二、刀具涂层选择刀具涂层是提高刀具耐磨性和延长使用寿命的重要手段。
常见的刀具涂层包括涂层炭化物、氮化物、碳化钨等。
1. 涂层炭化物涂层炭化物是一种常见的刀具涂层,具有良好的耐磨性和低摩擦系数。
它能够有效降低摩擦热和切削力,提高切削速度和切削效率。
2. 氮化物氮化物涂层具有较高的硬度和良好的切削性能,能够显著降低金属材料与刀具的摩擦系数,提高切削速度和耐磨性。
3. 碳化钨碳化钨涂层是一种常见的高温涂层,能够在高温条件下保持刀具的硬度和强度。
它适用于高温切削和高负荷切削条件下,能够显著提高刀具的耐磨性和使用寿命。
刀具材料的种类一、高速钢高速钢是指钢中含有大量合金元素,能够在高温高速切削条件下保持较高硬度和耐磨性的钢材。
高速钢具有优异的耐磨性、热硬性、切削性和韧性等特点,广泛应用于刀具制造领域。
高速钢按成分可分为W18Cr4V、W6Mo5Cr4V2等不同种类,具有不同的硬度和使用范围。
二、硬质合金硬质合金是一种由钨钴合金制成的刀具材料,具有极高的硬度和耐磨性。
硬质合金具有优异的切削性能,可以用于高速切削、精密切削和重负荷切削等工艺。
硬质合金常用于制作刀片、铣刀和钻头等刀具。
三、陶瓷刀具陶瓷刀具是一种以氧化锆或氮化硅等陶瓷材料制成的刀具。
由于陶瓷材料具有极高的硬度和耐磨性,陶瓷刀具具有出色的切削性能和耐高温性能。
陶瓷刀具广泛应用于高温合金、玻璃、陶瓷等硬脆材料的加工。
四、金刚石刀具金刚石刀具是以金刚石颗粒为刀具表面的切削工具。
金刚石是目前已知最硬的材料,具有极高的硬度和耐磨性,适用于切削硬度较高的材料,如石英、玻璃、陶瓷、大理石等。
金刚石刀具主要用于宝石加工、石材加工和高速切削等领域。
五、涂层刀具涂层刀具是将一层或多层特殊涂层覆盖在刀具表面的刀具。
涂层可以提高刀具的硬度、耐磨性和热稳定性,从而延长刀具的使用寿命。
常见的涂层材料有氮化钛、氮化铝、碳化钛等。
涂层刀具广泛应用于汽车制造、航空航天和模具加工等领域。
六、多晶立方氮化硼刀具多晶立方氮化硼刀具是一种由多晶立方氮化硼制成的刀具材料。
该材料具有极高的硬度和耐磨性,能够在高温和高速切削条件下保持良好的切削性能。
多晶立方氮化硼刀具广泛应用于高硬度材料的切削加工,如硬质合金、陶瓷等。
七、超硬合金刀具超硬合金刀具是一种由金属碳化物或金属氮化物固溶体制成的刀具材料。
超硬合金刀具具有极高的硬度和耐磨性,适用于加工高硬度材料,如钢、铁、铝等。
超硬合金刀具广泛应用于机械加工、汽车制造和航空航天等领域。
以上就是刀具材料的主要种类。
不同的刀具材料适用于不同的加工材料和加工条件,选择合适的刀具材料能够提高切削效率和加工质量,降低生产成本。
数控机床刀具正确选择及应用方法数控机床是现代工业生产中不可或缺的关键设备之一,而刀具是数控机床加工过程中的重要部件。
正确选择和应用数控机床刀具对于提高加工效率、保证加工质量至关重要。
本文将从刀具材料选择、刀具类型选择、刀具参数设置及刀具应用方法等方面进行探讨。
一、刀具材料选择刀具材料的选择直接关系到刀具的寿命和加工效率。
常见的刀具材料有硬质合金、高速钢、陶瓷刀具等。
根据加工材料的不同,选择合适的刀具材料能够更好地适应不同的加工需求。
1. 硬质合金刀具:硬质合金刀具由碳化钨、钴等金属粉末烧结而成。
硬质合金刀具具有高硬度、耐磨性好的特点,适用于加工硬度较高的金属材料,如铸铁、合金钢等。
2. 高速钢刀具:高速钢刀具由高速钢制造而成,具有一定的硬度和韧性,适用于加工中低硬度的金属材料,如普通钢、铜、铝等。
3. 陶瓷刀具:陶瓷刀具具有高硬度、高耐磨性和耐高温等特点,适用于加工硬度较高且要求高表面质量的材料,如高硬度合金、铸铁等。
二、刀具类型选择根据加工的不同要求和零件的特性,选择合适的刀具类型对于提高加工效率和加工质量非常重要。
主要的刀具类型如下:1. 铣刀:用于进行铣削加工,可以加工各种形状的表面,如平面、曲面、沟槽等。
2. 钻头:用于进行钻孔加工,可加工直径不同的孔。
3. 车刀:用于进行车削等转动加工,可加工出外径、内径、端面等形状。
4. 刀片:用于进行切削加工,如切割、切槽等。
根据具体的加工要求和工件特性,选择合适的刀具类型能够更好地满足加工需求。
三、刀具参数设置刀具参数的设置对于保证刀具的正常运行和加工质量的稳定性具有重要意义。
主要的刀具参数包括切削速度、进给量、切削深度等。
1. 切削速度:切削速度是指刀具在加工过程中相对于工件的移动速度。
根据材料的不同,切削速度的设置也不同。
一般来说,选择合适的切削速度能够保证刀具的寿命和加工质量。
2. 进给量:进给量是指刀具在单位时间内对工件进行的加工量。
进给量的设置对于保证加工效率和工件质量具有重要作用。
切削原理与刀具切削是加工工程中常见的制造过程,通过利用刀具对工件进行力的作用并沿着特定的路径切除材料,以获得所需的形状和尺寸。
切削原理与刀具的设计和选择是确保加工过程高效、精确和持久的关键。
一、切削原理切削过程基于刀具对工件施加足够的切削力,刀具将材料削除并造成形状和尺寸的变化。
切削原理主要包括以下几个方面:1. 切削力:切削力是刀具对工件施加的力,它决定了切削过程的稳定性和负荷。
切削力的大小与切削材料的性质、切削速度、刀具几何形状以及切削深度等因素密切相关。
2. 切削速度:切削速度是刀具表面与工件接触的速度,它是切削过程中材料移动的速度。
切削速度的选择应考虑到刀具材料的耐磨性和热稳定性,以确保高效的切削和避免刀具失效。
3. 切削深度:切削深度是指刀具沿工件方向的进给量。
切削深度的选择应根据工件材料的硬度和刚度、刀具的强度和刚度以及加工表面的质量需求等因素进行合理的调整。
4. 切削速率:切削速率是指在单位时间内切削过的材料体积。
切削速率的提高可以有效地缩短加工时间,但也要考虑切削力、切削温度和表面质量等因素,以免影响加工的质量和刀具的寿命。
二、刀具分类与选择刀具作为切削加工中最重要的工具之一,其设计和选择的合理性对加工过程的成败起着决定性作用。
根据切削原理和要加工的材料,刀具可分为以下几类:1. 钨钢刀具:钨钢刀具由高速钢和钨合金组成,广泛应用于加工常见金属材料,如铁、铝、铜等。
其优点是硬度高、耐磨性好,适用于高速切削。
2. 硬质合金刀具:硬质合金刀具以钨钢为基材,通过添加碳化钨和钴等粉末,经过高温烧结制成。
它的耐磨性和耐高温性能优异,适用于切削高硬度金属和复杂形状的工件。
3. PCD刀具:PCD刀具采用多晶立方体碳化硅材料制成,具有高硬度、低摩擦系数和良好的导热性能。
适用于加工铝合金、铜合金和非金属材料等。
4. CBN刀具:CBN刀具是由立方氮化硼制成,具有极高的硬度和热稳定性,特别适用于切削高硬度材料如工具钢和高速度刚性合金。
高速高效切削加工技术的现状及发展趋势一、前言目前,我国已成为世界飞机零部件的重要转包生产国,波音、麦道、空客等世界著名飞机制造公司都在我国转包生产从尾翼、机身、舱门到发动机等各种零部件,这些飞机零部件的加工生产必须采用先进的加工装备和加工工艺。
为此,国内各飞机制造公司均进行了大规模的技术改造,引进了大量国外先进的加工装备,使我国的飞机制造业设备的数控化率越来越高。
与此同时,大量高速、高效、柔性、复合、环保的国外切削加工新技术不断涌现,使切削加工技术发生了根本的变化。
刀具在航空航天加工领域的应用技术进入了以发展高速切削、开发新的切削工艺和加工方法、提供成套技术为特征的新阶段。
与此形成鲜明对比的是,我国的装备制造业和以制造业为主要服务对象的传统的工具工业却无法满足航空航天工业对现代制造装备和先进加工工艺的要求。
下面结合我国航空航天工业加工技术的现状及发展趋势,着重介绍我国高效、高速切削刀具的生产应用情况,对我国工具工业的发展现状和存在的问题提出自己的看法。
二、航空航天工业加工技术的现状及发展趋势1.航空结构件材料的发展趋势及其特点①以整体件为代表的铝合金结构件为了提高零件的可靠性、降低成本和减轻重量,传统的铆接结构逐步被整体薄壁的机加工结构件所代替。
这类零件由于大部分是用整体实心铝合金材料制成的薄壁、细筋结构件,70%~95%的材料要在加工中去除掉,而高速切削产生的热量少、切削力小、零件变形小,因此提高生产效率的唯一途径是采用四轴或五轴联动机床进行高速铣削加工。
②以钛基和镍基合金零件为代表的难切削材料零件由于钛(镍)合金具有比强度高、热强度好、化学活性大等特点,目前飞机发动机重要部件采用钛基和镍基合金材料的逐渐增多。
采用高速切削后,其切削速度可提高到100m/min以上,为常规切削速度的10倍。
这类材料的加工特点是:切削力大、切削温度高、加工硬化和粘刀现象严重、刀具易磨损。
③以碳纤维复合材料零件为代表的复合材料结构件复合材料现已成为新一代飞机机体结构主要材料之一,如飞机上的大型整体成形的翼面壁板、带纵墙的整体下翼面等。
一、高速切削的原始定义1931年,德国切削物理学家萨洛蒙(Carl.J.Salomon)博士提出了一个假设,即同年申请了德国专利(Machine with high cutting speeds)的所罗门原理:被加工材料都有一个临界切削速度V0,在切削速度达到临界速度之前,切削温度和刀具磨损随着切削速度增大而增大,当切削速度达到普通切削速度的5~6倍时,切削刃口的温度开始随切削速度增大而降低,刀具磨损随切削速度增大而减小。
切削塑性材料时,传统的加工方式为“重切削”,每一刀切削的排屑量都很大,即吃刀大,但进给速度低,切削力大。
实践证明随着切削速度的提高,切屑形态从带状、片状到碎屑状演化,所需单位切削力在初期呈上升趋势,而后急剧下降,这说明高速切削比常规切削轻快,两者的机理也不同。
二、现代高速切削技术的概念所罗门原理出发点是用传统刀具进行高速度切削,从而提高生产率。
到目前为止,其原理仍未被现代科学研究所证实。
但这一原理的成功应该不只局限于此。
高速切削技术是切削技术的重要发展方向之一,从现代科学技术的角度去确切定义高速切削,目前还没有取得一致,因为它是一个相对概念,不同的加工方式,不同的切削材料有着不同的高速切削速度和加工参数。
这里包含了高速软切削、高速硬切削、高速湿切削和高速干切削等等。
事实上,高速切削技术是一个非常庞大而复杂的系统工程,它涵盖了机床材料的研究及选用技术,机床结构设计和制造技术,高性能CNC控制系统、通讯系统,高速、高效冷却、高精度和大功率主轴系统,高精度快速进给系统,高性能刀具夹持系统,高性能刀具材料、刀具结构设计和制造技术,高效高精度测试测量技术,高速切削机理,高速切削工艺,适合高速加工的编程软件与编程策略等等诸多相关的硬件和软件技术。
只有在这些技术充分发展的基础上,建立起来的高速切削技术才具有真正的意义。
所以要发挥出高速切削的优越性能,必须是CAD/CAM系统、CNC控制系统、数据通讯、机床、刀具和工艺等技术的完美组合。
硬质合金刀具的材料特性与切削原理分析硬质合金刀具作为现代切削工具中的重要组成部分,具有优秀的耐磨性、高强度和良好的切削性能,被广泛应用于金属加工行业。
本文将对硬质合金刀具的材料特性和切削原理进行详细分析。
首先,我们来了解硬质合金刀具的主要材料成分。
硬质合金刀具通常由钴基或钨基高硬度合金粉末与金属粉末通过高温烧结而成。
其中,钴基合金刀具的主要成分为碳化钨(WC)和钴(Co)两种物质的混合物,而钨基合金刀具则主要由碳化钨(WC)和碳化钨钎焊合金(WCCo)两种材料构成。
这些材料的合理配比和制造工艺,使得硬质合金刀具具有硬度高、韧性强、耐磨性好等显著特点。
硬质合金刀具的硬度高是由其成分中的碳化钨所决定的。
碳化钨具有极高的硬度,能够抵抗金属切削过程中的高温和高压,使其具备较长的使用寿命。
另外,硬质合金刀具的韧性强则是由所含的钴决定的,钴具有良好的塑性和可加工性,能有效减轻硬质合金刀具的脆性,提高其整体强度和韧性。
钴还能提高硬质合金刀具的抗断裂和抗疲劳性能,使其具有更好的稳定性和切削效率。
在切削原理方面,硬质合金刀具的切削过程主要是通过切削刃与被加工的工件之间的物理作用完成的。
切削刃通过与工件接触并在切削速度和切削力的作用下,将工件上的材料剪切、切削或磨削掉,实现加工目的。
硬质合金刀具的切削原理可以分为两种类型:切削刃切削和磨削刃切削。
切削刃切削适用于金属切削加工,主要通过硬质合金刀具的切削刃与工件的相对运动进行剪切切削。
切削刃切削的切削原理是将工件材料剥离,并且通过一系列连续的块剥、微剥和微小切削粒子的形成来完成切削过程。
而磨削刃切削则适用于非金属材料的加工,如陶瓷、纸张等,其切削原理是通过硬质合金刀具的磨削刃与工件之间的磨削作用,使工件材料发生微小磨削并剥离。
此外,硬质合金刀具还具有一定的刃口几何形状,如刀角、前角、侧倾角等,这些刃口参数的选择关系到切削力的大小和切削质量。
合理的刃口参数能够降低切削力,提高切削效率和切削质量。
硬质合金刀具并使用高效率的切削条件
选择合适的硬质合金刀具并使用高效率的切削条件,这就是车削三要素。
1.切削深度(ap)
切削深度指未加工表面与已加工表面的差值,单位毫米。
它是工件未加工直径与已加工直径差值的一半。
切削深度应根据工件的加工余量、形状、机床功率、刚性及刀具的刚性来确定。
切削深度变化对硬质合金刀具寿命影响不大。
切削深度过小时,会造成刮擦,只切削工件表面的硬化层,缩短刀具寿命。
当工件表面具有硬化的氧化层时,应在机床功率允许范围内选择尽可能大的切削深度,以避免硬质合金刀尖只切削工件表面硬化层,造成刀尖的异常磨损甚至破损。
2.进给量(fn)
进给量是指工件每旋转一周,刀具的移动量,单位为毫米/转。
进给量是决定被加工表面质量的关键因素,同事也影响加工时切屑形成的范围和切削的厚度。
在对硬质合金刀具寿命影响方面,进给量过小,后刀面磨损大,刀具寿命大幅度降低;进给量过大,切削温度升高,后刀面磨损也增大,但较之切削速度对硬质合金刀具寿命的影响要小。
3.切削速度(Vc)
工件在车床上旋转,将其每分钟的转数定义为主轴转速(n)。
由于工件旋转,在其直径的切削点处产生切削速度,称为线速度,单位米/分钟。
通常用线速度来参考切削速度对加工的影响。
切削速度对刀具寿命有非常大的影响。
提高切削速度时,切削温度就上升,而使硬质合金刀具寿命大大减短。
加工不同种类、硬度的工件,切削速度会有相应的变化。
通过大量钨钢刀片切削试验得出:
a.在通常情况下,切削速度提高20%,刀具耐用度降低1/2;切削速度提高50%,刀具耐用度降低至原来的1/5。
b.低速(20-40m/min)切削易产生震动,使刀具寿命缩短。