胶体与固体表面化学
- 格式:ppt
- 大小:751.02 KB
- 文档页数:73
绪论一、概述胶体化学是胶体与界面化学的简称,是物理化学的一个分支科学,或者说是一个专业方向。
既涉及物理,又覆盖着化学,因此其应用非常广泛。
注:物理化学的五个专业方向—热力学、动力学、电化学、量子化学、胶体与界面化学,前四者理论性很强,后者则理论与应用并重。
胶体化学:它强调理论,但并不排斥应用,应用与理论的紧密结合、浑然一体是这门课最鲜明的特点。
应用领域:生物、纳米材料、石油开发、陶瓷、造纸、涂料、催化、医药、食品、海洋产业、粘合剂等。
但是,许多人在碰到胶体与界面化学问题时,由于缺乏这门课程的基本知识而变得束手无策,从而限制了发展。
胶体化学涉及的理论面:1、运动理论2、光学理论3、电学理论4、稳定理论5、流变理论6、界面理论二、胶体概念1、分散体系自然界没有绝对纯的物质,所谓纯都是相对的。
从广义上讲,整个地球都是由各种分散体系构成的。
分散体系:所谓分散体系,是指一种或几种物质以一定的分散度分散在另一种物质中形成的体系。
分散相:以分散状态存在的不连续相称为分散相。
分散介质:连续相则称为分散介质。
2、胶体按分散相粒径大小:粗分散体系:颗粒某一线度>1000nm(10-6m,)胶体:颗粒某一线度1~1000nm(10~10m)真溶液:分散相称分子状态,粒径一般<1nm(国际纯粹和应用化学联合会IUPAC分类法)三、胶体化学的研究对象研究胶体分散体系和粗分散体系性质的一门科学。
1、分子胶体一般指高分子聚合物(高聚物)的溶液,也叫亲液胶体。
如:PAM、高分子在溶液中以无规线团状态存在,线团尺寸再胶体尺度范围内。
分散相与分散介质之间没有清晰的界面(均相)高聚物分散相在分散介质中溶解分散,熵增大,自由焓减小。
(热力学稳定)2、缔合胶体当表面活性剂的浓度高于临界胶束浓度(CMC)时,许多个表面活性剂分子会在溶液中聚集成一定形状的胶束(按照一定的排列组合方式)。
如果在这些胶束中溶进一些特定性质的物质,则形成所谓的微乳液或液晶。
1、胶体的基本特性特有的分散程度;粒子大小在1nm~100nm之间多相不均匀性:在超级显微镜下可观察到分散相与分散介质间存在界面。
热力学不稳定性;粒子小,比表面大,表面自由能高,是热力学不稳定体系,有自发降低表面自由能的趋势,即小粒子会自动聚结成大粒子。
2、胶体制备的条件:分散相在介质中的溶解度须极小必须有稳定剂存在3、胶体分散相粒子大小分类分子分散系统胶体分散系统粗分散系统二、1、动力学性质布朗运动、扩散、沉降光学性质是其高度分散性与不均匀性的反映电学性质主要指胶体系统的电动现象丁达尔实质:胶体中分散质微粒散射出来的光超显微镜下得到的信息(1)可以测定球状胶粒的平均半径。
(2)间接推测胶粒的形状和不对称性。
例如,球状粒子不闪光,不对称的粒子在向光面变化时有闪光现象。
(3)判断粒子分散均匀的程度。
粒子大小不同,散射光的强度也不同。
(4)观察胶粒的布朗运动、电泳、沉降和凝聚等现象观察到胶粒发出的散射光,可观察布朗运动电泳沉降凝聚,只能确定质点存在和位置(光亮点),只能推测不能看到大小和形状2、胶体制备的条件溶解度稳定剂3、溶胶的净化渗析法、超过滤法4、纳米颗粒粒径在1-100之间纳米颗粒的特性与粒子尺寸紧密相关,许多特性可表现在表面效应和体积效应两方面。
5、布朗运动使胶粒克服重力的影响,6、I反比于波长λ的四次方7、溶胶产生各种颜色的原因;溶胶中的质点对可见光产生选择性吸收。
溶胶对光吸收显示特定波长的补色不吸收显示散射光的颜色agcl&agbr光透过浅红垂直淡蓝雾里黄灯减散,入射白光散射光中蓝紫色光散射最强天蓝是太阳散射光,早傍晚红色是透射光有宇散射作用8、9、胶粒带电原因:吸附、电离、同晶置换(晶格取代)、摩擦带电。
10、胶团结构:一定量难溶物分子聚结成中心称为胶核、然后胶核选择性的吸附稳定剂中的一种离子,形成紧密吸附层;由于正、负电荷相吸,在紧密层外形成反号离子的包围圈,从而形成了带与紧密层相同电荷的胶粒;胶粒与扩散层中的反号离子,形成一个电中性的胶团。
1.什么是气凝胶?有哪些主要特点和用途?当凝胶脱去大部分溶剂,使凝胶中液体含量比固体含量少得多,或凝胶的空间网状结构中充满的介质是气体,外表呈固体状,这即为干凝胶,也称为气凝胶。
气凝胶是一种固体物质形态,世界上密度最小的固体。
气凝胶貌似“弱不禁风”,其实非常坚固耐用。
它可以承受相当于自身质量几千倍的压力,在温度达到1200摄氏度时才会熔化。
此外它的导热性和折射率也很低,绝缘能力比最好的玻璃纤维还要强39倍。
用途:(1)制作火星探险宇航服(2)防弹不怕被炸(3)过滤与催化(4)隔音材料(5)日常生活用品 2.试述凝胶形成的基本条件?①降低溶解度,使被分散的物质从溶液中以“胶体分散状态”析出。
②析出的质点即不沉降,也不能自由行动,而是构成骨架,在整个溶液中形成连续的网状结构。
2.简述光学白度法测定去污力的过程。
将人工制备的污布放在盛有洗涤剂硬水的玻璃瓶中,瓶内还放有橡皮弹子,在机械转动下,人工污布受到擦洗。
在规定温度下洗涤一定时间后,用白度计在一定波长下测定污染棉布试片洗涤前后的光谱反射率,并与空白对照。
4.试述洗涤剂的发展趋势。
液体洗涤剂近几年的新的发展趋势: (1)浓缩化 (2)温和化、安全化(3)专业化 (4)功能化(5)生态化: ①无磷化②表面活性剂生物降解③以氧代氯 5.简述干洗的原理干洗是在有机溶剂中进行洗涤的方法,是利用溶剂的溶解力和表面活性剂的加溶能力去除织物表面的污垢。
3. 脂肪酶在洗涤剂中的主要作用是什么?脂肪酶,人的皮脂污垢如衣领污垢中因含有甘油三脂肪酸酯而很难去除,在食品污垢中也含有甘油三脂肪酸酯类的憎水物质,脂肪酶能将这些污垢分解成甘油和脂肪酸。
4.在洗涤剂中作为柔和剂的SAA主要是什么物质?用作柔和剂的表面活性剂主要是两性表面活性剂 8.用防水剂处理过的纤维为什么能防水?织物防水原理:将纤维织物用防水剂进行处理,可使处理后的纤维不表面变为疏水性,防水织物由于表面的疏水性使织物与水之间的接触角θ>90°,在纤维与纤维间形成的“毛细管”中的液面成凸液面,凸液面的表面张力的合力产生的附加压力△P的方向指向液体内部因此有阻止水通过毛细管渗透下来的作用。
胶体: 指具有高度分散的分散体系(亦是研究对象),分散相可以是一相和多相,粒子大小通常为10-7~10-9m之间.胶体的研究内容:表面现象、分散体系、高分子溶液。
表面能δ:恒温恒压下,可逆地增加单位表面积,环境对体系所做的功,单位J·m-2。
表面张力δ:单位长度液体表面的收缩力,单位N·m-1(或mN·m-1)l aplace方程:球面,则R1=R2=R,ΔP=2σR 柱面,则R1=R,R2=∞,ΔP=σ/R 球形气泡,且R1=R2=RΔP=4σ/R表面过剩:界面相与体相的浓度差。
接触角:固液气三相交点处作气液界面的切线,此切线与固液交界线之间的夹角θ。
Gibbs吸附公式:(双组分体系)固体表面张力:新产生的两个固体表面的表面应力之和的一半。
固体表面能:指产生一平方厘米新表面所消耗的等温可逆功。
Laugmuir理论:假设被吸附分子间无作用力,因而分子脱附不受周围分子的影响。
只有碰撞在空间表面的分子才有可能被吸附(单分子层吸附)。
固体表面是均匀的,各处吸附能相同。
BET理论的基本假设:①固体表面是均匀的,同层分子(横向)间没有相互作用,分子在吸附和脱附时不受周围同层分子的影响。
②物理吸附中,固体表面与吸附质之间有范德华力,被吸附分子间也有范德华力,即吸附是多分子层的。
影响溶液中吸附的因素:吸附剂:溶质、溶剂三者极性的影响;温度:溶液吸附也是放热过程,一般T上升,吸附下降;溶解度:吸附与溶解相反,溶解度越小,越易被吸附;同系物的吸附规律一般随C-H链的增长吸附有规律的增加和减少。
Trube规则;吸附剂的孔隙大小;吸附剂的表面化学性质,同一类吸附剂由于制备条件不同,表面活性相差很大,吸附性能也会有很大差异;混合溶剂的影响,色谱法中使用混合溶剂,洗提效果比单纯溶剂好,若自极性相同的混合溶剂中吸附第三组份,等温线界于两单等温线之间;若自极性不相同的混合溶剂中吸附第三组份,吸附量比任何单一溶剂中少,混合溶剂极性一致或不一致情况不同;多种溶质的混合溶液;9、盐的影响,盐的存在通过影响溶质的活度系数、溶解度、溶质的电离平衡而影响吸附。
胶体化学研究胶体体系的科学。
是重要的化学学科分支之一。
表面活性剂使表面张力在稀溶液范围内随浓度的增加而急剧下降,表面张力降至一定程度后(此时溶液浓度仍很稀)便下降很慢,或基本不再下降,这种物质被称为表面活性剂。
3固体表面吸附是固体表面对其他物质的捕获,任何表面都有自发降低表面能的倾向,由于固体表面难于收缩,所以只能靠降低界面张力的办法来降低表面能,这就是固体表面产生吸附作用的根本原因。
润湿是用一种流体取代固体表面上存在的另一种流体的过程。
固体表面改性通过物理或化学的方法,使固体表面性质发生改变的过程。
吸附剂能够通过物理的或化学的作用,吸附其它物质的物质。
乳状液的变型乳状液的变型也叫反相,是指O/W型(W/O型)乳状液变成W/O型(O/W型)乳状液的现象。
触变作用凝胶振动时,网状结构受到破坏,线状粒子互相离散,系统出现流动性;静置时,线状粒子又重新交联形成网状结构。
净吸力在气液界面,液体表面分子受到体相分子的拉力大,受到气相分子的拉力小,所以表面分子受到一个垂直于液体表面、指向液体内部的合吸力,称为"净吸力"。
Krafft 点离子型表面活性剂在水中的溶解度随着温度的变化而变化。
当温度升高至某一点时,表面活性剂的溶解度急剧升高,该温度称为krafft点。
浊点加热非离子型表面活性剂的透明水溶液,其在水溶液中的溶解度随温度上升而降低,在升至一定温度值时出现浑浊,这个温度被称之为该表面活性剂的浊点。
表面张力表面张力是为增加单位面积所消耗的功。
临界胶束浓度:在表面活性剂溶液中,开始大量形成胶束的表面活性剂浓度。
起泡剂在气液分散体系中,使泡沫稳定的表面活性剂,称为起泡剂。
凝胶一定浓度的溶胶体系,在一定的条件下失去流动性而形成的半固体物质。
高分子溶液分散相是高分子物质的分散体系。
比表面积对于粉末或多孔性物质,1g固体所占有的总表面积为该物质的比表面。
增溶作用指难溶和不溶有机物在表面活性剂胶束水溶液中溶解度增大的现象离浆作用水凝胶在基本上不改变原来形状的情况下,分离出所包含的一部分液体,使构成凝胶网络的颗粒相互收缩靠近,排列得更加有序。
胶体与界面化学的基本原理胶体与界面化学是研究物质界面的重要学科,其中胶体学研究的是微米级别上液体分散系统的稳定性、形态、动力学,界面化学研究的是物质界面上的化学过程。
本文将探讨胶体的定义、性质、分类以及界面化学原理等方面。
一、胶体的定义与性质胶体是指两相(即固体、液体或气体)间的一种形态,其中一种相通过分散成微小粒子的形式均匀分散在另一种相中。
胶体的一般特性如下:1、粒子尺寸:胶体的尺寸范围一般为1-1000纳米。
2、稳定性:胶体的物理性质(如电荷、表面性质等)使其形成稳定的系统,避免粒子凝聚沉降。
3、光学性质:胶体可以表现出折射、透明度等光学性质,如煤油是胶体,因为它可以产生烟雾。
4、电性质:胶体中的粒子带有电荷,可以表现出与电场相关的性质。
5、化学性质:由于其表面性质的存在,胶体可以表现出与环境中其他分子的化学反应,如催化反应等。
二、胶体的分类根据胶体中分散相的物质性质和分散介质的性质,胶体可以分为以下几类:1、溶胶:溶胶是指分散相为分子(亦称为分子溶液),分散介质为液体,如酒精和水的混合物。
2、胶体溶液:胶体溶液是指分散相为聚合物,分散介质为液体,如天然胶或橡胶溶液。
3、乳液:乳液是指分散相为液体,分散介质为液体,如牛奶、酸奶等。
4、凝胶:凝胶是指不易流动的胶体,其中分散相一般是聚合物,分散介质为液体,如煤油。
5、气溶胶:气溶胶是指分散相为固体或液体,分散介质为气体,如雾、烟雾、霉菌等。
三、界面化学的基本原理界面化学是研究物质界面的化学过程,主要是两相(如油水分界面)之间物理和化学反应的研究。
界面活性剂是使界面分子在界面上形成一层膜较集的化合物,使界面能量降低而使得体系稳定的物质。
界面化学的原理主要有以下几点:1、界面能:界面能是指分界面两侧之间的能量差,即表面张力。
界面分子本身存在形成一层膜的趋势,因此其能量会比波动的分子间间隔大。
这一差异形成了表面张力,是使体系向能量最小化方向发展的主要因素。
胶体与表面化学第一章绪论(2学时)1.1胶体的概念什么是胶体,胶体的分类1.2胶体化学发展简史1.3胶体化学的研究对象表面现象,疏液胶体,缔合胶体,高分子溶液。
重点:胶体、分散系统、分散相、分散介质的概念。
难点:胶体与表面化学在矿物加工工程中的作用及意义。
教学方法建议:启发式教学,引导学生对胶体及表面化学的兴趣。
第二章胶体与纳米材料制备(4学时)2.1胶体的制备胶体制备的条件和方法,凝聚法原理。
2.2胶体的净化渗析、渗透和反渗透。
2.3单分散溶胶单分散溶胶的定义及制备方法。
2.4胶体晶体胶体晶体的定义及制备方法2.5纳米粒子的制备什么是纳米材料,纳米粒子的特性及制备方法重点:胶体的制备、溶胶的净化、胶体晶体的制备。
难点:胶体制备机理。
教学方法建议:用多媒体教学,注重理论联系实际。
第三章胶体系统的基本性质(8学时)3.1溶胶的运动性质扩散、布朗运动、沉降、渗透压和Donnan平衡。
3.2溶胶的光学性质丁道尔效应和溶胶的颜色。
3.3溶胶的电学性质电动现象、双电层结构模型和电动电势(。
电势)3.4溶胶系统的流变性质剪切速度越切应力,牛顿公式,层流与湍流,稀胶体溶液的黏度。
3.5胶体的稳定性溶胶的稳定性、DLVO理论、溶胶的聚沉、高聚物稳定胶体体系理论。
3.6显微镜及其对胶体粒子大小和形状的测定显微镜的类型及基本作用重点:沉降、渗透压、电泳、电渗、。
电势的计算、双电层结构模型、DLVO理论、溶胶的聚沉。
难点:双电层结构模型。
教学方法建议:多媒体教学和板书教学相结合。
第四章表面张力、毛细作用与润湿作用(6学时)4.1表面张力和表面能净吸力和表面张力的概念、影响表面张力的因素、液体表面张力和固体表面张力的测定方法。
4.2液-液界面张力Anntonff规则、Good-Girifalco公式、Fowkes理论和液-液界面张力的测定。
4.3毛细作用与Laplace公式和Kelvin公式毛细作用,Laplace公式和Kelvin公式的应用,曲界面两侧的压力差及与曲率半径的关系,毛细管上升或下降现象,弯曲液面上的饱和蒸气压。