安徽省中考数学试题分类解析汇编(专题)专题平面
- 格式:doc
- 大小:263.50 KB
- 文档页数:9
精品文档2021年安徽省初中毕业学业考试数学试题考前须知:本卷共八大题,计23小题,总分值150分,考试时间120分钟一、选择题〔本大题共10小题,每题4分,总分值40分〕每小都出代号A、B、C、D的四个,其中只有一个是正确的,把正确的代号写在后的括号内。
每一小,得4分,不、或出的代号超一个的〔不是否写在括号内〕一律得0分。
1.〔2021·安徽〕(3)2的是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯【A.9B.-9C.6D.-62.〔2021·安徽〕如,直l1∥l2,α⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯【130°l1】70°A.150°B.140°C.130°D.120°αl 2第2题图3.〔2021·安徽〕以下运算正确的选项是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯【】A.a2ga3a4B.(a4)a4C.a2a3a5D.(a2)3a54.〔2021·安徽〕甲志愿者划用假设干个工作日完成社区的某工作,从第三个工作日起,乙志愿者加盟此工作,且甲、乙两人工效相同,果提前3天完成任,甲志愿者划完成此工作的天数是⋯⋯⋯⋯⋯【】22 A.8C.6D.53 5.〔2021·安徽〕一个方体的三如所示,假设其俯正方形,个方体的高和底面分⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯【】主视图左视图A.3,22B.2,22C.3,2第5题图D.2,3俯视图6.〔2021·安徽〕某校决定从三名男生和两名女生中出两名同学担任校文演出的主持人,出的恰一男一女的概率是⋯⋯⋯⋯【】A.4B.3C.2D.155557.〔2021·安徽〕某市2021年国内生〔GDP〕比2007年增了12%,由于受到国金融危机的影响,今年比2021年增7%,假设两年GDP年平均增率x%,x%足的关系是⋯⋯⋯【】A.12%7%x%B.(112%)(17%)2(1x%)C.12%7%2gx%D.(112%)(17%)(1x%)28.〔2021·安徽〕函数ykx b的象如,y2kx b的象可能是⋯⋯⋯⋯⋯⋯⋯⋯⋯【】y y y y y11111 -1O x-1O x-1O x-1O x O1x 第8题图A B C D .精品文档9.〔2021·安徽〕如,弦CD 垂直于⊙O 的直径AB ,垂足H ,且CD =22,BD =3,AB 的C【】BA .2B .3C .4D .5HOAD第9题图10.〔2021·安徽〕△ABC 中,AB =AC ,∠A 角,CDAB 上的高,I △ACD 的内切心, ∠AIB 的度数是⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯【】A .120°B .125°C .135°D .150°二、填空题〔本大题共4小题,每题5分,总分值20分〕11.〔2021·安徽〕如,将小王某月 中各用的情况制成扇形,表示短信的扇形心角的度数.本地话费月根本费43%4%短信费长途话费33%第11题图12.〔2021·安徽〕因式分解:a 2b 2 2b1.13.〔2021·安徽〕4m 的梯子搭在上与地面成45°角,作整60°角〔如所示〕,梯子的端沿面升高了m .第13题图14.〔2021·安徽〕二次函数的象原点及点〔1, 1〕,且象与x 的另一交点到原24点的距离1,二次函数的解析式.三.〔本大题共2小题,每题8分,总分值16分〕15.〔2021·安徽〕算:|2|2sin30o(3)2 (tan45o )1【解】16.〔2021·安徽〕如,MP 切⊙O 于点M ,直PO 交⊙O 于点A 、B ,弦AC ∥MP ,求:MO ∥BC .【】MPCABO.第16题图精品文档四、〔本大题共2小题,每题8分,总分值16分〕11223317.〔2021·安徽〕察以下等式:11,22,33,⋯⋯223344〔1〕猜测并写出第n个等式;【猜测】〔2〕明你写出的等式的正确性.【】18.〔2021·安徽〕如,在Rt△OAB依次行位似、称和平移后得到△O′A′B′.〔1〕在坐上画出几次相的形;〔2〕P〔x,y〕△OAB上任一点,依次写出几次后点P点的坐.y A′O′B′ABOx第18五、〔本大题共2小题,每题10分,总分值20分〕19.〔2021·安徽〕学校植物园沿路局部成假设干个全等菱形案,每增加一个菱形案,度就增加dcm,如所示.每个菱形案的10 3cm,其一个内角60°.60°⋯⋯dL第19〔1〕假设d=26,要231个菱形案,求的度L;〔2〕当d=20,假设保持〔1〕中度不,需要多少个的菱形案?.精品文档20.〔2021·安徽〕如图,将正方形沿图中虚线〔其中x<y〕剪成①②③④四块图形,用这四块图形恰.能拼成一个矩形〔非正方形〕......x①x 〔1〕画出拼成的矩形的简图;②【解】y x〔2〕求x的值.y③④yyx y【解】第20题图六、〔此题总分值12分〕21.〔2021·安徽〕某校九年级学生共900人,为了解这个年级学生的体能,从中随机抽取局部学生进行1min的跳绳测试,并指定甲、乙、丙、丁四名同学对这次测试结果的数据作出整理,以下图是这四名同学提供的局部信息:甲:将全体测试数据分成6组绘成直方图〔如图〕;乙:跳绳次数不少于106次的同学占96%;丙:第①、②两组频率之和为0.12,且第②组与第⑥组频数都是12;丁:第②、③、④组的频数之比为4:17:15.根据这四名同学提供的材料,请解答如下问题:1〕这次跳绳测试共抽取多少名学生?各组有多少人?2〕如果跳绳次数不少于135次为优秀,根据这次抽查的结果,估计全年级到达跳绳优秀的人数为多少?〔3〕以每组的组中值〔每组的中点对应的数据〕作为这组跳绳次数的代表,估计这批学生1min跳绳次数的平均值.人数【解】①②③④⑤⑥七、〔此题总分值12分〕22.〔2021·安徽〕如图,M为线段AB的中点,AE与BD交于点C,∠DME=∠A=∠B=α,且DM交AC于F,ME交BC于G.A M B〔1〕写出图中三对相似三角形,并证明其中的一对;【证】F GCD第22题图E (2〕连结FG,如果α=45°,AB=42,AF=3,求FG的长.【解】.精品文档八、〔此题总分值14分〕23.〔2021·安徽〕某种水果的批发单价与批发量的函数关系如图〔1〕所示.1〕请说明图中①、②两段函数图象的实际意义.【解】批发单价〔元〕日最高销量〔kg〕①580〔6,80〕4②40〔7,40〕O2060批发量〔kg〕O 2468零售价〔元〕第23题图〔1〕第23题图〔2〕2〕写出批发该种水果的资金金额w〔元〕与批发量m〔kg〕之间的函数关系式;在以下图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.【解】金额w〔元〕300200100O204060批发量m〔kg〕〔3〕经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图〔2〕所示,该经销商拟每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.【解】.数学试题参考答案及评分标准一.〔本共10小,每小 4分,分 40分〕号 1 2 3 4 5 6 7 8 9 10 答案ADBACBDCBC二.填空〔本大共4小,每小 5分,分20分〕11.72°12.(ab1)(ab1)13.2(32)14.yx 2 x ,y1x 2 133三.〔本大共2小,每小 8分,分 16分〕15.解:原式=213 1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分=1⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分16.:∵AB 是⊙O 的直径,∴∠ACB =90°MP ⊙O 的切,∴∠PMO =90°MP ∥AC ,∴∠P =∠CAB∴∠MOP =∠B ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6分故MO ∥BC .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分四、〔本大共2小,每小 8分,分16分〕17.〔1〕猜测:nn n n ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3分n 1 n 1〔2〕:右=n 2nn =n 2 =左,即nn nn ⋯⋯8分n 1n 1n1n118.解:1〕yA ′⋯⋯⋯⋯⋯⋯⋯⋯4分O ′B ′A BOx 〔2〕坐中方格位1,以 为位似中心放大为原来的 2 倍〔2x ,2y 〕经y 轴翻折〔2x ,2y 〕向右平移4个单位 P 〔x ,y 〕Ouuuuuuuuuuur uuuuuuuuuuuuuuuuuuuuruuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuur 2x4,2y 〕向上平移5个单位〔2x4,2y5〕⋯⋯⋯⋯8分uuuuuuuuuuuuuuuuuuur 明:如果以其它点位似中心行,或两次平移合并,或未位,或〔2〕中直接写出各点的坐,只要正确就相分..五、(本大共 2小,每小10分,分 20分)19.解:〔1〕菱形案水平方向角10 3cos30o2=30cm按意,L3026(2311) 6010cm ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分 〔2〕当d 20cm ,需x 个菱形案,有:3020(x1)6010⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分解得x300即需300个的菱形案.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分20.解:〔1〕④①⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5分③②明:其它正确拼法可相分.〔2〕解法一:由拼前后的面相等得:[(x y) y]y (xy)2⋯⋯⋯⋯⋯⋯8分因y ≠0,整理得:(x )2x 1 0yy解得:x5 1〔不合意,舍去〕⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分y2解法二:由拼成的矩形可知:(xx y x⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分y)yy以下同解法一.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分六、〔本分12分〕21.解:〔1〕第①率:196%∴第②率:次跳共抽取学生人数: 12 150人∵②、③、④的数之比 4:17:15可算得第①~⑥的人数分6、12、51、45、24、12.⋯⋯⋯6分〔2〕第⑤、⑥两的率之和由于本是随机抽取的,估全年有900216人到达跳秀⋯⋯⋯ 9分〔3〕1006 110 12 120 51130 45 140 24 150 12x150≈127次⋯⋯⋯⋯12分七、〔本分 12分〕22.〔1〕:△AMF ∽△BGM ,△DMG ∽△DBM ,△EMF ∽△EAM 〔写出两即可〕⋯⋯2分以下明△AMF ∽△BGM .∵∠AFM =∠DME +∠E =∠A +∠E =∠BMG ,∠A =∠B∴△AMF ∽△BGM .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6分.〔2〕解:当α=45°,可得AC ⊥BC 且AC =BC∵MAB 的中点,∴AM =BM =2 2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分又∵AMF ∽△BGM ,∴AFBMAMBGAMBM22 2 28∴BGg⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 9分AF33又ACBC42cos45o4 ,∴CG484,CF4313 3∴FGCF 2 CG 212(4)25⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分33八、〔本分14分〕23.〔1〕解:①表示批量不少于20kg 且不多于60kg 的种水果,可按5元/kg 批;⋯⋯3分②表示批量高于60kg 的种水果,可按4元/kg 批.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯3分金额w 〔元〕5m 〔20≤m ≤60〕 〔2〕解:由意得:w,函数象如所示.4 m 〔m >60〕⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 7分 由可知金金足240<w ≤300,以同的金可批到多数量的种水果.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 8分〔3〕解法一:当日零售价x 元,由可得日最高量w32040m当m >60,x <6.5 由意,售利300240200 100O204060批发量m 〔kg 〕y(x4)(32040m) 40[(x6)24]⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分当x =6,y 最大值 160 ,此m =80即商批80kg 种水果,日零售价定6元/kg ,当日可得最大利160元.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯14分解法二:日最高售量 xkg 〔x >60〕由②日零售价p 足:x320 320x40p ,于是p40售利yx(320x 4) 1(x80)2 160⋯⋯⋯⋯⋯⋯⋯⋯⋯12分4040当x =80,y 最大值 160,此p =6即商批80kg 种水果,日零售价定6元/kg ,当日可得最大利160元.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 14分.。
2022年安徽中考数学试题及答案详解(试题部分)一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的。
1.下列为负数的是()A.|―2|B.√3C.0D.―52.据统计,2021年我省出版期刊杂志总印数为3 400万册,其中3 400万用科学记数法表示为()A.3.4×108B.0.34×108C.3.4×107D.34×1063.一个由长方体截去一部分后得到的几何体如图水平放置,其俯视图是()A B C D4.下列各式中,计算结果等于a9的是()A.a3+a6B.a3·a6C.a10―aD.a18÷a25.甲、乙、丙、丁四个人步行的路程和所用的时间如图所示,按平均速度计算,走得最快的是()A.甲B.乙C.丙D.丁6.两个矩形的位置如图所示,若∠1=α,则∠2= ()A.α―90°B.α―45°C.180°―αD.270°―α7.已知☉O的半径为7,AB是☉O的弦,点P在弦AB上.若PA=4,PB=6,则OP= ()A.√14B.4C.√23D.58.随着信息化的发展,二维码已经走进我们的日常生活,其图案主要由黑、白两种小正方形组成.现对由三个小正方形组成的“”进行涂色,每个小正方形随机涂成黑色或白色,恰好是两个黑色小正方形和一个白色小正方形的概率为()A.13B.38C.12D.239.在同一平面直角坐标系中,一次函数y=ax+a2与y=a2x+a的图象可能是()A B C D10.已知点O是边长为6的等边△ABC的中心,点P在△ABC外,△ABC,△PAB,△PBC,△PCA的面积分别记为S0,S1,S2,S3.若S1+S2+S3=2S0,则线段OP长的最小值是()A.3√32B.5√32C.3√3D.7√32二、填空题(本大题共4小题,每小题5分,满分20分)11.不等式x−32≥1的解集为.12.若一元二次方程2x2―4x+m=0有两个相等的实数根,则m=.13.如图,▱OABC的顶点O是坐标原点,A在x轴的正半轴上,B,C在第一象限,反比例函数y=1x 的图象经过点C,y=kx(k≠0)的图象经过点B.若OC=AC,则k=.14. 如图,四边形ABCD 是正方形,点E 在边AD 上,△BEF 是以E 为直角顶点的等腰直角三角形,EF ,BF 分别交CD 于点M ,N ,过点F 作AD 的垂线交AD 的延长线于点G.连接DF ,请完成下列问题: (1)∠FDG = °;(2)若DE =1,DF =2√2,则MN = .三、(本大题共2小题,每小题8分,满分16分) 15.( 8分)计算:(12)0―√16+(―2)2.16.( 8分)如图,在由边长为1个单位长度的小正方形组成的网格中,△ABC 的顶点均为格点(网格线的交点).(1)将△ABC 向上平移6个单位,再向右平移2个单位,得到△A 1B 1C 1,请画出△A 1B 1C 1;(2)以边AC 的中点O 为旋转中心,将△ABC 按逆时针方向旋转180°,得到△A 2B 2C 2,请画出△A 2B 2C 2.四、(本大题共2小题,每小题8分,满分16分)17.( 8分)某地区2020年进出口总额为520亿元,2021年进出口总额比2020年有所增加,其中进口额增加了25%,出口额增加了30%. 注:进出口总额=进口额+出口额.(1)设2020年进口额为x 亿元,出口额为y 亿元,请用含x ,y 的代数式填表:(2)已知2021年进出口总额比2020年增加了140亿元,求2021年进口额和出口额分别是多少亿元。
绝密★启用前2023年安徽中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、选择题(本大题共10小题,共40.0分。
在每小题列出的选项中,选出符合题目的一项)1. −5的相反数是( )A. −5B. −15C. 15D. 52. 某几何体的三视图如图所示,则该几何体为( )A. B.C. D.3. 下列计算正确的是( )A. a4+a4=a8B. a4·a4=a16C. (a4)4=a16D. a8÷a4=a24. 在数轴上表示不等式x−12<0的解集,正确的是( )A. B.C. D.5. 下列函数中,y的值随x值的增大而减小的是( )A. y=x2+1B. y=−x2+1C. y=2x+1D. y=−2x+16. 如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE−∠COD=( )A. 60°B. 54°C. 48°D. 36°7. 如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用1,2,3这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为( )A. 59B. 12C. 13D. 298. 如图,点E在正方形ABCD的对角线AC上,EF⊥AB于点F,连接DE并延长,交边BC于点M,交边AB的延长线于点G.若AF=2,FB=1,则MG=( )A. 2√ 3B. 3√ 52C. √ 5+1D. √ 109. 已知反比例函数y=kx(k≠0)在第一象限内的图象与一次函数y=−x+b的图象如图所示,则函数y=x2−bx+k−1的图象可能为( )A. B. C. D.10. 如图,E是线段AB上一点,△ADE和△BCE是位于直线AB同侧的两个等边三角形,点P,F分别是CD,AB的中点.若AB=4,则下列结论错误..的是( )A. PA+PB的最小值为3√ 3B. PE+PF的最小值为2√ 3C. △CDE周长的最小值为6D. 四边形ABCD面积的最小值为3√ 3第II卷(非选择题)二、填空题(本大题共4小题,共20.0分)11. 计算:√83+1=.12. 据统计,2023年第一季度安徽省采矿业实现利润总额74.5亿元,其中74.5亿用科学记数法表示为.13. 清初数学家梅文鼎在著作《平三角举要》中,对南宋数学家秦九韶提出的计算三角形面积的“三斜求积术”给出了一个完整的证明,证明过程中创造性地设计直角三角形,得出了一个结论:如图,AD是锐角△ABC的高,则BD=12(BC+AB2−AC2BC).当AB=7,BC=6,AC=5时,CD=.14. 如图,O是坐标原点,Rt△OAB的直角顶点A在x轴的正半轴上,AB=2,∠AOB=30°,反比例函数y=kx(k>0)的图象经过斜边OB的中点C.(1)k=;(2)D为该反比例函数图象上的一点,若DB//AC,则OB2−BD2的值为.三、解答题(本大题共9小题,共90.0分。
绝密★启用前2024年安徽省数学中考试题学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、选择题:本题共10小题,每小题4分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.−5的绝对值是( )A. 5B. −5C. 15D. −152.据统计,2023年我国新能源汽车产量超过944万辆,其中944万用科学记数法表示为( )A. 0.944×107B. 9.44×106C. 9.44×107D. 94.4×1063.某几何体的三视图如图所示,则该几何体为( )A. B. C. D.4.下列计算正确的是( )A. a3+a5=a6B. a6÷a3=a2C. (−a)2=a2D. √ a2=a5.若扇形AOB的半径为6,∠AOB=120∘,则AB⏜的长为( )A. 2πB. 3πC. 4πD. 6π6.已知反比例函数y=kx(k≠0)与一次函数y=2−x的图象的一个交点的横坐标为3,则k的值为( )A. −3B. −1C. 1D. 37.如图,在Rt△ABC中,AC=BC=2,点D在AB的延长线上,且CD=AB,则BD的长是( )A. √ 10−√ 2B. √ 6−√ 2C. 2√ 2−2D. 2√ 2−√ 68.已知实数a,b满足a−b+1=0,0<a+b+1<1,则下列判断正确的是( )A. −12<a<0 B. 12<b<1C. −2<2a+4b<1D. −1<4a+2b<09.在凸五边形ABCDE中,AB=AE,BC=DE,F是CD的中点.下列条件中,不能..推出AF与CD一定垂直的是( )A. ∠ABC=∠AEDB. ∠BAF=∠EAFC. ∠BCF=∠EDFD. ∠ABD=∠AEC10.如图,在Rt▵ABC中,∠ABC=90∘,AB=4,BC=2,BD是边AC上的高.点E,F分别在边AB,BC上(不与端点重合),且DE⊥DF.设AE=x,四边形DEBF的面积为y,则y关于x的函数图象为( )A. B. C. D.第II卷(非选择题)二、填空题:本题共4小题,每小题5分,共20分。
2023年安徽省初中学业水平考试数学(试题卷)注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.试卷包括“试题卷”和“答题卷”两部分.“试题卷”共4页,“答题卷”共6页.3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的.4.考试结束后,请将“试题卷”和“答题卷”一并交回.一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1. 5−的相反数是()A. 5B. 5−C. 15D.15−【答案】A【解析】【分析】根据相反数的定义即可求解.【详解】解:5−的相反数是5,故选:A.【点睛】此题主要考查相反数,解题的关键是熟知相反数的定义.2. 某几何体的三视图如图所示,则该几何体为()A. B. C. D.【答案】B【解析】【分析】根据主视图是三角形,结合选项即可求解.【详解】解:∵主视图是直角三角形,故A ,C ,D 选项不合题意,故选:B .【点睛】主视图是在物体正面从前向后观察物体得到的图形;俯视图是站在物体的正面从上向下观察物体得到的图形;左视图是在物体正面从左向右观察到的图形,掌握三视图的定义是解题关键.3. 下列计算正确的是( )A. 448a a a +=B. 4416a a a ⋅=C. ()1446a a =D. 842a a a ÷= 【答案】C【解析】【分析】根据同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,逐项分析判断即可求解.【详解】解:A. 4442a a a +=,故该选项不正确,不符合题意;B. 448a a a ⋅=,故该选项不正确,不符合题意;C. ()1446a a =,故该选项正确,符合题意;D. 844a a a ÷=,故该选项不正确,不符合题意;故选:C .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项,熟练掌握同底数幂的乘法,同底数幂的除法,幂的乘方,合并同类项的运算法则是解题的关键.4. 在数轴上表示不等式102x −<的解集,正确的是( )A.B. C. D. 【答案】A【解析】 【分析】先解不等式,然后在数轴上表示不等式的解集即可求解. 【详解】解:102x −< 解得:1x <,数轴上表示不等式的解集故选:A .【点睛】本题考查了解一元一次不等式,在数轴上表示不等式的解集,数形结合是解题的关键. 5. 下列函数中,y 的值随x 值的增大而减小的是( )A. 21y x =+B. 21y x =−+C. 21y x =+D. 21y x =−+ 【答案】D【解析】【分析】根据二次函数的性质,一次函数的性质,逐项分析判断即可求解.【详解】解:A. 21y x =+,0a >,对称轴为直线0x =,当0x <时,y 的值随x 值的增大而减小,当0x >时,y 的值随x 值的增大而增大,故该选项不正确,不符合题意;B. 21y x =−+,a<0,对称轴为直线0x =,当0x <时,y 的值随x 值的增大而增大,当0x >时,y 的值随x 值的增大而减小,故该选项不正确,不符合题意; C. 21y x =+,0k >,y 的值随x 值的增大而增大,故该选项不正确,不符合题意; D. 21y x =−+,0k <,y 的值随x 值的增大而减小,故该选项正确,符合题意; 故选:D .【点睛】本题考查了一次函数与二次函数的性质,熟练掌握一次函数与二次函数的性质是解题的关键. 6. 如图,正五边形ABCDE 内接于O ,连接,OC OD ,则BAE COD ∠−∠=( )A. 60°B. 54°C. 48°D. 36°【答案】D【解析】 【分析】先计算正五边形的内角,再计算正五边形的中心角,作差即可.【详解】∵360360180,55BAE COD °°∠=°−∠=, ∴3603601803655BAE COD °°∠−∠=°−−=°, 故选D .【点睛】本题考查了正五边形的外角,内角,中心角的计算,熟练掌握计算公式是解题的关键. 7. 如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用1,2,3这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为( ) A. 59 B. 12 C. 13 D. 29【答案】C【解析】【分析】根据题意列出所有可能,根据新定义,得出2种可能是“平稳数”,根据概率公式即可求解.【详解】解:依题意,用1,2,3这三个数字随机组成一个无重复数字的三位数,可能结果有, 123,132,213,231,312,321共六种可能,只有123321,是“平稳数”∴恰好是“平稳数”的概率为21=63故选:C .【点睛】本题考查了新定义,概率公式求概率,熟练掌握概率公式是解题的关键.8. 如图,点E 在正方形ABCD AC 上,EF AB ⊥于点F ,连接DE 并延长,交边BC 于点M ,交边AB 的延长线于点G .若2AF =,1FB =,则MG =( )A. B. C. 1 D.【答案】B【解析】 【分析】根据平行线分线段成比例得出2DEAF EM FB ==,根据ADE CME ∽△△,得出2CM DE AD EM==,则1322CM AD ==,进而可得23MB =,根据BC AD ∥,得出GMB GDA ∽,根据相似三角形的性质得出3BG =,进而在Rt BGM △中,勾股定理即可求解.【详解】解:∵四边形ABCD 是正方形,2AF =,1FB =,∴213AD BC AB AF FG ===+=+=,AD CB ∥,,AD AB CB AB ⊥⊥,∴EF AB ⊥,∴AD EF BC ∥∥ ∴2DE AF EM FB==,ADE CME ∽△△, ∴2CM DE AD EM==,则1322CM AD ==, ∴23MB =, ∵BC AD ∥,∴GMB GDA ∽, ∴31232BG MB AB DA === ∴1322BG AB ==,在Rt BGM △中,MG =, 故选:B .握以上知识是解题的关键.9. 已知反比例函数()0k y k x=≠在第一象限内的图象与一次函数y x b =−+的图象如图所示,则函数21y x bx k =−+−的图象可能为( )A B. C. D.【答案】A【解析】【分析】设()1,A k ,则(),1B k ,1k >,将点(),1B k ,代入y x b =−+,得出1k b =−,代入二次函数,可得当1x =时,1y =−,则21y x bx k =−+−,得出对称轴为直线12b x=>,抛物线对称轴在y 轴的右侧,且过定点()1,1-,进而即可求解.【详解】解:如图所示,设()1,A k ,则(),1B k ,根据图象可得1k >,将点(),1B k 代入y x b =−+, ∴1k b =−+, ∴1k b =−,∵1k >,∴2b >,∴21y x bx k =−+−()2222112=224b b x bx b x bx b x b −+−−−+−−++− , 对称轴为直线12b x =>, 当1x =时,121b b −+−=−,∴抛物线经过点()1,1-,∴抛物线对称轴在1x =的右侧,且过定点()1,1-,.当0x =时,120y k b =−=−>,故选:A .【点睛】本题考查了一次函数与反比例函数交点问题,二次函数图象的性质,得出1k b =−是解题的关键.10. 如图,E 是线段AB 上一点,ADE 和BCE 是位于直线AB 同侧的两个等边三角形,点,P F 分别是,CD AB 的中点.若4AB =,则下列结论错误..的是( )A. PA PB +的最小值为B. PE PF +的最小值为C. CDE 周长的最小值为6D. 四边形ABCD 面积的最小值为【答案】A【解析】【分析】延长,AD BC ,则ABQ 是等边三角形,观察选项都是求最小时,进而得出当E 点与F 重合时,则,,Q P F B ,C ,D 选项正确,即可求解.【详解】解:如图所示,延长,AD BC ,依题意60QAD QBA ∠=∠=° ∴ABQ 是等边三角形,∵P 是CD 的中点,∴PD PC =,∵DEA CBA ∠=∠,∴ED CQ ∥∴,PQC PED PCQ PDE ∠=∠∠=∠, ∴PDE PCQ ≌∴PQ PE =,∴四边形DECQ 是平行四边形,则P 为EQ 的中点如图所示,设,AQ BQ 的中点分别为,G H , 则11,22GP AE PH EB == ∴当E 点在AB 上运动时,P 在GH 上运动,当E 点与F 重合时,即AE EB =,则,,Q P F 三点共线,PF 取得最小值,此时()122AE EB AE EB ==+=, 则ADE ECB △≌△,∴,C D 到AB 的距离相等,则CD AB ∥,此时PF AD =此时ADE 和BCE 的边长都为2,则,AP PB 最小,∴2PF ==,∴PA PB =∴PA PB +,或者如图所示,作点B 关于GH 对称点B ′,则PB PB ′=,则当,,A P B ′三点共线时,AP PB AB ′+=此时AB ′===故A 选项错误,根据题意可得,,P Q F 三点共线时,PF 最小,此时PE PF ==PE PF +,故B 选项正确;CDE 周长等于4CD DE CE CD AE EB CD AB CD ++=++=+=+,即当CD 最小时,CDE 周长最小,如图所示,作平行四边形GDMH ,连接CM ,∵60,60GHQ GHM GDM ∠=°∠=∠=°,则120CHM ∠=°如图,延长DE ,HG ,交于点N ,则60NGD QGH ∠=∠=°,60NDG ADE ∠=∠=°∴NGD △是等边三角形,∴ND GD HM ==,在NPD 与HPC △中,60NPD HPC N CHP PD PC ∠=∠ ∠=∠=° =∴NPD HPC ≌∴ND CH =∴CH MH =∴30HCM HMC ∠=∠=°∴CM QF ∥,则CM DM ⊥,∴DMC 是直角三角形,在DCM △中,DC DM >∴当DC DM =时,DC 最短,122DCGH AB === ∵2CD PC PC =+ ∴CDE 周长的最小值为2226++=,故C 选项正确;∵NPD HPC ≌∴四边形ABCD 面积等于ADE EBC DEC ADE NEBH S S S S S +=+ 平行四边∴当BGD △的面积为0时,取得最小值,此时,,D G 重合,C H ,重合∴四边形ABCD 面积的最小值为232=D 选项正确, 故选:A .【点睛】本题考查了解直角三角形,等边三角形的性质,勾股定理,熟练掌握等边三角形的性质,得出当E 点与F 重合时得出最小值是解题的关键.二、填空题(本大题共4小题,每小题5分,满分20分)111+=_____________.【答案】3【解析】【分析】根据求一个数的立方根,有理数的加法即可求解.1+=213+=,故答案为:3.【点睛】本题考查了求一个数的立方根,熟练掌握立方根的定义是解题的关键.12. 据统计,2023年第一季度安徽省采矿业实现利润总额74.5亿元,其中74.5亿用科学记数法表示为_____.【答案】97.4510×【解析】【分析】用科学记数法表示绝对值较大的数时,一般形式为10n a ×,其中1||10a ≤<,n 为整数.【详解】解:74.5亿89=74.5107.4510×=×.故答案为:97.4510×.【点睛】本题考查了科学记数法,科学记数法的表示形式为10n a ×的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原来的数,变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 1<时,n 是负数,确定a 与n 的值是解题的关键. 13. 清初数学家梅文鼎在著作《平三角举要》中,对南宋数学家秦九韶提出的计算三角形面积的“三斜求积术”给出了一个完整的证明,证明过程中创造性地设计直角三角形,得出了一个结论:如图,AD 是锐角ABC 的高,则2212AB AC BD BC BC −=+.当7,6AB BC ==,5AC =时,CD =____.【答案】1【解析】【分析】根据公式求得BD ,根据CD BC BD =−,即可求解.【详解】解:∵7,6AB BC ==,5AC =,.∴2212AB AC BD BC BC −=+ 149256526− =+=∴651CD BC BD =−=−=,故答案为:1.【点睛】本题考查了三角形的高的定义,正确的使用公式是解题的关键.14. 如图,O 是坐标原点,Rt OAB 的直角顶点A 在x 轴的正半轴上,2,30AB AOB =∠=°,反比例函数(0)k y k x=>的图象经过斜边OB 的中点C .(1)k =__________;(2)D 为该反比例函数图象上的一点,若∥DB AC ,则22OB BD −的值为____________.【答案】 ①. ②. 4【解析】【分析】(1)根据已知条件得出,A B 的坐标,根据直角三角形斜边上的中线等于斜边的得出C 的坐标,进而即可求解;(2)根据题意,求得直线,AC BD BD 与反比例函数解析式,得出D 的坐标,进而根据两点距离公式求得2OB ,2BD ,进而即可求解.【详解】解:(1)∵2,30AB AOB =∠=°,∴24OA OB AB ==∴()(),2A B ,∵C 是OB 的中点,∴)C , ∵反比例函数(0)k y k x =>的图象经过斜边OB 的中点C .∴k =;∴反比例数解析式为y =(2)∵()A,)C 设直线AC 解析式为y kx b =+∴01b b =+ =+解得:2k b = =∴直线AC的解析式为2y x +,∵∥DB AC ,设直线BD的解析式为y x b =+,将点()2B 代入并解得4b =, ∴直线BD的解析式为4y +,∵反比例数解析式为y =联立4y x y + =解得:32x y = =−或32x y = =当32x y =+ = 时,((2223229312BD =−+−+=+=当32x y =− =+ 时,()()2223229312BD =−++−=+=(222216OB =+=∴22OB BD −4=,故答案为:4.【点睛】本题考查了反比例函数与几何图形,反比例函数与一次函数交点问题,熟练掌握反比例函数的性质是解题的关键.的三、(本大题共2小题,每小题8分,满分16分)15. 先化简,再求值:2211x x x +++,其中1x =−.【答案】1x + 【解析】【分析】先根据分式的性质化简,最后将字母的值代入求解.【详解】解: 2211x x x +++ ()211x x +=+1x =+,当1x =时,11+.【点睛】本题考查了分式化简求值,解题关键是熟练运用分式运算法则进行求解.16. 根据经营情况,公司对某商品在甲、乙两地的销售单价进行了如下调整:甲地上涨10%,乙地降价5元,已知销售单价调整前甲地比乙地少10元,调整后甲地比乙地少1元,求调整前甲、乙两地该商品的销售单价.【答案】调整前甲、乙两地该商品的销售单价分别为40,50元【解析】【分析】设调整前甲、乙两地该商品的销售单价分别为,x y 元,根据题意,列出二元一次方程组,解方程组即可求解.【详解】解:设调整前甲、乙两地该商品的销售单价分别为,x y 元,根据题意得,()10110%15x y x y += ++=− 解得:4050x y = =答:调整前甲、乙两地该商品的销售单价分别为40,50元【点睛】本题考查了二元一次方程组的应用,根据题意列出二元一次方程组是解题的关键.四、(本大题共2小题、每小题8分、满分16分)17. 如图,在由边长为1个单位长度的小正方形组成的网格中,点,,,A B C D 均为格点(网格线的交点).(1)画出线段AB 关于直线CD 对称的线段11A B ;(2)将线段AB 向左平移2个单位长度,再向上平移1个单位长度,得到线段22A B ,画出线段22A B ; (3)描出线段AB 上的点M 及直线CD 上的点N ,使得直线MN 垂直平分AB .【答案】(1)见解析 (2)见解析(3)见解析【解析】【分析】(1)根据轴对称性质找到,A B 关于直线CD 的对称点,11,A B ,连接11,A B ,则线段11A B 即为所求;(2)根据平移的性质得到线段22A B 即为所求;(3)勾股定理求得AM BM ===,MN ==AM MN =证明NPM MQA ≌得出90NMP AMQ∠+∠=°,则AM MN ⊥,则点,M N 即为所求. 【小问1详解】解:如图所示,线段11A B 即为所求;的【小问2详解】A B即为所求;解:如图所示,线段22【小问3详解】M N即为所求解:如图所示,点,如图所示,∵AM BM ===,MN ==∴AM MN =, 又1,3NPMQ MP AQ ====, ∴NPM MQA ≌,∴NMP MAQ ∠=∠, 又90MAQ AMQ∠+∠=°, ∴90NMP AMQ∠+∠=° ∴AM MN ⊥,∴MN 垂直平分AB .【点睛】本题考查了轴对称作图,平移作图,勾股定理与网格问题,熟练掌握以上知识是解题的关键. 18. 【观察思考】【规律发现】请用含n 的式子填空:(1)第n 个图案中“”的个数为 ;(2)第1个图案中“★”的个数可表示为122×,第2个图案中“★”的个数可表示为232,第3个图案中“★”的个数可表示为342×,第4个图案中“★”的个数可表示为452×,……,第n 个图案中“★”的个数可表示为______________.【规律应用】(3)结合图案中“★”的排列方式及上述规律,求正整数n ,使得连续的正整数之和123n ++++ 等于第n 个图案中“”的个数的2倍.【答案】(1)3n(2)()12n n ×+ (3)11n =【解析】【分析】(1)根据前几个图案的规律,即可求解;(2)根据题意,结合图形规律,即可求解.(3)根据题意,列出一元二次方程,解方程即可求解.【小问1详解】解:第1个图案中有3个,第2个图案中有336+=个,第3个图案中有3239+×=个,第4个图案中有33312+×=个, ……∴第n 个图案中有3n 个,故答案为:3n .【小问2详解】 第1个图案中“★”的个数可表示为122×, 第2个图案中“★”的个数可表示为232, 第3个图案中“★”的个数可表示为342×, 第4个图案中“★”的个数可表示为452×,……, 第n 个图案中“★”的个数可表示为()12n n ×+, 【小问3详解】解:依题意,()11232n n n ×+++++=……, 第n 个图案中有3n 个, ∴()1322n n n +=×, 解得:0n =(舍去)或11n =.【点睛】本题考查了图形类规律,解一元二次方程,找到规律是解题的关键.五、(本大题共2小题,每小题10分,满分20分)19. 如图,,O R 是同一水平线上的两点,无人机从O 点竖直上升到A 点时,测得A 到R 点的距离为40m,R 点的俯角为24.2°,无人机继续竖直上升到B 点,测得R 点的俯角为36.9°.求无人机从A 点到B 点的上升高度AB (精确到0.1m ).参考数据:sin24.20.41,cos24.20.91,tan24.20.45≈≈≈°°°,sin36.90.60,cos36.90.80,tan36.90.75≈≈≈°°°.【答案】无人机从A 点到B 点的上升高度AB 约为10.9米【解析】【分析】解Rt AOR ,求得AO ,OR ,在Rt BOR 中,求得BO ,根据AB BO AO =−,即可求解.【详解】解:依题意,24.2ARO ∠=°,36.9BRO ∠=°,40AR =,在Rt AOR 中,24.2ARO ∠=°,∴sin 40sin 24.2AO AR ARO =×∠=×°,cos 40cos 24.2RO AR ARO =×∠=×°,在Rt BOR 中,tan 40cos 24.2tan 36.9OB OR BRO =×∠=×°×°,∴AB BO AO =−40cos 24.2tan 36.940sin 24.2=×°×°−×°400.910.75400.41≈××−×10.9≈(米)答:无人机从A 点到B 点的上升高度AB 约为10.9米. 【点睛】本题考查了解直角三角形的应用,熟练掌握三角函数的定义是解题的关键.20. 已知四边形ABCD 内接于O ,对角线BD 是O 的直径.(1)如图1,连接,OA CA ,若OA BD ⊥,求证;CA 平分BCD ∠; (2)如图2,E 为O 内一点,满足,AE BC CE AB ⊥⊥,若BD =,3AE =,求弦BC 的长.【答案】(1)见解析 (2)BC =【解析】【分析】(1)利用垂径定理的推论和圆周角的性质证明即可.(2)证明四边形AECD 平行四边形,后用勾股定理计算即可.【小问1详解】∵对角线BD 是O 的直径,OA BD ⊥∴ AB AD =,∴BCA DCA ∠=∠,∴CA 平分BCD ∠.小问2详解】∵对角线BD 是O 的直径,∴90BAD BCD ∠=∠=°,∴,DC BC DA AB ⊥⊥∵,AE BC CE AB ⊥⊥,∴,DC AE DA CE ,∴四边形AECD 平行四边形,∴DC AE =,∵BD =,3AE =,∴BD =,3DC =,【=.∴BC【点睛】本题考查了垂径定理的推论,直径所对的圆周角是直角,平行四边形的判定和性质,勾股定理,熟练掌握垂径定理的推论,平行四边形的判定和性质,勾股定理是解题的关键.六、(本题满分12分)21. 端午节是中国的传统节日,民间有端午节吃粽子的习俗,在端午节来临之际,某校七、八年级开展了一次“包粽子”实践活动,对学生的活动情况按10分制进行评分,成绩(单位:分)均为不低于6的整数、为了解这次活动的效果,现从这两个年级各随机抽取10名学生的活动成绩作为样本进行活整理,并绘制统计图表,部分信息如下:八年级10名学生活动成绩统计表成绩/分678910人数12a b2已知八年级10名学生活动成绩的中位数为8.5分.请根据以上信息,完成下列问题:(1)样本中,七年级活动成绩为7分的学生数是______________,七年级活动成绩的众数为______________分;a______________,b=______________;(2)=(3)若认定活动成绩不低于9分为“优秀”,根据样本数据,判断本次活动中优秀率高的年级是否平均成绩也高,并说明理由.【答案】(1)1,8(2)23,(3)优秀率高的年级不是平均成绩也高,理由见解析【解析】【分析】(1)根据扇形统计图得出七年级活动成绩为7分的学生数的占比为10%,即可得出七年级活动成绩为7分的学生数,根据扇形统计图结合众数的定义,即可求解;(2)根据中位数的定义,得出第5名学生为8分,第6名学生为9分,进而求得a,b的值,即可求解;(3)分别求得七年级与八年级的优秀率与平均成绩,即可求解.【小问1详解】解:根据扇形统计图,七年级活动成绩为7分的学生数的占比为150%20%20%=10%−−−∴样本中,七年级活动成绩为7分的学生数是1010%=1 ,根据扇形统计图,七年级活动成绩的众数为8分,故答案为:1,8.【小问2详解】∵八年级10名学生活动成绩的中位数为8.5分,∴第5名学生为8分,第6名学生为9分,∴5122a =−−=,1012223b =−−−−=,故答案为:23,.【小问3详解】优秀率高的年级不是平均成绩也高,理由如下,七年级优秀率为20%20%=40%+,平均成绩为:710%850%920%1020%=8.5×+×+×+×, 八年级优秀率为32100%50%10+×=40%>,平均成绩为:()167228392108.310×+×+×+×+×=8.5<,∴优秀率高的年级不是平均成绩也高【点睛】本题考查了扇形统计图,统计表,中位数,众数,求一组数据的平均数,从统计图表获取信息是解题的关键.七、(本题满分12分)22. 在Rt ABC △中,M 是斜边AB 的中点,将线段MA 绕点M 旋转至MD 位置,点D 在直线AB 外,连接,AD BD .(1)如图1,求ADB ∠的大小;(2)已知点D 和边AC 上的点E 满足,ME AD DE AB ⊥∥.(ⅰ)如图2,连接CD ,求证:BD CD =;(ⅱ)如图3,连接BE ,若8,6AC BC ==,求tan ABE ∠的值. 【答案】(1)90ADB ∠=°(2)(ⅰ)见解析;(ⅱ)12【解析】【分析】(1)根据旋转的性质得出MA MD MB ==,根据等边对接等角得出,MAD MDA MBD MDB ∠=∠∠=∠,在ABD △中,根据三角形内角和定理即得出=180MAD MDA MBD MDB ∠+∠+∠+∠°,进而即可求解;(2)(ⅰ)延长,AC BD 交于点F ,证明四边形AEDM 是菱形,进而根据平行线分线段成比例得出,AF AB =,根据等腰三角形的性质,得出D 是BF 的中点,根据直角三角形斜边上的中线等于斜边的一半,即可得证;(ⅱ)如图所示,过点E 作EH AB ⊥于点H ,由AHE ACB ∽,得出3,4EH AH ==,1046BH AB AH =−=−=,进而根据正切的定义即可求解.【小问1详解】解:∵MA MD MB ==∴,MAD MDA MBD MDB ∠=∠∠=∠, 在ABD △中,=180MAD MDA MBD MDB ∠+∠+∠+∠° ∴180902ADB ADM BDM °∠=∠+∠==° 【小问2详解】证明:(ⅰ)证法一:如图,延长BD AC 、,交于点F ,则90BCF ∠=°,∵ME AD ⊥,90ADB ∠=°∴EM BD ∥.又∵DE AB ∥,∴四边形BDEM 是平行四边形.∴DE BM =.∵M 是AB 的中点,, ∴AM BM =.∴DE AM =.∴四边形AMDE 是平行四边形.∵ME AD ⊥,∴AMDE 是菱形.∴AE AM =.∵EM BD ∥, ∴AE AM AF AB=. ∴AB AF =.∵90ADB ∠=°,即AD BF ⊥,∴BD DF =,即点D 是Rt BCF 斜边的中点.∴BD CD =.证法二:∵90ACB ADB ∠=∠=°,M 是斜边AB 的中点,∴点A C D B 、、、在以M 为圆心,AB 为直径的M 上.∵ME AD ⊥,∴ME 垂直平分AD .∴EA ED =.∴EAD EDA ∠=∠.∵DE AB ∥,∴BAD EDA ∠=∠.∴EAD BAD ∠=∠.∴BD CD =.证法三:∵ME AD ⊥,90ADB ∠=°∴EM BD ∥.又∵DE AB ∥,∴四边形BDEM 是平行四边形.∴DE BM =.∵M 是AB 的中点,, ∴AM BM =.∴DE AM =.∴四边形AMDE 是平行四边形.∵ME AD ⊥,∴AMDE 是菱形.∴EAD MAD ∠=∠.∵90ACB ADB ∠=∠=°,M 是斜边AB 的中点,∴点A C D B 、、、在以M 为圆心,AB 为直径的M 上.∴BD CD =.(2)如图所示,过点E 作EH AB ⊥于点H ,∵8,6AC BC ==,∴10AB ==,则152AE AM AB ===, ∵,90EAH BAC ACB AHE ∠=∠∠=∠=°, ∴AHE ACB ∽, ∴510EHAH AE BC AC AB ===, ∴3,4EH AH ==, ∴1046BH AB AH =−=−=, ∴31tan 62EH ABE BH === 【点睛】本题考查了三角形内角和定理,菱形的性质与判定,平行线分线段成比例,相似三角形的性质与判定,直角三角形斜边上的中线等于斜边的一半,勾股定理,求正切,熟练掌握相似三角形的性质与判定是解题的关键.八、(本题满分14分)23. 在平面直角坐标系中,点O 是坐标原点,抛物线()20y ax bx a =+≠经过点()3,3A ,对称轴为直线2x =.(1)求,a b 的值;(2)已知点,B C 在抛物线上,点B 的横坐标为t ,点C 的横坐标为1t +.过点B 作x 轴的垂线交直线OA 于点D ,过点C 作x 轴的垂线交直线OA 于点E .(ⅰ)当02t <<时,求OBD 与ACE △的面积之和;(ⅱ)在抛物线对称轴右侧,是否存在点B ,使得以,,,B C D E 为顶点的四边形的面积为32?若存在,请求出点B 的横坐标t 的值;若不存在,请说明理由.【答案】(1)1,4a b =−= (2)(ⅰ)2;(2)52t = 【解析】【分析】(1)待定系数法求解析式即可求解;(2)(ⅰ)根据题意画出图形,得出()()()()22,4,1,141B t t t C t t t −++−+++,(),D t t ,()1,1E t t ++,继而得出()()2223033=33t t t BD t t t t t −+<≤ =−+ −>,()()()()22220213122t t t CE t t t t t −++<< =−+++= −−≥ ,当02t <<时,根据三角形的面积公式,即可求解. (ⅱ)根据(ⅰ)的结论,分23t <<和3t >分别求得梯形的面积,根据四边形的面积为32建立方程,解方程进而即可求解.【小问1详解】解:依题意,93322a b b a+= −= , 解得:14a b =− = , ∴24y x x =−+;【小问2详解】(ⅰ)设直线OA 的解析式为y kx =,∵()3,3A ,∴33k =解得:1k =,∴直线y x =,如图所示,依题意,()()()()22,4,1,141B t t t C t t t −++−+++,(),D t t ,()1,1E t t ++,∴()()2223033=33t t t BD t t t t −+<≤ =−+ −>, ()()()()22220213122t t t CE t t t t t −++<< =−+++= −−≥ , ∴当02t <<时,OBD 与ACE △的面积之和为()1131=222BD t CE t ×+−−, (ⅱ)当点B 在对称右侧时,则t >,∴22CE t t =−−,当23t <<时,23BD t t =−+,∴()221321=12BDEC S t t t t t =−++−−×−梯形, ∴312t −=, 解得:52t =,当3t >时,23BD t t =−, ∴()2221321=212BDCE S t t t t t t =−+−−×−−梯形, ∴2321=2t t −−,解得:t =(舍去)或t =(舍去)综上所述,52t =. 【点睛】本题考查了二次函数综合问题,面积问题,待定系数法求二次函数解析式,分类讨论,熟练掌握二次函数的性质是解题的关键.。
2018年安徽省初中学业水平考试数学一、选择题(本大题共10小题,每小题4分,满分40分)1. 的绝对值是( )A. B. 8 C. D.【答案】B【详解】数轴上表示数-8的点到原点的距离是8,所以-8的绝对值是8,故选B.【点睛】本题考查了绝对值的概念,熟记绝对值的概念是解题的关键.2.2017年我赛粮食总产量为635.2亿斤,其中635.2亿科学记数法表示()A. B. C.D.【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】635.2亿=63520000000,63520000000小数点向左移10位得到6.352, 所以635.2亿用科学记数法表示为:6.352×108,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列运算正确的是()A. B. C. D.【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得. 【详解】A. ,故A选项错误;B.,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.4.一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A. (A)B. (B) C.(C) D. (D)【答案】A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,故选A.【详解】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.5.下列分解因式正确的是()A. B.C. D.【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底. 【详解】A. ,故A选项错误;B.,故B选项错误;C.,故C选项正确;D. =(x-2)2,故D选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.6. 据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件, 故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.7. 若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A. B. 1 C. D.【答案】A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a的方程,解方程即可得.【详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故选A.【点睛】本题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8. 为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲 2 6 77 8乙 2 3 48 8类于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差【答案】D【解析】【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7,,=4,乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,,=6.4,所以只有D选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.9.□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A. BE=DFB. AE=CF C. AF//CE D. ∠BAE=∠DCF【答案】B【解析】【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AFCE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AECF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.10.如图,直线都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD的边长为,对角线AC在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于之间分的长度和为y,则y关于x的函数图象大致为( )A.B. C. D.【答案】A【解析】【分析】由已知易得AC=2,∠ACD=45°,分0≤x≤1、1<x≤2、2<x≤3三种情况结合等腰直角三角形的性质即可得到相应的函数解析式,由此即可判断.【详解】由正方形的性质,已知正方形ABCD的边长为,易得正方形的对角线AC=2,∠ACD=45°,如图,当0≤x≤1时,y=2,如图,当1<x≤2时,y=2m+2n=2(m+n)= 2,如图,当2<x≤3时,y=2,综上,只有选项A符合,故选A.【点睛】本题考查了动点问题的函数图象,涉及到正方形的性质,等腰直角三角形的性质,勾股定理等,结合图形正确分类是解题的关键.二、填空题(本大共4小题,每小题5分,满分30分)11.不等式的解集是___________.【答案】x>10【解析】【分析】按去分母、移项、合并同类项的步骤进行求解即可得.【详解】去分母,得x-8>2,移项,得x>2+8,合并同类项,得x>10,故答案为:x>10.【点睛】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的基本步骤及注意事项是解题的关键.12. 如图,菱形ABOC的AB,AC分别与⊙O相切于点D、E,若点D是AB的中点,则∠DOE__________.【答案】60°【解析】【分析】由AB,AC分别与⊙O相切于点D、E,可得∠BDO=∠ADO=∠AEO=90°,根据已知条件可得到BD=OB,在Rt△OBD中,求得∠B=60°,继而可得∠A=120°,再利用四边形的内角和即可求得∠DOE的度数.【详解】∵AB,AC分别与⊙O相切于点D、E,∴∠BDO=∠ADO=∠AEO=90°,∵四边形ABOC是菱形,∴AB=BO,∠A+∠B=180°,∵BD=AB,∴BD=OB,在Rt△OBD中,∠ODB=90°,BD=OB,∴cos∠B=,∴∠B=60°,∴∠A=120°,∴∠DOE=360°-120°-90°-90°=60°,故答案为:60°.【点睛】本题考查了切线的性质,菱形的性质,解直角三角形的应用等,熟练掌握相关的性质是解题的关键.13.如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),AB⊥x轴于点B,平移直线y=kx使其经过点B,得到直线l,则直线l对应的函数表达式是_________ .【答案】y=x-3【解析】【分析】由已知先求出点A、点B的坐标,继而求出y=kx的解析式,再根据直线y=kx平移后经过点B,可设平移后的解析式为y=kx+b,将B点坐标代入求解即可得.【详解】当x=2时,y==3,∴A(2,3),B(2,0),∵y=kx过点A(2,3),∴3=2k,∴k=,∴y=x,∵直线y=x平移后经过点B,∴设平移后的解析式为y=x+b,则有0=3+b,解得:b=-3,∴平移后的解析式为:y=x-3,故答案为:y=x-3.【点睛】本题考查了一次函数与反比例函数的综合应用,涉及到待定系数法,一次函数图象的平移等,求出k的值是解题的关键.14.矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.【答案】3或1.2【解析】【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD是等腰三角形,分DP=DA、AP=DP两种情况进行讨论即可得.【详解】∵四边形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE∽△DBC,∴∠PBE=∠DBC,∴点P在BD上,如图1,当DP=DA=8时,BP=2,∵△PBE∽△DBC,∴PE:CD=PB:DB=2:10,∴PE:6=2:10,∴PE=1.2;如图2,当AP=DP时,此时P为BD中点,∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3;综上,PE的长为1.2或3,故答案为:1.2或3.【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P在线段BD 上是解题的关键.三、解答题15. 计算:【答案】7【解析】【分析】先分别进行0次幂的计算、二次根式的乘法运算,然后再按运算顺序进行计算即可.【详解】=1+2+=1+2+4=7.【点睛】本题考查了实数的运算,熟练掌握实数的运算法则、0次幂的运算法则是解题的关键.16. 《孙子算经》中有过样一道题,原文如下: “今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?” 大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问城中有多少户人家?请解答上述问题.【答案】城中有75户人家.【解析】【分析】设城中有x户人家,根据今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,可得方程x+x=100,解方程即可得.【详解】设城中有x户人家,由题意得x+x=100,解得x=75,答:城中有75户人家.【点睛】本题考查了一元一次方程的应用,弄清题意,找出等量关系列方程进行求解是关键.17. 如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点. (1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段(点A,B的对应点分别为).画出线段;(2)将线段绕点逆时针旋转90°得到线段.画出线段;(3)以为顶点的四边形的面积是个平方单位.【答案】(1)画图见解析;(2)画图见解析;(3)20【解析】【分析】(1)结合网格特点,连接OA并延长至A1,使OA1=2OA,同样的方法得到B1,连接A1B1即可得;(2)结合网格特点根据旋转作图的方法找到A2点,连接A2B1即可得;(3)根据网格特点可知四边形AA1 B1 A2是正方形,求出边长即可求得面积.【详解】(1)如图所示;(2)如图所示;(3)结合网格特点易得四边形AA1 B1 A2是正方形,AA1=,所以四边形AA1 B1 A2的在面积为:=20,故答案为:20.【点睛】本题考查了作图-位似变换,旋转变换,能根据位似比、旋转方向和旋转角得到关键点的对应点是作图的关键.18. 观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证. 【详解】(1)观察可知第6个等式为:,故答案为:;(2)猜想:,证明:左边====1,右边=1,∴左边=右边,∴原等式成立,∴第n个等式为:,故答案为:.【点睛】本题考查了规律题,通过观察、归纳、抽象出等式的规律与序号的关系是解题的关键.19.为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED).在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米? (结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)【答案】旗杆AB高约18米.【解析】【分析】如图先证明△FDE∽△ABE,从而得,在Rt△FEA中,由tan∠AFE=,通过运算求得AB的值即可.【详解】如图,∵FM//BD,∴∠FED=∠MFE=45°,∵∠DEF=∠BEA,∴∠AEB=45°,∴∠FEA=90°,∵∠FDE=∠ABE=90°,∴△FDE∽△ABE,∴,在Rt△FEA中,∠AFE=∠MFE+∠MFA=45°+39.3°=84.3°,tan84.3°=,∴,∴AB=1.8×10.02≈18,答:旗杆AB高约18米.【点睛】本题考查了解直角三角形的应用,相似三角形的判定与性质,得到是解题的关键.20. 如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧BC的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.【答案】(1)画图见解析;(2)CE=【解析】【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AB、AC有交点,再分别以这两个交点为圆心,以大于这两点距离的一半为半径画弧,两弧交于一点,过点A与这点作射线,与圆交于点E ,据此作图即可;(2)连接OE交BC于点F,连接OC、CE,由AE平分∠BAC,可推导得出OE⊥BC,然后在Rt△OFC中,由勾股定理可求得FC的长,在Rt△EFC中,由勾股定理即可求得CE的长.【详解】(1)如图所示,射线AE就是所求作的角平分线;(2)连接OE交BC于点F,连接OC、CE,∵AE平分∠BAC,∴,∴OE⊥BC,EF=3,∴OF=5-3=2,在Rt△OFC中,由勾股定理可得FC==,在Rt△EFC中,由勾股定理可得CE==.【点睛】本题考查了尺规作图——作角平分线,垂径定理等,熟练掌握角平分线的作图方法、推导得出OE⊥BC是解题的关键.21.“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图部分信息如下:(1)本次比赛参赛选手共有人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为;(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.【答案】(1)50,30%;(2)不能,理由见解析;(3)P=【解析】【分析】(1)由直方图可知59.5~69.5分数段有5人,由扇形统计图可知这一分数段人占10%,据此可得选手总数,然后求出89.5~99.5这一分数段所占的百分比,用1减去其他分数段的百分比即可得到分数段69.5~79.5所占的百分比;(2)观察可知79.5~99.5这一分数段的人数占了60%,据此即可判断出该选手是否获奖;(3)画树状图得到所有可能的情况,再找出符合条件的情况后,用概率公式进行求解即可.【详解】(1)本次比赛选手共有(2+3)÷10%=50(人),“89.5~99.5”这一组人数占百分比为:(8+4)÷50×100%=24%,所以“69.5~79.5”这一组人数占总人数的百分比为:1-10%-24%-36%=30%,故答案为:50,30%;(2)不能;由统计图知,79.5~89.5和89.5~99.5两组占参赛选手60%,而78<79.5,所以他不能获奖;(3)由题意得树状图如下由树状图知,共有12种等可能结果,其中恰好选中1男1女的8结果共有种,故P==.【点睛】本题考查了直方图、扇形图、概率,结合统计图找到必要信息进行解题是关键.22. 小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元)(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?【答案】(1)W1=-2x²+60x+8000,W2=-19x+950;(2)当x=10时,W总最大为9160元.【解析】【分析】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉(50-x)盆,根据盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元,②花卉的平均每盆利润始终不变,即可得到利润W1,W2与x的关系式;(2)由W总=W1+W2可得关于x的二次函数,利用二次函数的性质即可得.【详解】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉[100-(50+x)]=(50-x)盆,由题意得W1=(50+x)(160-2x)=-2x²+60x+8000,W2=19(50-x)=-19x+950;(2)W总=W1+W2=-2x²+60x+8000+(-19x+950)=-2x²+41x+8950,∵-2<0,=10.25,故当x=10时,W总最大,W总最大=-2×10²+41×10+8950=9160.【点睛】本题考查了二次函数的应用,弄清题意,找准数量关系列出函数解析式是解题的关键.23. 如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E,点M为BD中点,CM 的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.【答案】(1)证明见解析;(2)∠EMF=100°;(3)证明见解析.【解析】【分析】(1)在Rt△DCB和Rt△DEB中,利用直角三角形斜边中线等于斜边一半进行证明即可得;(2)根据直角三角形两锐角互余可得∠ABC=40°,根据CM=MB,可得∠MCB=∠CBM,从而可得∠CMD=2∠CBM,继而可得∠CME=2∠CBA=80°,根据邻补角的定义即可求得∠EMF的度数;【详解】(1)∵M为BD中点,Rt△DCB中,MC=BD,Rt△DEB中,EM=BD,∴MC=ME;(2)∵∠BAC=50°,∠ACB=90°,∴∠ABC=90°-50°=40°,∵CM=MB,∴∠MCB=∠CBM,∴∠CMD=∠MCB+∠CBM=2∠CBM,同理,∠DME=2∠EBM,∴∠CME=2∠CBA=80°,∴∠EMF=180°-80°=100°;(3)∵△DAE≌△CEM,CM=EM,∴AE=EM,DE=CM,∠CME=∠DEA=90°,∠ECM=∠ADE, ∵CM=EM,∴AE=ED,∴∠DAE=∠ADE=45°,∴∠ABC=45°,∠ECM=45°,又∵CM=ME=BD=DM,∴DE=EM=DM,∴△DEM是等边三角形,∴∠EDM=60°,∴∠MBE=30°,∵CM=BM,∴∠BCM=∠CBM,∵∠MCB+∠ACE=45°,∠CBM+∠MBE=45°,∴∠ACE=∠MBE=30°,∴∠ACM=∠ACE+∠ECM=75°,连接AM,∵AE=EM=MB,∴∠MEB=∠EBM=30°,∠AME=∠MEB=15°,∵∠CME=90°,∴∠CMA=90°-15°=75°=∠ACM,∴AC=AM,∵N为CM中点,∴AN⊥CM,∵CM⊥EM,∴AN∥CM.【点睛】本题考查了三角形全等的性质、直角三角形斜边中线的性质、等腰三角形的判定与性质、三角形外角的性质等,综合性较强,正确添加辅助线、灵活应用相关知识是解题的关键.。
2023年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.(4分)﹣5的相反数是()A.﹣5B.C.D.52.(4分)某几何体的三视图如图所示,则该几何体为()A.B.C.D.3.(4分)下列计算正确的是()A.a4+a4=a8B.a4•a4=a16C.(a4)4=a16D.a8÷a4=a2 4.(4分)在数轴上表示不等式<0的解集,正确的是()A.B.C.D.5.(4分)下列函数中,y的值随x值的增大而减小的是()A.y=x2+1B.y=﹣x2+1C.y=2x+1D.y=﹣2x+1 6.(4分)如图,正五边形ABCDE内接于⊙O,连接OC,OD,则∠BAE﹣∠COD=()A.60°B.54°C.48°D.36°7.(4分)如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用1,2,3这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为()A.B.C.D.8.(4分)如图,点E在正方形ABCD的对角线AC上,EF⊥AB于点F,连接DE并延长,交边BC于点M,交边AB的延长线于点G.若AF=2,FB=1,则MG=()A.2B.C.+1D.9.(4分)已知反比例函数y=(k≠0)在第一象限内的图象与一次函数y=﹣x+b的图象如图所示,则函数y=x2﹣bx+k﹣1的图象可能为()A.B.C.D.10.(4分)如图,E是线段AB上一点,△ADE和△BCE是位于直线AB同侧的两个等边三角形,点P,F分别是CD,AB的中点.若AB=4,则下列结论错误的是()A.PA+PB的最小值为3B.PE+PF的最小值为2C.△CDE周长的最小值为6D.四边形ABCD面积的最小值为3二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)计算:+1=.12.(5分)据统计,2023年第一季度安徽省采矿业实现利润总额74.5亿元,其中74.5亿用科学记数法表示为.13.(5分)清初数学家梅文鼎在著作《平三角举要》中,对南宋数学家秦九韶提出的计算三角形面积的“三斜求积术”给出了一个完整的证明,证明过程中创造性地设计直角三角形,得出了一个结论:如图,AD是锐角△ABC的高,则BD=(BC+).当AB=7,BC=6,AC=5时,CD=.14.(5分)如图,O是坐标原点,Rt△OAB的直角顶点A在x轴的正半轴上,AB=2,∠AOB=30°,反比例函数y=(k>0)的图象经过斜边OB的中点C.(1)k=;(2)D为该反比例函数图象上的一点,若DB∥AC,则OB2﹣BD2的值为.三、(本大题共2小题,每小题8分,满分16分)15.(8分)先化简,再求值:,其中x=.16.(8分)根据经营情况,公司对某商品在甲、乙两地的销售单价进行了如下调整:甲地上涨10%,乙地降价5元.已知销售单价调整前甲地比乙地少10元,调整后甲地比乙地少1元,求调整前甲、乙两地该商品的销售单价.四、(本大题共2小题,每小题8分,满分16分)17.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中,点A,B,C,D均为格点(网格线的交点).(1)画出线段AB关于直线CD对称的线段A1B1;(2)将线段AB向左平移2个单位长度,再向上平移1个单位长度,得到线段A2B2,画出线段A2B2;(3)描出线段AB上的点M及直线CD上的点N,使得直线MN垂直平分AB.18.(8分)【观察思考】【规律发现】请用含n的式子填空:(1)第n个图案中“◎”的个数为;(2)第1个图案中“★”的个数可表示为,第2个图案中“★”的个数可表示为,第3个图案中“★”的个数可表示为,第4个图案中“★”的个数可表示为,……,第n个图案中“★”的个数可表示为.【规律应用】(3)结合图案中“★”的排列方式及上述规律,求正整数n,使得连续的正整数之和1+2+3+……+n等于第n个图案中“◎”的个数的2倍.五、(本大题共2小题,每小题10分,满分20分)19.(10分)如图,O,R是同一水平线上的两点,无人机从O点竖直上升到A点时,测得A到R点的距离为40m,R点的俯角为24.2°,无人机继续竖直上升到B点,测得R点的俯角为36.9°.求无人机从A点到B点的上升高度AB(精确到0.1m).参考数据:sin24.2°≈0.41,cos24.2°≈0.91,tan24.2°≈0.45,sin36.9°≈0.60,cos36.9°≈0.80,tan36.9°≈0.75.20.(10分)已知四边形ABCD内接于⊙O,对角线BD是⊙O的直径.(1)如图1,连接OA,CA,若OA⊥BD,求证:CA平分∠BCD;(2)如图2,E为⊙O内一点,满足AE⊥BC,CE⊥AB.若BD=3,AE=3,求弦BC的长.六、(本题满分12分)21.(12分)端午节是中国的传统节日,民间有端午节吃粽子的习俗.在端午节来临之际,某校七、八年级开展了一次“包粽子”实践活动,对学生的活动情况按10分制进行评分,成绩(单位:分)均为不低于6的整数.为了解这次活动的效果,现从这两个年级各随机抽取10名学生的活动成绩作为样本进行整理,并绘制统计图表,部分信息如下:八年级10名学生活动成绩统计表成绩/分678910人数12a b2已知八年级10名学生活动成绩的中位数为8.5分.请根据以上信息,完成下列问题:(1)样本中,七年级活动成绩为7分的学生数是,七年级活动成绩的众数为______分;(2)a=,b=;(3)若认定活动成绩不低于9分为“优秀”,根据样本数据,判断本次活动中优秀率高的年级是否平均成绩也高,并说明理由.七、(本题满分12分)22.(12分)在Rt△ABC中,M是斜边AB的中点,将线段MA绕点M旋转至MD位置,点D在直线AB外,连接AD,BD.(1)如图1,求∠ADB的大小;(2)已知点D和边AC上的点E满足ME⊥AD,DE∥AB.(i)如图2,连接CD,求证:BD=CD;(ii)如图3,连接BE,若AC=8,BC=6,求tan∠ABE的值.八、(本题满分14分)23.(14分)在平面直角坐标系中,点O是坐标原点,抛物线y=ax2+bx(a≠0)经过点A (3,3),对称轴为直线x=2.(1)求a,b的值;(2)已知点B,C在抛物线上,点B的横坐标为t,点C的横坐标为t+1.过点B作x 轴的垂线交直线OA于点D,过点C作x轴的垂线交直线OA于点E.(i)当0<t<2时,求△OBD与△ACE的面积之和;(ii)在抛物线对称轴右侧,是否存在点B,使得以B,C,D,E为顶点的四边形的面积为?若存在,请求出点B的横坐标t的值;若不存在,请说明理由.2023年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A,B,C,D四个选项,其中只有一个是符合题目要求的.1.【分析】根据相反数的概念:只有符号不同的两个数叫做互为相反数,即可得出答案.【解答】解:﹣5的相反数是5.故选:D.【点评】此题主要考查了相反数,正确掌握相反数的定义是解题关键.2.【分析】根据几何体的三视图分析解答即可.【解答】解:由几何体的三视图可得该几何体是B选项,故选:B.【点评】此题考查由三视图判断几何体,关键是熟悉几何体的三视图.3.【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、幂的乘方运算法则分别化简,进而判断即可.【解答】解:A.a4+a4=2a4,故此选项不合题意;B.a4•a4=a8,故此选项不合题意;C.(a4)4=a16,故此选项符合题意;D.a8÷a4=a4,故此选项不合题意.故选:C.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算、幂的乘方运算,正确掌握相关运算法则是解题关键.4.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:<0,x﹣1<0,x<1,在数轴上表示为,故选:A.【点评】本题考查了解一元一次不等式和在数轴上表示不等式的解集,能求出不等式的解集是解此题的关键.5.【分析】根据各函数解析式可得y随x的增大而减小时x的取值范围.【解答】解:选项A中,函数y=x2+1,x<0时,y随x的增大而减小;故A不符合题意;选项B中,函数y=﹣x2+1,x>0时,y随x的增大而减小;故B不符合题意;选项C中,函数y=2x+1,y随x的增大而增大;故C不符合题意;选项D中,函数y=﹣2x+1,y随x的增大而减小.故D符合题意;故选:D.【点评】本题考查二次函数,一次函数的性质,解题关键是掌握二次函数,一次函数图象与系数的关系.6.【分析】根据多边形的内角和可以求得∠BAE的度数,根据周角等于360°,可以求得∠COD的度数,然后即可计算出∠BAE﹣∠COD的度数.【解答】解:∵五边形ABCDE是正五边形,∴∠BAE==108°,∠COD==72°,∴∠BAE﹣∠COD=108°﹣72°=36°,故选:D.【点评】本题考查正多边形和圆,解答本题的关键是明确题意,求出∠BAE和∠COD的度数.7.【分析】先罗列出所有等可能结果,从中找到“平稳数”的结果,再根据概率公式求解即可.【解答】解:用1,2,3这三个数字随机组成一个无重复数字的三位数出现的等可能结果有:123、132、213、231、312、321,其中恰好是“平稳数”的有123、321,所以恰好是“平稳数”的概率为=,故选:C.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.8.【分析】根据相似三角形的判定结合正方形的性质证得△AEF∽△ACB,求得AC=3,根据相似三角形的性质求得AE=2,CE=,证得△ADE∽△CFE,根据相似三角形的性质得到CM==BM,证得△CDM≌△BGM,求出BG,根据勾股定理即可求出MG.【解答】解:∵四边形ABCD是正方形,AF=2,FB=1,∴CD=AD=AB=BC=3,∠ADC=∠DAB=∠ABC=90°,DC∥AB,AD∥BC,∴AC==3,∵EF⊥AB,∴EF∥BC,∴△AEF∽△ACB,∴=,∴=,∴EF=2,∴AE==2,∴CE=AC﹣AE=,∵AD∥CM,∴△ADE∽△CFE,∴=,∴==2,∴CM==BM,在△CDM和△BGM中,,∴△CDM≌△BGM(SAS),∴CD=BG=3,∴MG===.故选:B.【点评】本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,相似三角形的判定和性质,熟练掌握正方形的性质是解题的关键.9.【分析】根据反比例函数y=与一次函数y=﹣x+b的图象,可知k>0,b>0,所以函数y=x2﹣bx+k﹣1的图象开口向上,对称轴为直线x=>0,根据两个交点为(1,k)和(k,1),可得k﹣b=﹣1,b=k+1,可得函数y=x2﹣bx+k﹣1的图象过点(1,﹣1),不过原点,即可判断函数y=x2﹣bx+k﹣1的大致图象.【解答】解:∵一次函数函数y=﹣x+b的图象经过第一、二、四象限,且与y轴交于正半轴,则b>0,反比例函数y=的图象经过第一、三象限,则k>0,∴函数y=x2﹣bx+k﹣1的图象开口向上,对称轴为直线x=>0,由图象可知,反比例函数y=与一次函数y=﹣x+b的图象有两个交点(1,k)和(k,1),∴﹣1+b=k,∴k﹣b=﹣1,∴b=k+1,∴对于函数y=x2﹣bx+k﹣1,当x=1时,y=1﹣b+k﹣1=﹣1,∴函数y=x2﹣bx+k﹣1的图象过点(1,﹣1),∵反比例函数y=与一次函数y=﹣x+b的图象有两个交点,∴方程=﹣x+b有两个不相等的实数根,∴Δ=b2﹣4k=(k+1)2﹣4k=(k﹣1)2>0,∴k﹣1≠0,∴当x=0时,y=k﹣1≠0,∴函数y=x2﹣bx+k﹣1的图象不过原点,∴符合以上条件的只有A选项.故选:A.【点评】本题考查的是一次函数、反比例函数和二次函数的图象,应该熟记一次函数、反比例函数和二次函数在不同情况下所在的象限.10.【分析】延长AD,BC交于M,过P作直线l∥AB,由△ADE和△BCE是等边三角形,可得四边形DECM是平行四边形,而P为CD中点,知P为EM中点,故P在直线l上运动,作A关于直线l的对称点A',连接A'B,当P运动到A'B与直线l的交点,即A',P,B共线时,PA+PB=PA'+PB最小,即可得PA+PB最小值A'B==2,判断选项A错误;由PM=PE,即可得当M,P,F共线时,PE+PF最小,最小值为MF 的长度,此时PE+PF的最小值为2,判断选项B正确;过D作DK⊥AB于K,过C作CT⊥AB于T,由△ADE和△BCE是等边三角形,得KT=KE+TE=AB=2,有CD=≥2,故△CDE周长的最小值为6,判断选项C正确;设AE=2m,可得S四边形ABCD(m﹣1)2+3,即知四边形ABCD面积的最小值为3,判断选项D正确.【解答】解:延长AD,BC交于M,过P作直线l∥AB,如图:∵△ADE和△BCE是等边三角形,∴∠DEA=∠MBA=60°,∠CEB=∠MAB=60°,∴DE∥BM,CE∥AM,∴四边形DECM是平行四边形,∵P为CD中点,∴P为EM中点,∵E在线段AB上运动,∴P在直线l上运动,由AB=4知等边三角形ABM的高为2,∴M到直线l的距离,P到直线AB的距离都为,作A关于直线l的对称点A',连接A'B,当P运动到A'B与直线l的交点,即A',P,B 共线时,PA+PB=PA'+PB最小,此时PA+PB最小值A'B===2,故选项A错误,符合题意;∵PM=PE,∴PE+PF=PM+PF,∴当M,P,F共线时,PE+PF最小,最小值为MF的长度,∵F为AB的中点,∴MF⊥AB,∴MF为等边三角形ABM的高,∴PE+PF的最小值为2,故选项B正确,不符合题意;过D作DK⊥AB于K,过C作CT⊥AB于T,如图,∵△ADE和△BCE是等边三角形,∴KE=AE,TE=BE,∴KT=KE+TE=AB=2,∴CD≥2,∴DE+CE+CD≥AE+BE+2,即DE+CE+CD≥AB+2,∴DE+CE+CD≥6,∴△CDE周长的最小值为6,故选项C正确,不符合题意;设AE=2m,则BE=4﹣2m,∴AK=KE=m,BT=ET=2﹣m,DK=AK=m,CT=BT=2﹣m,=m•m=m2,S△BCT=(2﹣m)(2﹣m)=m2﹣2m+2,∴S△ADKS梯形DKTC=(m+2﹣m)•2=2,=m2+m2﹣2m+2+2=m2﹣2m+4=(m﹣1)∴S四边形ABCD2+3,∴当m=1时,四边形ABCD面积的最小值为3,故选项D正确,不符合题意;故选:A.【点评】本题考查轴对称﹣最短路径问题,涉及等边三角形的性质及应用,三角形面积等知识,解题的关键是求出P的运动轨迹是直线l.二、填空题(本大题共4小题,每小题5分,满分20分)11.【分析】直接利用立方根的性质化简,进而得出答案.【解答】解:原式=2+1=3.故答案为:3.【点评】此题主要考查了实数的运算,正确掌握立方根的性质是解题关键.12.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:74.5亿=7450000000=7.45×109.故答案为:7.45×109.【点评】此题考查科学记数法的表示方法,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.【分析】根据BD=(BC+)和AB=7,BC=6,AC=5,可以计算出BD 的长,再根据BC的长,即可计算出CD的长.【解答】解:∵BD=(BC+),AB=7,BC=6,AC=5,∴BD=(6+)=5,∴CD=BC﹣BD=6﹣5=1,故答案为:1.【点评】本题考查新定义、直角三角形,解答本题的关键是明确题意,利用新定义解答.14.【分析】(1)根据直角三角形的性质,求出A、B两点坐标,作出辅助线,证得△OPC ≌△APC(HL),利用勾股定理及待定系数法求函数解析式即可解答.(2)求出AC、BD的解析式,再联立方程组,求得点D的坐标,分两种情况讨论即可求解.【解答】解:(1)在Rt△OAB中,AB=2,∠AOB=30°,∴,∴,∵C是OB的中点,∴OC=BC=AC=2,如图,过点C作CP⊥OA于P,∴△OPC≌△APC(HL),∴,在Rt△OPC中,PC=,∴C(,1).∵反比例函数y=(k>0)的图象经过斜边OB的中点C,∴,解得k=.故答案为:.(2)设直线AC的解析式为y=kx+b(k≠0),则,解得,∴AC的解析式为y=﹣x+2,∵AC∥BD,∴直线BD的解析式为y=﹣x+4,∵点D既在反比例函数图象上,又在直线BD上,∴联立得,解得,当D的坐标为(2+2,)时,BD2=(2+3﹣2)2+(2﹣2+)2=9+3=12,∴OB2﹣BD2=16﹣12=4;当D的坐标为(2﹣2,)时,BD2=(2+=9+3=12,∴OB2﹣BD2=16﹣12=4;综上,OB2﹣BD2=4.故答案为:4.【点评】本题考查了直角三角形的性质,待定系数法求函数解析式,勾股定理的应用,解题的关键是掌握直角三角形的性质及勾股定理的应用.三、(本大题共2小题,每小题8分,满分16分)15.【分析】直接将分式的分子分解因式,进而化简,把已知数据代入得出答案.【解答】解:原式==x+1,当x=﹣1时,原式=﹣1+1=.【点评】此题主要考查了分式的化简求值,正确化简分式是解题关键.16.【分析】设调整前甲地该商品的销售单价为x元,乙地该商品的销售单价为y元,根据销售单价调整前甲地比乙地少10元,调整后甲地比乙地少1元,列出二元一次方程组,解方程组即可.【解答】解:设调整前甲地该商品的销售单价为x元,乙地该商品的销售单价为y元,由题意得:,解得:,答:调整前甲地该商品的销售单价40元,乙地该商品的销售单价为50元.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.四、(本大题共2小题,每小题8分,满分16分)17.【分析】(1)根据轴对称的性质画出图形即可;(2)根据平移的性质画出图形即可;(3)根据线段垂直平分线的作法画出图形即可.【解答】解:(1)线段A1B1如图所示;(2)线段A2B2如图所示;(3)直线MN即为所求.【点评】本题考查了作图﹣轴对称变换:几何图形都可看作是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的.也考查了线段垂直平分线的性质.18.【分析】(1)不难看出,第1个图案中“◎”的个数为:3=1+2,第2个图案中“◎”的个数为:6=1+2+2+1,第2个图案中“◎”的个数为:6=1+2+2+3+1,…,从而可求第n个图案中“◎”的个数;(2)根据所给的规律进行总结即可;(3)结合(1)(2)列出相应的式子求解即可.【解答】解:(1)∵第1个图案中“◎”的个数为:3=1+2,第2个图案中“◎”的个数为:6=1+2+2+1,第2个图案中“◎”的个数为:6=1+2+2+3+1,…,∴第n个图案中“◎”的个数:1+2(n﹣1)+n+1=3n,故答案为:3n;(2)由题意得:第n个图案中“★”的个数可表示为:;故答案为:;(3)由题意得:=2×3n,解得:n=11或n=0(不符合题意).【点评】本题主要考查图形的变化规律,解答的关键是由所给的图形总结出存在的规律.五、(本大题共2小题,每小题10分,满分20分)19.【分析】在不同的直角三角形中,利用直角三角形的边角关系进行计算即可.【解答】解:如图,由题意可知,∠ORB=36.9°,∠ORA=24.2°,在Rt△AOR中,AR=40m,∠ORA=24.2°,∴OA=sin∠ORA×AR=sin24.2°×40≈16.4(m),OR=cos24.2°×40≈36.4(m),在Rt△BOR中,OB=tan36.9°×36.4≈27.3(m),∴AB=OB﹣OA=27.3﹣16.4=10.9(m),答:无人机上升高度AB约为10.9m.【点评】本题考查解直角三角形的应用,掌握直角三角形的边角关系是正确解答的前提.20.【分析】(1)由垂径定理证出∠ACB=∠ACD,则可得出结论;(2)延长AE交BC于M,延长CE交AB于N,证明四边形AECD是平行四边形,则AE=CD=3,根据勾股定理即可得出答案.【解答】(1)证明:∵OA⊥BD,∴=,∴∠ACB=∠ACD,即CA平分∠BCD;(2)延长AE交BC于M,延长CE交AB于N,∵AE⊥BC,CE⊥AB,∴∠AMB=∠CNB=90°,∵BD是⊙O的直径,∴∠BAD=∠BCD=90°,∴∠BAD=∠CNB,∠BCD=∠AMB,∴AD∥NC,CD∥AM,∴四边形AECD是平行四边形,∴AE=CD=3,∴BC===3.【点评】本题主要考查了圆周角定理,垂径定理,勾股定理,平行四边形三角形的判定与性质,熟练掌握圆周角定理是解题的关键.六、(本题满分12分)21.【分析】(1)分别求得成绩为8分,9分,10分的人数,再结合总人数为10人列式计算即可求得成绩为7分的学生数,然后根据众数定义即可求得众数;(2)根据中位数的定义将八年级的活动成绩从小到大排列,那么其中位数应是第5个和第6个数据的平均数,结合已知条件易得第5个和第6个数据分别为8,9,再根据表格中数据即可求得答案;(3)结合(1)(2)中所求,分别求得两个年级优秀率及平均成绩后进行比较即可.【解答】解:(1)由扇形统计图可得,成绩为8分的人数为10×50%=5(人),成绩为9分的人数为10×20%=2(人),成绩为10分的人数为10×20%=2(人),则成绩为7分的学生数为10﹣5﹣2﹣2=1(人),∵出现次数最多的为8分,∴七年级活动成绩的众数为8分,故答案为:1;8;(2)由题意,将八年级的活动成绩从小到大排列后,它的中位数应是第5个和第6个数据的平均数,∵八年级10名学生活动成绩的中位数为8.5分,∴第5个和第6个数据的和为8.5×2=17=8+9,∴第5个和第6个数据分别为8分,9分,∵成绩为6分和7分的人数为1+2=3(人),∴成绩为8分的人数为5﹣3=2(人),成绩为9分的人数为10﹣5﹣2=3(人),即a=2,b=3,故答案为:2;3;(3)不是,理由如下:结合(1)(2)中所求可得七年级的优秀率为×100%=40%,八年级的优秀率为×100%=50%,七年级的平均成绩为=8.5(分),八年级的平均成绩为=8.3(分),∵40%<50%,8.5>8.3,∴本次活动中优秀率高的年级并不是平均成绩也高.【点评】本题主要考查众数,中位数及平均数,数据分析相关知识点是必考且重要知识点,必须熟练掌握,(2)中根据中位数定义及已知条件确定第5个和第6个数据分别为8分,9分是解题的关键.七、(本题满分12分)22.【分析】(1)证MA=MD=MB,得∠MAD=∠MDA,∠MDB=∠MBD,再由三角形内角和定理得∠ADB=∠MDA+∠MDB=90°即可;(2)(i)证四边形EMBD是平行四边形,得DE=BM=AM,再证四边形EAMD是平行四边形,进而得平行四边形EAMD是菱形,则∠BAD=∠CAD,然后证A、C、D、B四点共圆,由圆周角定理得=,即可得出结论;(ii)过点E作EH⊥AB于点H,由勾股定理得AB=10,再由菱形的性质得AE=AM=5,进而由锐角三角函数定义得EH=3,则AH=4,BH=6,然后由锐角三角函数定义即可得出结论.【解答】(1)解:∵M是AB的中点,∴MA=MB,由旋转的性质得:MA=MD=MB,∴∠MAD=∠MDA,∠MDB=∠MBD,∵∠MAD+∠MDA+∠MDB+∠MBD=180°,∴∠ADB=∠MDA+∠MDB=90°,即∠ADB的大小为90°;(2)(i)证明:∵∠ADB=90°,∴AD⊥BD,∵ME⊥AD,∴ME∥BD,∵ED∥BM,∴四边形EMBD是平行四边形,∴DE=BM=AM,∴DE∥AM,∴四边形EAMD是平行四边形,∵EM⊥AD,∴平行四边形EAMD是菱形,∴∠BAD=∠CAD,又∵∠ACB=∠ADB=90°,∴A、C、D、B四点共圆,∵∠BCD=∠CAD,∴=,∴BD=CD;(ii)解:如图3,过点E作EH⊥AB于点H,则∠EHA=∠EHB=90°,在Rt△ABC中,由勾股定理得:AB===10,∵四边形EAMD是菱形,∴AE=AM=AB=5,∴sin∠CAB===,∴EH=AE•sin∠CAB=5×=3,∴AH===4,∴BH=AB﹣AH=10﹣4=6,∴tan∠ABE===,即tan∠ABE的值为.【点评】本题是几何变换综合题目,考查了旋转的性质,平行四边形的判定与性质,菱形的判定与性质,等腰三角形的性质,勾股定理,四点共圆,圆周角定理以及锐角三角函数定义等知识,本题综合性强,熟练掌握菱形的判定与性质、等腰三角形的性质以及锐角三角函数是解题的关键,属于中考常考题型.八、(本题满分14分)23.【分析】(1)运用待定系数法即可求得答案;(2)由题意得B(t,﹣t2+4t),C(t+1,﹣t2+2t+3),利用待定系数法可得OA的解析式为y=x,则D(t,t),E(t+1,t+1),(i)设BD与x轴交于点M,过点A作AN⊥CE,则M(t,0),N(t+1,3),利用S△OBD+S△ACE=BD•OM+AN•CE即可求得答案;=(ii)分两种情况:①当2<t<3时,②当t>3时,分别画出图象,利用S四边形DCEB (BD+CE)•DH,建立方程求解即可得出答案.【解答】解:(1)∵抛物线y=ax2+bx(a≠0)经过点A(3,3),对称轴为直线x=2,∴,解得:;(2)由(1)得:y=﹣x2+4x,∴当x=t时,y=﹣t2+4t,当x=t+1时,y=﹣(t+1)2+4(t+1),即y=﹣t2+2t+3,∴B(t,﹣t2+4t),C(t+1,﹣t2+2t+3),设OA的解析式为y=kx,将A(3,3)代入,得:3=3k,∴k=1,∴OA的解析式为y=x,∴D(t,t),E(t+1,t+1),(i)设BD与x轴交于点M,过点A作AN⊥CE,如图,则M(t,0),N(t+1,3),+S△ACE=BD•OM+AN•CE=(﹣t2+4t﹣t)•t+(﹣t2+2t+3﹣t﹣1)=(﹣∴S△OBDt3+3t2)+(t3﹣3t2+4)=﹣t3+t2+t3﹣t2+2=2;(ii)①当2<t<3时,过点D作DH⊥CE于H,如图,则H(t+1,t),BD=﹣t2+4t﹣t=﹣t2+3t,CE=t+1﹣(﹣t2+2t+3)=t2﹣t﹣2,DH=t+1﹣t=1,=(BD+CE)•DH,∴S四边形DCEB即=(﹣t2+3t+t2﹣t﹣2)×1,解得:t=;②当t>3时,如图,过点D作DH⊥CE于H,则BD=t﹣(﹣t2+4t)=t2﹣3t,CE=t2﹣t﹣2,=(BD+CE)•DH,∴S四边形DBCE即=(t2﹣3t+t2﹣t﹣2)×1,解得:t1=+1(舍去),t2=﹣+1(舍去);综上所述,t的值为.【点评】本题是二次函数综合题,考查了待定系数法,一次函数和二次函数的综合应用,四边形面积等,其中(2)(ii)分类求解是解题的关键。
2024年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.(4分)(2024•安徽)(﹣2)×3的结果是()A.﹣5 B.1C.﹣6 D.6考点:有理数的乘法.分析:依据两数相乘同号得正,异号得负,再把肯定值相乘,可得答案.解答:解:原式=﹣2×3=﹣6.故选:C.点评:本题考查了有理数的乘法,先确定积的符号,再进行肯定值的运算.2.(4分)(2024•安徽)x2•x3=()A.x5B.x6C.x8D.x9考点:同底数幂的乘法.分析:依据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,即a m•a n=a m+n计算即可.解答:解:x2•x3=x2+3=x5.故选A.点评:主要考查同底数幂的乘法的性质,娴熟驾驭性质是解题的关键.3.(4分)(2024•安徽)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()A.B.C.D.考点:简洁几何体的三视图.分析:俯视图是从物体上面看所得到的图形.解答:解:从几何体的上面看俯视图是,故选:D.点评:本题考查了几何体的三种视图,驾驭定义是关键.留意全部的看到的棱都应表现在三视图中.4.(4分)(2024•安徽)下列四个多项式中,能因式分解的是()A.a2+1 B.a2﹣6a+9 C.x2+5y D.x2﹣5y考点:因式分解的意义.分析:依据因式分解是把一个多项式转化成几个整式积的形式,可得答案.解答:解:A、C、D都不能把一个多项式转化成几个整式积的形式,故A、C、D不能因式分解;B、是完全平方公式的形式,故B能分解因式;故选:B.点评:本题考查了因式分解的意义,把一个多项式转化成几个整式积的形式是解题关键.5.(4分)(2024•安徽)某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表所示,则棉花纤维长度的数据在8≤x<32这个范围的频率为()棉花纤维长度x频数0≤x<8 18≤x<16 216≤x<24 824≤x<32 632≤x<40 3A.0.8 B.0.7 C.0.4 D.0.2考点:频数(率)分布表.分析:求得在8≤x<32这个范围的频数,依据频率的计算公式即可求解.解答:解:在8≤x<32这个范围的频数是:2+8+6=16,则在8≤x<32这个范围的频率是:=0.8.故选A.点评:本题考查了频数分布表,用到的学问点是:频率=频数÷总数.6.(4分)(2024•安徽)设n为正整数,且n<<n+1,则n的值为()A.5B.6C.7D.8考点:估算无理数的大小.分析:首先得出<<,进而求出的取值范围,即可得出n的值.解答:解:∵<<,∴8<<9,∵n<<n+1,∴n=8,故选;D.点评:此题主要考查了估算无理数,得出<<是解题关键.7.(4分)(2024•安徽)已知x2﹣2x﹣3=0,则2x2﹣4x的值为()A.﹣6 B.6C.﹣2或6 D.﹣2或30考点:代数式求值.分析:方程两边同时乘以2,再化出2x2﹣4x求值.解答:解:x2﹣2x﹣3=02×(x2﹣2x﹣3)=02×(x2﹣2x)﹣6=02x2﹣4x=6故选:B.点评:本题考查代数式求值,解题的关键是化出要求的2x2﹣4x.8.(4分)(2024•安徽)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A 点与BC的中点D重合,折痕为MN,则线段BN的长为()A.B.C.4D.5考点:翻折变换(折叠问题).分析:设BN=x,则由折叠的性质可得DN=AN=9﹣x,依据中点的定义可得BD=3,在Rt△ABC 中,依据勾股定理可得关于x的方程,解方程即可求解.解答:解:设BN=x,由折叠的性质可得DN=AN=9﹣x,∵D是BC的中点,∴BD=3,在Rt△ABC中,x2++32=(9﹣x)2,解得x=4.故线段BN的长为4.故选:C.点评:考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.9.(4分)(2024•安徽)如图,矩形ABCD中,AB=3,BC=4,动点P从A点动身,按A→B→C的方向在AB和BC上移动,记P A=x,点D到直线P A的距离为y,则y关于x的函数图象大致是()A.B.C.D.考点:动点问题的函数图象.分析:①点P在AB上时,点D到AP的距离为AD的长度,②点P在BC上时,依据同角的余角相等求出∠APB=∠P AD,再利用相像三角形的列出比例式整理得到y与x的关系式,从而得解.解答:解:①点P在AB上时,0≤x≤3,点D 到AP 的距离为AD的长度,是定值4;②点P在BC上时,3<x≤5,∵∠APB+∠BAP=90°,∠P AD+∠BAP=90°,∴∠APB=∠P AD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA,∴=,即=,∴y=,纵观各选项,只有B选项图形符合.故选B.点评:本题考查了动点问题函数图象,主要利用了相像三角形的判定与性质,难点在于依据点P的位置分两种状况探讨.10.(4分)(2024•安徽)如图,正方形ABCD的对角线BD长为2,若直线l满意:①点D到直线l的距离为;②A、C两点到直线l的距离相等.则符合题意的直线l的条数为()A.1B.2C.3D.4考点:正方形的性质.分析:连接AC与BD相交于O,依据正方形的性质求出OD=,然后依据点到直线的距离和平行线间的距离相等解答.解答:解:如图,连接AC与BD相交于O,∵正方形ABCD的对角线BD长为2,∴OD=,∴直线l∥AC并且到D的距离为,同理,在点D的另一侧还有一条直线满意条件,故共有2条直线l.故选B.点评:本题考查了正方形的性质,主要利用了正方形的对角线相互垂直平分,点D到O的距离小于是本题的关键.czsx二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)(2024•安徽)据报载,2024年我国将发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示为 2.5×107.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的肯定值与小数点移动的位数相同.当原数肯定值>1时,n是正数;当原数的肯定值<1时,n是负数.解答:解:将25000000用科学记数法表示为2.5×107户.故答案为:2.5×107.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(5分)(2024•安徽)某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=a(1+x)2.考点:依据实际问题列二次函数关系式.分析:由一月份新产品的研发资金为a元,依据题意可以得到2月份研发资金为a×(1+x),而三月份在2月份的基础上又增长了x,那么三月份的研发资金也可以用x表示出来,由此即可确定函数关系式.解答:解:∵一月份新产品的研发资金为a元,2月份起,每月新产品的研发资金与上月相比增长率都是x,∴2月份研发资金为a×(1+x),∴三月份的研发资金为y=a×(1+x)×(1+x)=a(1+x)2.故填空答案:a(1+x)2.点评:此题主要考查了依据实际问题二次函数列解析式,此题是平均增长率的问题,可以用公式a(1±x)2=b来解题.13.(5分)(2024•安徽)方程=3的解是x=6.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:4x﹣12=3x﹣6,解得:x=6,经检验x=6是分式方程的解.故答案为:6.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程肯定留意要验根.14.(5分)(2024•安徽)如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中肯定成立的是①②④.(把全部正确结论的序号都填在横线上)①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.考点:平行四边形的性质;全等三角形的判定与性质;直角三角形斜边上的中线.分析:分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF≌△DMF (ASA),得出对应线段之间关系进而得出答案.解答:解:①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,故此选项正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDE,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故此选项正确.故答案为:①②④.点评:此题主要考查了平行四边形的性质以及全等三角形的判定与性质等学问,得出△AEF≌△DME是解题关键.三、(本大题共2小题,每小题8分,满分16分)15.(8分)(2024•安徽)计算:﹣|﹣3|﹣(﹣π)0+2024.考点:实数的运算;零指数幂.专题:计算题.分析:原式第一项利用平方根定义化简,其次项利用肯定值的代数意义化简,第三项利用零指数幂法则计算,计算即可得到结果.解答:解:原式=5﹣3﹣1+2024=2024.点评:此题考查了实数的运算,娴熟驾驭运算法则是解本题的关键.16.(8分)(2024•安徽)视察下列关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…依据上述规律解决下列问题:(1)完成第四个等式:92﹣4×42=17;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.考点:规律型:数字的改变类;完全平方公式.分析:由①②③三个等式可得,被减数是从3起先连续奇数的平方,减数是从1起先连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可.解答:解:(1)32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…所以第四个等式:92﹣4×42=17;(2)第n个等式为:(2n+1)2﹣4n2=2(2n+1)﹣1,左边=(2n+1)2﹣4n2=4n2+4n+1﹣4n2=4n+1,右边=2(2n+1)﹣1=4n+2﹣1=4n+1.左边=右边∴(2n+1)2﹣4n2=2(2n+1)﹣1.点评:此题考查数字的改变规律,找出数字之间的运算规律,利用规律解决问题.四、(本大题共2小题,每小题8分,满分16分)17.(8分)(2024•安徽)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)将△ABC向上平移3个单位得到△A1B1C1,请画出△A1B1C1;(2)请画一个格点△A2B2C2,使△A2B2C2∽△ABC,且相像比不为1.考点:作图—相像变换;作图-平移变换.分析:(1)利用平移的性质得出对应点位置,进而得出答案;(2)利用相像图形的性质,将各边扩大2倍,进而得出答案.解答:解:(1)如图所示:△A1B1C1即为所求;(2)如图所示:△A2B2C2即为所求.点评:此题主要考查了相像变换和平移变换,得出变换后图形对应点位置是解题关键.18.(8分)(2024•安徽)如图,在同一平面内,两条平行高速马路l1和l2间有一条“Z”型道路连通,其中AB段与高速马路l1成30°角,长为20km;BC段与AB、CD段都垂直,长为10km,CD段长为30km,求两高速马路间的距离(结果保留根号).考点:解直角三角形的应用.分析:过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,依据三角函数求得BE,在Rt△BCF中,依据三角函数求得BF,在Rt△DFG中,依据三角函数求得FG,再依据EG=BE+BF+FG即可求解.解答:解:过B点作BE⊥l1,交l1于E,CD于F,l2于G.在Rt△ABE中,BE=AB•sin30°=20×=10km,在Rt△BCF中,BF=BC÷cos30°=10÷=km,CF=BF•sin30°=×=km,DF=CD﹣CF=(30﹣)km,在Rt△DFG中,FG=DF•sin30°=(30﹣)×=(15﹣)km,∴EG=BE+BF+FG=(25+5)km.故两高速马路间的距离为(25+5)km.点评:此题考查了解直角三角形的应用,主要是三角函数的基本概念及运算,关键把实际问题转化为数学问题加以计算.五、(本大题共2小题,每小题10分,满分20分)19.(10分)(2024•安徽)如图,在⊙O中,半径OC与弦AB垂直,垂足为E,以OC为直径的圆与弦AB的一个交点为F,D是CF延长线与⊙O的交点.若OE=4,OF=6,求⊙O的半径和CD的长.考点:垂径定理;勾股定理;圆周角定理;相像三角形的判定与性质.专题:计算题.分析:由OE⊥AB得到∠OEF=90°,再依据圆周角定理由OC为小圆的直径得到∠OFC=90°,则可证明Rt△OEF∽Rt△OFC,然后利用相像比可计算出⊙O的半径OC=9;接着在Rt△OCF中,依据勾股定理可计算出C=3,由于OF⊥CD,依据垂径定理得CF=DF,所以CD=2CF=6.解答:解:∵OE⊥AB,∴∠OEF=90°,∵OC为小圆的直径,∴∠OFC=90°,而∠EOF=∠FOC,∴Rt△OEF∽Rt△OFC,∴OE:OF=OF:OC,即4:6=6:OC,∴⊙O的半径OC=9;在Rt△OCF中,OF=6,OC=9,∴CF==3,∵OF⊥CD,∴CF=DF,∴CD=2CF=6.点评:本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理、圆周角定理和相像三角形的判定与性质.20.(10分)(2024•安徽)2024年某企业按餐厨垃圾处理费25元/吨、建筑垃圾处理费16元/吨的收费标准,共支付餐厨和建筑垃圾处理费5200元.从2024年元月起,收费标准上调为:餐厨垃圾处理费100元/吨,建筑垃圾处理费30元/吨.若该企业2024年处理的这两种垃圾数量与2024年相比没有改变,就要多支付垃圾处理费8800元.(1)该企业2024年处理的餐厨垃圾和建筑垃圾各多少吨?(2)该企业安排2024年将上述两种垃圾处理总量削减到240吨,且建筑垃圾处理量不超过餐厨垃圾处理量的3倍,则2024年该企业最少须要支付这两种垃圾处理费共多少元?考点:一次函数的应用;二元一次方程组的应用;一元一次不等式的应用.分析:(1)设该企业2024年处理的餐厨垃圾x吨,建筑垃圾y吨,依据等量关系式:餐厨垃圾处理费25元/吨×餐厨垃圾吨数+建筑垃圾处理费16元/吨×建筑垃圾吨数=总费用,列方程.(2)设该企业2024年处理的餐厨垃圾x吨,建筑垃圾y吨,须要支付这两种垃圾处理费共a元,先求出x的范围,由于a的值随x的增大而增大,所以当x=60时,a值最小,代入求解.解答:解:(1)设该企业2024年处理的餐厨垃圾x吨,建筑垃圾y吨,依据题意,得,解得.答:该企业2024年处理的餐厨垃圾80吨,建筑垃圾200吨;(2)设该企业2024年处理的餐厨垃圾x吨,建筑垃圾y吨,须要支付这两种垃圾处理费共a元,依据题意得,,解得x≥60.a=100x+30y=100x+30(240﹣x)=70x+7200,由于a的值随x的增大而增大,所以当x=60时,a值最小,最小值=70×60+7200=11400(元).答:2024年该企业最少须要支付这两种垃圾处理费共11400元.点评:本题主要考查了二元一次方程组及一元一次不等式的应用,找准等量关系正确的列出方程是解决本题的关键;六、(本题满分12分)21.(12分)(2024•安徽)如图,管中放置着三根同样的绳子AA1、BB1、CC1;(1)小明从这三根绳子中随机选一根,恰好选中绳子AA1的概率是多少?(2)小明先从左端A、B、C三个绳头中随机选两个打一个结,再从右端A1、B1、C1三个绳头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.考点:列表法与树状图法.专题:计算题.分析:(1)三根绳子选择一根,求出所求概率即可;(2)列表得出全部等可能的状况数,找出这三根绳子能连结成一根长绳的状况数,即可求出所求概率.解答:解:(1)三种等可能的状况数,则恰好选中绳子AA1的概率是;(2)列表如下:A B CA1(A,A1)(B,A1)(C,A1)B1(A,B1)(B,B1)(C,B1)C1(A,C1)(B,C1)(C,C1)全部等可能的状况有9种,其中这三根绳子能连结成一根长绳的状况有6种,则P==.点评:此题考查了列表法与树状图法,用到的学问点为:概率=所求状况数与总状况数之比.七、(本题满分12分)22.(12分)(2024•安徽)若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数;(2)已知关于x的二次函数y1=2x2﹣4mx+2m2+1和y2=ax2+bx+5,其中y1的图象经过点A (1,1),若y1+y2与y1为“同簇二次函数”,求函数y2的表达式,并求出当0≤x≤3时,y2的最大值.考点:二次函数的性质;二次函数的最值.专题:新定义.分析:(1)只需任选一个点作为顶点,同号两数作为二次项的系数,用顶点式表示两个为“同簇二次函数”的函数表达式即可.(2)由y1的图象经过点A(1,1)可以求出m的值,然后依据y1+y2与y1为“同簇二次函数”就可以求出函数y2的表达式,然后将函数y2的表达式转化为顶点式,在利用二次函数的性质就可以解决问题.解答:解:(1)设顶点为(h,k)的二次函数的关系式为y=a(x﹣h)2+k,当a=2,h=3,k=4时,二次函数的关系式为y=2(x﹣3)2+4.∵2>0,∴该二次函数图象的开口向上.当a=3,h=3,k=4时,二次函数的关系式为y=3(x﹣3)2+4.∵3>0,∴该二次函数图象的开口向上.∵两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4顶点相同,开口都向上,∴两个函数y=2(x﹣3)2+4与y=3(x﹣3)2+4是“同簇二次函数”.∴符合要求的两个“同簇二次函数”可以为:y=2(x﹣3)2+4与y=3(x﹣3)2+4.(2)∵y1的图象经过点A(1,1),∴2×12﹣4×m×1+2m2+1=1.整理得:m2﹣2m+1=0.解得:m1=m2=1.∴y1=2x2﹣4x+3=2(x﹣1)2+1.∴y1+y2=2x2﹣4x+3+ax2+bx+5=(a+2)x2+(b﹣4)x+8∵y1+y2与y1为“同簇二次函数”,∴y1+y2=(a+2)(x﹣1)2+1=(a+2)x2﹣2(a+2)x+(a+2)+1.其中a+2>0,即a>﹣2.∴.解得:.∴函数y2的表达式为:y2=5x2﹣10x+5.∴y2=5x2﹣10x+5=5(x﹣1)2.∴函数y2的图象的对称轴为x=1.∵5>0,∴函数y2的图象开口向上.①当0≤x≤1时,∵函数y2的图象开口向上,∴y2随x的增大而减小.∴当x=0时,y2取最大值,最大值为5(0﹣1)2=5.②当1<x≤3时,∵函数y2的图象开口向上,∴y2随x的增大而增大.∴当x=3时,y2取最大值,最大值为5(3﹣1)2=20.综上所述:当0≤x≤3时,y2的最大值为20.点评:本题考查了求二次函数表达式以及二次函数一般式与顶点式之间相互转化,考查了二次函数的性质(开口方向、增减性),考查了分类探讨的思想,考查了阅读理解实力.而对新定义的正确理解和分类探讨是解决其次小题的关键.八、(本题满分14分)23.(14分)(2024•安徽)如图1,正六边形ABCDEF的边长为a,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.(1)①∠MPN=60°;②求证:PM+PN=3a;(2)如图2,点O是AD的中点,连接OM、ON,求证:OM=ON;(3)如图3,点O是AD的中点,OG平分∠MON,推断四边形OMGN是否为特别四边形?并说明理由.考点:四边形综合题.分析:(1)①运用∠MPN=180°﹣∠BPM﹣∠NPC求解,②作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN于点K,利用MP+PN=MG+GH+HP+PL+LK+KN求解,(2)连接OE,由△OMA≌△ONE证明,(3)连接OE,由△OMA≌△ONE,再证出△GOE≌△NOD,由△ONG是等边三角形和△MOG是等边三角形求出四边形MONG是菱形.,解答:解:(1)①∵四边形ABCDEF是正六边形,∴∠A=∠B=∠C=∠D=∠E=∠F=120°又∴PM∥AB,PN∥CD,∴∠BPM=60°,∠NPC=60°,∴∠MPN=180°﹣∠BPM﹣∠NPC=180°﹣60°﹣60°=60°,故答案为;60°.②如图1,作AG⊥MP交MP于点G,BH⊥MP于点H,CL⊥PN于点L,DK⊥PN 于点K,MP+PN=MG+GH+HP+PL+LK+KN∵正六边形ABCDEF中,PM∥AB,作PN∥CD,∵∠AMG=∠BPH=∠CPL=∠DNK=60°,∴GM=AM,HL=BP,PL=PM,NK=ND,∵AM=BP,PC=DN,∴MG+HP+PL+KN=a,GH=LK=a,∴MP+PN=MG+GH+HP+PL+LK+KN=3a.(2)如图2,连接OE,∵四边形ABCDEF是正六边形,AB∥MP,PN∥DC,∴AM=BP=EN,又∵∠MAO=∠NOE=60°,OA=OE,在△ONE和△OMA中,∴△OMA≌△ONE(SAS)∴OM=ON.(3)如图3,连接OE,由(2)得,△OMA≌△ONE∴∠MOA=∠EON,∵EF∥AO,AF∥OE,∴四边形AOEF是平行四边形,∴∠AFE=∠AOE=120°,∴∠MON=120°,∴∠GON=60°,∵∠GON=60°﹣∠EON,∠DON=60°﹣∠EON,∴∠GOE=∠DON,∵OD=OE,∠ODN=∠OEG,在△GOE和∠DON中,∴△GOE≌△NOD(ASA),∴ON=OG,又∵∠GON=60°,∴△ONG是等边三角形,∴ON=NG,又∵OM=ON,∠MOG=60°,∴△MOG是等边三角形,∴MG=GO=MO,∴MO=ON=NG=MG,∴四边形MONG是菱形.点评:本题主要考查了四边形的综合题,解题的关键是恰当的作出协助线,依据三角形全等找出相等的线段.- 21 -。
安徽省数学中考真题(含答案解析)(请注意,由于我无法提供实际的数学题目,以下是一个模拟的文章)安徽省数学中考真题(含答案解析)在安徽省数学中考中,学生们需要解答一系列的数学题目,这不仅考察了他们的数学知识,还要求他们具备解题的思维能力和灵活运用数学方法的能力。
以下是一些典型的安徽省数学中考真题,以及对应的答案解析。
1. 选择题题目:设函数f(x) = 2x + 3,则f(2)的值等于多少?解析:根据题目,我们需要求出f(2)的值。
将x的值代入函数f(x)中,得到f(2) = 2 * 2 + 3 = 7。
因此,f(2)的值为7。
2. 填空题题目:已知三角形ABC,其中∠B = 90°,且AC = 5cm,BC =12cm。
求出三角形ABC的斜边AB的长度。
解析:根据勾股定理,我们可以求出斜边AB的长度。
勾股定理的表达式为a^2 + b^2 = c^2,其中a、b、c分别代表三角形的两个直角边和斜边的长度。
根据题目中的信息,我们可以得到5^2 + 12^2 = AB^2。
计算得到AB^2 = 25 + 144 = 169,因此AB = √169 = 13。
所以,三角形ABC的斜边AB的长度为13cm。
3. 计算题题目:将一个长度为12cm的线段分成3段,其中第一段为2cm,第二段是第一段的1.5倍,第三段是第二段的1.5倍,请计算第三段的长度。
解析:首先,我们可以得知第二段的长度为2 * 1.5 = 3cm。
然后,由于第三段是第二段的1.5倍,所以第三段的长度为3 * 1.5 = 4.5cm。
因此,第三段的长度为4.5cm。
4. 解答题题目:某商场准备举办一次打折活动,打四折。
原价为300元的商品,在活动中以打折价购买,则需要支付多少钱?解析:打四折表示打折率为0.4,即商品打折后的价格为原价的0.4倍。
所以,需要支付的金额为300 * 0.4 = 120元。
通过以上的数学题目,我们可以看出,安徽省数学中考真题既包含简单的选择题,又包含一些需要进行计算和解答的填空题和解答题。
安徽中考数学试题解析及答案一、选择题1. 已知正方形ABCD的边长为4cm,点E是边BC的中点,连线AE交对角线BD于点F,则三角形AEF的面积为()。
A. 4B. 2C. 3D. 1解析:首先画出正方形ABCD,并标出已知条件。
由于点E是边BC的中点,所以连接AE得到的线段为1/2的边长。
根据三角形的面积公式S = 1/2 * 底 * 高,可以得知三角形AEF的面积为1/2 * (1/2 * 4) * 4 = 4。
因此,答案选项为A。
2. 若a是一个不等于0的实数,下列哪个不等式的解集与不等式2x + a < 8相同?A. x > 4 - aB. x < 4-aC. x > 4 + aD. x < 4 + a解析:要找到与不等式2x + a < 8相同解集的不等式,需要将不等式进行等价变形。
首先将2x + a < 8两边同时减去a,得到2x < 8 - a。
然后将不等式两边同时除以2,得到x < (8 - a) / 2,即x < 4 - a / 2。
由此可知,选项B的不等式解集与原不等式相同。
二、填空题1. 一条绳子长2m,每当小明走一步,绳子的一半长的距离,从一开始,小明走了n步,那么此时绳子的长度为()m。
2. 一辆汽车以每小时60km的速度行驶,行驶了3小时后,行驶的距离为()km。
解析:1. 绳子的长度每次行走后减半,即长度为2 * (1/2)^n,其中n为小明走的步数。
因此,当走了n步时,绳子的长度为2 * (1/2)^n m。
2. 小时速度为60km,行驶3小时的距离为60km/h * 3h = 180km。
三、解答题1. 题目:如果log₂(x + 2) = 3,那么x的值等于多少?解析:根据题目所给的等式,可以得到2³ = x + 2。
解这个方程,得到x = 8 - 2 = 6。
因此,x的值等于6。
2. 题目:小明的父亲今年33岁,小明去年的年龄是父亲现在年龄的1/3,那么小明今年几岁?解析:设小明今年的年龄为x岁,则根据题意可以得到方程x + 1 =(33 - 1) / 3。
2001-2012年安徽省中考数学试卷分类解读汇编(12专题)专题8:平面几何基础一、选择题1. (2001安徽省4分)如图,长方体中,与棱AA′平行的面是▲ 。
【答案】面BC′和面CD′。
【考点】认识立体图形。
【分析】在长方体中,面与棱之间的关系有平行和垂直两种,且与棱平行的面有两个:面BC′和面CD′。
2. (2001安徽省4分)如图所示,要把角钢(1)弯成120°的钢架(2),则在角钢(1)上截去的缺口是▲ 度。
【答案】60。
【考点】角的计算,平角的定义。
【分析】因为在截取之前的角是平角180°,截完弯折后左右两边重合,所组成的新角是120°,所以缺口角等于180°﹣120°=60°。
3. (2002安徽省4分)如图,AB、CD相交于点O,OB平分∠DOE.若∠DOE=60°,则∠AOC的度数是▲ .【答案】30°。
【考点】角平分线的定义,对顶角的性质【分析】∵AB、CD相交于点O,∠DOE=60°,OB平分∠DOE,∴∠BOD=12∠DOE=12×60°=30°。
又∵∠AOC与∠BOD是对顶角,∴∠AOC=∠BOD=30°。
4. (2003安徽省4分)如图,AB∥CD,AC⊥BC,图中与∠CAB互余的角有【】A:1个B:2个C:3个D:4个【答案】C。
【考点】平行线的性质,余角和补角,对顶角的性质,直角三角形两锐角的关系。
【分析】∵AB∥CD,∴∠ABC=∠BCD。
设∠ABC的对顶角为∠1(如图),则∠ABC=∠1。
又∵AC⊥BC,∴∠ACB=90°。
∴∠CAB+∠ABC=∠CAB+∠BCD=∠CAB+∠1=90°。
∴与∠CAB互余的角为∠ABC,∠BCD,∠1。
故选C。
5. (2005安徽省课标4分)下列图中能够说明∠>∠12的是【】A.B.C.D.【答案】D。
【考点】对顶角的性质,圆周角定理,直角三角形的内角,三角形的外角性质。
【分析】根据对顶角、圆周角、直角三角形的内角、三角形的外角性质等分析作出判断:A、根据对顶角相等,得∠1=∠2;B、根据同弧所对的圆周角相等,得∠1=∠2;C、直角三角形中,直角最大,则∠1<∠2;D、由于三角形的任何一个外角>和它不相邻的内角,故∠1>∠2。
故选D。
6. (2006安徽省课标4分)如图,直线a∥b,点B在直线b上,且AB⊥BC,∠1=55°,则∠2的度数为【】A.35°B.45°C.55°D.125°【答案】A。
【考点】平行线的的性质,平角的定义。
【分析】∵a∥b,∠1=55°,∴∠3=∠1=55°(两条直线平行,同位角相等)。
又AB⊥BC,∴∠ABC=180°。
∴根据平角的定义,得∠2=180°-90°-55°=35°。
故选A。
7. (2006安徽省课标4分)如图是由10把相同的折扇组成的“蝶恋花”(图1)和梅花图案(图2)(图中的折扇无重叠),则梅花图案中的五角星的五个锐角均为【】A.36°B.42°C.45°D.48°【答案】D。
【考点】多边形内角和定理,等腰三角形的性质。
【分析】如图,折扇的顶角的度数是:360°÷3=120°,两底角的和是:180°-120°=60°,正五边形的每一个内角=(5-2)•180°÷5=108°,∴梅花图案中的五角星的五个锐角均为:108°-60°=48°。
故选D。
8. (2007安徽省4分)下列图形中,既是中心对称又是轴对称的图形是【】A.B.C.D.【答案】C。
【考点】轴对称图形和中心对称图形。
【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。
因此,A、不是轴对称图形,也不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,不是中心对称图形。
故选C。
9. (2009安徽省4分)如图,直线l1∥l2,则α为【】A.150°B.140°C.130°D.120°【答案】D。
【考点】平行线的性质,对顶角的性质。
【分析】∵l1∥l2,∴130°所对应的同旁内角为∠1=180°-130°=50°。
又∵α与(70°+50°)的角是对顶角,∴∠α=70°+50°=120°。
故选D。
10. (2009安徽省4分)如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3为【】A.50°B.55°C.60°D.65°【答案】C。
【考点】平行线的性质,对顶角的性质,三角形内角和定理。
【分析】如图所示:∵l1∥l2,∠2=65°,∴∠6=65°。
∵∠1=55°,∴∠1=∠4=55°。
在△ABC中,∠6=65°,∠4=55°,∴∠3=180°-65°-55°=60°。
故选C。
二、填空题1. (2002安徽省4分)下列图案既是中心对称,又是轴对称的是【】A.B.C.D.【答案】D。
【考点】轴对称图形和中心对称图形。
【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合。
因此,A.是轴对称图形,不是中心对称图形;B.既不是轴对称图形,也不是中心对称图形;C.不是轴对称图形,是中心对称图形;D.既是轴对称图形,也是中心对称图形。
故选D。
2. (2004安徽省4分)(华东版教材实验区试卷)如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,则∠BCD= ▲ .【答案】40°。
【考点】平行线的的性质,平角定义,三角形的外角性质。
【分析】如图,反向延长DE交BC于M,∵AB∥DE,∠ABC=80°,∴∠BMD=∠ABC=80°。
∴∠CMD=180°-∠BMD=100°。
又∵∠CDE=∠CMD+∠C,∠CDE=140°,∴∠BCD=∠CDE-∠CMD=140°-100°=40°。
3. (2007安徽省5分)如图,已知∠1=100°,∠2=140°,那么∠3= ▲ 度。
【答案】60。
【考点】多边形的外角性质,平角定义。
【分析】根据多边形的外角性质,三角形三个外角的和为360°,因此,如图,∵∠4=360°-∠1-∠2=360°-100°-140°=120°,∴∠3=180°-120°=60°。
4. (2008安徽省5分)如图,已知a∥b,∠1=70°,∠2=40°,则∠3= ▲ 。
【答案】70°。
【考点】平行线的性质,对顶性质,三角形内角和定理。
【分析】由对顶角相等可得∠ACB=∠2=40°。
在△ABC中,由三角形内角和知∠ABC=180°-∠1-∠ACB=70°。
又∵a∥b,∴∠3=∠ABC=70°。
三、解答题1. (2003安徽省10分)如图,在五边形A 1A 2A 3A 4A 5中,B 1是A 1对边A 3A 4的中点,连结A 1B 1,我们称A 1B 1是这个五边形的一条中对线。
如果五边形的每条中对线都将五边形的面积分成相等的两部分。
求证:五边形的每条边都有一条对角线和它平行。
【答案】证明:取A 1A 5中点B 3,连接A 3B 3、A 1A 3、A 1A 4、A 3A 5,∵A 3B 1=B 1A 4,∴131114A A B A B A S S ∆∆=。
又∵四边形A 1A 2A 3B 1与四边形A 1B 1A 4A 5的面积相等,∴123145A A A A A A S S ∆∆=。
同理123345A A A A A A S S ∆∆=。
∴145345A A A A A A S S ∆∆=。
∴△A 3A 4A 5与△A 1A 4A 5边A 4A 5上的高相等。
∴A 1A 3∥A 4A 5。
同理可证A 1A 2∥A 3A 5,A 2A 3∥A 1A 4,A 3A 4∥A 2A 5,A 5A1∥A 2A 4。