2019年全国中考数学真题作图题集锦
- 格式:doc
- 大小:273.00 KB
- 文档页数:8
2019年全国中考数学真题分类汇编:正多边形、弧长与扇形面积一、选择题1.(2019年山东省青岛市)如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D.若AC=BD=4,∠A=45°,则的长度为()A.πB.2πC.2πD.4π【考点】切线的性质、等腰直角三角形的判定和性质、弧长的计算【解答】解:连接OC、OD,∵AC,BD分别与⊙O相切于点C,D.∴OC⊥AC,OD⊥BD,∵∠A=45°,∴∠AOC=45°,∴AC=OC=4,∵AC=BD=4,OC=OD=4,∴OD=BD,∴∠BOD=45°,∴∠COD=180°﹣45°﹣45°=90°,∴的长度为:=2π,故选:B.2.(2019年山东省枣庄市)如图,在边长为4的正方形ABCD中,以点B为圆心,AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)()A .8﹣πB .16﹣2πC .8﹣2πD .8﹣π【考点】正方形的性质、扇形的面积【解答】解:S 阴=S △ABD ﹣S 扇形BAE =×4×4﹣=8﹣2π, 故选:C .3. (2019年云南省)一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是( )A.48πB.45πC.36πD.32π【考点】圆锥的全面积【解答】设圆锥底面圆的半径为r ,母线长为l ,则底面圆的周长等于半圆的弧长8π,∴ ππ82=r ,∴4=r ,圆锥的全面积等于πππππ4832162=+=+=+r rl S S 底侧, 故选A4. (2019年浙江省温州市)若扇形的圆心角为90°,半径为6,则该扇形的弧长为( )A .πB .2πC .3πD .6π【考点】弧长公式计算.【解答】解:该扇形的弧长==3π. 故选:C .5. (2019年湖北省荆州市)如图,点C 为扇形OAB 的半径OB 上一点,将△OAC 沿AC 折叠,点O 恰好落在上的点D 处,且l :l =1:3(l 表示的长),若将此扇形OAB 围成一个圆锥,则圆锥的底面半径与母线长的比为( )A .1:3B .1:πC .1:4D .2:9【考点】圆锥的侧面积【解答】解:连接OD 交OC 于M .由折叠的知识可得:OM=OA,∠OMA=90°,∴∠OAM=30°,∴∠AOM=60°,∵且:=1:3,∴∠AOB=80°设圆锥的底面半径为r,母线长为l,=2πr,∴r:i=2:9.故选:D.6. (2019年西藏)如图,从一张腰长为90cm,顶角为120°的等腰三角形铁皮OAB中剪出一个最大的扇形OCD,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为()A.15cm B.12cm C.10cm D.20cm【考点】圆锥的侧面积【解答】解:过O作OE⊥AB于E,∵OA=OB=90cm,∠AOB=120°,∴∠A=∠B=30°,∴OE=OA=45cm,∴弧CD的长==30π,设圆锥的底面圆的半径为r,则2πr=30π,解得r=15.故选:A.二、填空题1.(2019年重庆市)如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=60°,AB=2,分别以点A、点C为圆心,以AO的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为.(结果保留π)【考点】扇形面积公式、菱形的性质【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,∠ABO=∠ABC=30°,∠BAD=∠BCD=120°,∴AO=AB=1,由勾股定理得,OB==,∴AC=2,BD=2,∴阴影部分的面积=×2×2﹣×2=2﹣π,故答案为:2﹣π.2. (2019年山东省滨州市)若正六边形的内切圆半径为2,则其外接圆半径为.【考点】正多边形和圆、等边三角形的判定与性质、三角函数【解答】解:如图,连接OA、OB,作OG⊥AB于G;则OG=2,∵六边形ABCDEF正六边形,∴△OAB是等边三角形,∴∠OAB=60°,∴OA===,∴正六边形的内切圆半径为2,则其外接圆半径为.故答案为:.3. (2019年山东省青岛市)如图,五边形ABCDE是⊙O的内接正五边形,AF是⊙O的直径,则∠BDF的度数是°.【考点】正多边形和圆、圆周角定理【解答】解:连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为:54.4. (2019年广西贵港市)如图,在扇形OAB中,半径OA与OB的夹角为120°,点A与点B的距离为2,若扇形OAB恰好是一个圆锥的侧面展开图,则该圆锥的底面半径为______.【考点】圆锥面积公式【解答】解:连接AB ,过O 作OM ⊥AB 于M ,∵∠AOB=120°,OA=OB ,∴∠BAO=30°,AM=, ∴OA=2,∵=2πr , ∴r=故答案是:5. (2019年广西贺州市)已知圆锥的底面半径是1,高是,则该圆锥的侧面展开图的圆心角是度.【考点】圆锥面积公式【解答】解:设圆锥的母线为a ,根据勾股定理得,a =4,设圆锥的侧面展开图的圆心角度数为n °,根据题意得2π•1=,解得n =90,即圆锥的侧面展开图的圆心角度数为90°.故答案为:90.6. (2019年江苏省泰州市)如图,分别以正三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若正三角形边长为6cm ,则该莱洛三角形的周长为 cm .【考点】扇形弧长公式【解答】∵l=180R n π=1806120⨯π=4π, ∴4π×3=12π. 故答案为:12π.7.(2019年江苏省无锡市)已知圆锥的母线成为5cm ,侧面积为15πcm 2,则这个圆锥的底面圆半径为 cm .【考点】圆锥侧面积【解答】圆锥底面圆的半径r=15π÷5π=3.8. (2019年江苏省扬州市)如图,AC 是⊙O 的内接正六边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正十边形的一边,若AB 是⊙O 的内接正n 边形的一边,则n=__15_。
专题17规律探索题1.(2019•毕节)下面摆放的图案,从第二个起,每个都是前一个按顺时针方向旋转90°得到,第2019个图案中箭头的指向是A.上方B.右方C.下方D.左方【答案】C【解析】如图所示:每旋转4次一周,2019÷4=504……3,则第2019个图案中箭头的指向与第3个图案方向一致,箭头的指向是下方,故选C.【名师点睛】本题考查了规律型——图形的变化类,观察出图形的变化规律是解题的关键.2.(2019•娄底)如图,在单位长度为1米的平面直角坐标系中,曲线是由半径为2米,圆心角为的多次复制并首尾连接而成.现有一点P从A(A为坐标原点)出发,以每秒米的速度沿曲线向右运动,则在第2019秒时点P的纵坐标为A.-2B.-1C.0D.1【答案】B【解析】点运动一个用时为秒.如图,作于D,与交于点E.在中,∵,,∴,∴,∴,∴第1秒时点P运动到点E,纵坐标为1;第2秒时点P运动到点B,纵坐标为0;第3秒时点P运动到点F,纵坐标为-1;第4秒时点P运动到点G,纵坐标为0;第5秒时点P运动到点H,纵坐标为1;……,∴点P的纵坐标以1,0,-1,0四个数为一个周期依次循环,∵,∴第2019秒时点P的纵坐标为是-1.故选B.【名师点睛】本题考查了规律型中的点的坐标,解题的关键是找出点P纵坐标的规律:以1,0,–1,0四个数为一个周期依次循环.也考查了垂径定理.3.(2019•广元)如图,过点作y轴的垂线交直线于点,过点作直线l的垂线,交y轴于点,过点作y轴的垂线交直线l于点,…,这样依次下去,得到,,,…,其面积分别记为,,,…,则A.B.C.D.【答案】D【解析】∵点的坐标是,∴,∵点在直线上,∴,,∴,∴,∴,得出,∴,∴,,∵,∵,∴,∴,∴,故选D.【名师点睛】本题主要考查了如何根据一次函数的解析式和点的坐标求线段的长度,以及如何根据线段的长度求出点的坐标,解题时要注意相关知识的综合应用.4.(2019•雅安)如图,在平面直角坐标系中,直线与直线交于点,过作轴的垂线,垂足为,过作的平行线交于,过作轴的垂线,垂足为,过作的平行线交于,过作轴的垂线,垂足为,…,按此规律,则点的纵坐标为A.B.C.D.【答案】A【解析】联立直线与直线的表达式并解得:,,故;则点,则直线的表达式为,将点坐标代入上式并解得:直线的表达式为:,将表达式与直线的表达式联立并解得:,,即点的纵坐标为;同理可得的纵坐标为,…,按此规律,则点的纵坐标为,故选A.【名师点睛】本题考查了两直线的交点,要求利用图象求解各问题,要认真体会点的坐标,一次函数与一元一次方程组之间的内在联系.5.(2019•百色)观察一列数:,0,3,6,9,12,…,按此规律,这一列数的第21个数是__________.【答案】57【解析】由题意知,这列数的第个数为,当时,,故答案为:57.【名师点睛】本题主要考查数字的变化类,解题的关键是得出数列的变化规律:每次增加3.6.(2019•铜仁)按一定规律排列的一列数依次为:,,,,…(a≠0),按此规律排列下去,这列数中的第n个数是__________.(n为正整数)【答案】【解析】第1个数为;第2个数为;第3个数为;第4个数为;…,所以这列数中的第n个数是.故答案为:.【名师点睛】此题考查数列中的规律,解题关键在于观察找出规律.7.(2019•河池),…,是一列数,已知第1个数,第5个数,且任意三个相邻的数之和为15,则第2019个数的值是__________.【答案】6【解析】由任意三个相邻数之和都是15可知:,,,…,可以推出:,,,所以,则,解得,∵,因此.故答案为:6.【名师点睛】此题主要考查了规律型:数字的变化类,关键是找出第1、4、7…个数之间的关系,第2、5、8…个数之间的关系,第3、6、9…个数之间的关系.问题就会迎刃而解.8.(2019•大庆)归纳“T”字形,用棋子摆成的“T”字形如图所示,按照图①,图②,图③的规律摆下去,摆成第n个“T”字形需要的棋子个数为__________.【答案】3n+2【解析】由图可得,图①中棋子的个数为:3+2=5,图②中棋子的个数为:5+3=8,图③中棋子的个数为:7+4=11,……则第n个“T”字形需要的棋子个数为:(2n+1)+(n+1)=3n+2,故答案为:3n+2.【名师点睛】本题考查图形的变化类,解答本题的关键是明确题意,发现题目中棋子的变化规律,利用数形结合的思想解答.9.(2019•淄博)如图,在以为直角顶点的等腰直角三角形纸片中,将角折起,使点落在边上的点(不与点,重合)处,折痕是.如图,当时,;如图,当时,;如图,当时,;……依此类推,当(为正整数)时,__________.【答案】【解析】观察可知,正切值的分子是3,5,7,9,…,,分母与勾股数有关系,分别是勾股数3,4,5;5,12,13;7,24,25;9,40,41;…,,,中的中间一个.∴.故答案为:.【名师点睛】本题考查规律,解题的关键是由题意得到规律.10.(2019•聊城)数轴上两点的距离为4,一动点从点出发,按以下规律跳动:第1次跳动到的中点处,第2次从点跳动到的中点处,第3次从点跳动到的中点处.按照这样的规律继续跳动到点(,是整数)处,那么线段的长度为__________(,是整数).【答案】【解析】由于OA=4,所有第一次跳动到OA的中点A1处时,OA1=OA=×4=2,同理第二次从A1点跳动到A2处,离原点的()2×4处,同理跳动n次后,离原点的长度为()n×4=,故线段A n A的长度为4–(n≥3,n是整数).故答案为:4–.【名师点睛】考查了两点间的距离,本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.本题注意根据题意表示出各个点跳动的规律.11.(2019•枣庄)观察下列各式:,,,…请利用你发现的规律,计算:,其结果为__________.【答案】【解析】,故答案为:.【名师点睛】本题考查的是二次根式的化简、数字的变化规律,掌握二次根式的性质是解题的关键.12.(2019•本溪)如图,点在直线上,点的横坐标为,过作,交轴于点,以为边,向右作正方形,延长交轴于点;以为边,向右作正方形,延长交轴于点;以为边,向右作正方形延长交轴于点;…,按照这个规律进行下去,点的横坐标为__________(结果用含正整数的代数式表示)【答案】【解析】如图,过点分别作轴,轴,轴,轴,轴,…,垂足分别为∵点在直线上,点的横坐标为,∴点的纵坐标为,即:,图中所有的直角三角形都相似,两条直角边的比都是,,∴点的横坐标为:,点的横坐标为:,点C3的横坐标为:,点的横坐标为:,…,点的横坐标为:,故答案为:.【名师点睛】本题考查的是规律,熟练掌握相似三角形的性质是解题的关键.13.(2019•绥化)在平面直角坐标系中,若干个边长为个单位长度的等边三角形,按如图中的规律摆放.点从原点出发,以每秒个单位长度的速度沿着等边三角形的边“…”的路线运动,设第秒运动到点为正整数),则点的坐标是__________.【答案】【解析】如图,作A1H⊥x轴,∵△OA1A2是等边三角形,∴∠A1OH=60°,OH=OA2=,∴A1H=A1O·sin60°=1×=,∴,,同理可得,,,,,由上可知,每一个点的横坐标为序号的一半,纵坐标每个点依次为:这样循环,2019÷6=336……3,∴,故答案为:.【名师点睛】本题考查了规律题,涉及了等边三角形的性质,解直角三角形的应用,通过推导得出点的坐标的变化规律是解题的关键.14.(2019•辽阳)如图,在平面直角坐标系中,都是等腰直角三角形,点,都在轴上,点与原点重合,点都在直线上,点在轴上,轴,轴,若点的横坐标为-1,则点的纵坐标是__________.【答案】【解析】由题意,可得,设,则,解得,∴,设,则,解得,∴,设,则,解得,∴,同法可得,…,的纵坐标为,故答案为:.【名师点睛】此题主要考查一次函数图像的应用,解题的关键是根据题意求出、、,再发现规律即可求解.15.(2019•衡阳)在平面直角坐标系中,抛物线的图象如图所示.已知点坐标为,过点作轴交抛物线于点,过点作交抛物线于点,过点作轴交抛物线于点,过点作交抛物线于点,…,依次进行下去,则点的坐标为__________.【答案】【解析】∵点坐标为,∴直线为,,∵,∴直线为,解得或,∴,∴,∵,∴直线为,解得或,∴,∴,…,∴,故答案为.【名师点睛】本题考查了二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.16.(2019•齐齐哈尔)如图,直线分别交轴、轴于点和点,过点作,交轴于点,过点作轴,交直线于点;过点作,交轴于点,过点作轴,交直线于点,依此规律…,若图中阴影的面积为,阴影的面积为,阴影的面积为,…,则__________.【答案】【解析】直线,当时,;当时,,∴,,∴,又,∴,在中,,∴;同理可求出:,,∴;依次可求出:;;,…,因此:,故答案为:.【名师点睛】本题主要考查同学们对规律的归纳总结,关键在于根据简单的图形寻找规律.17.(2019•东营)如图,在平面直角坐标系中,函数和的图象分别为直线,过上的点作轴的垂线交于点,过点作轴的垂线交于点,过点作轴的垂线交于点,…依次进行下去,则点的横坐标为__________.【答案】【解析】由题意可得,,,,,,,…,可得的横坐标为,∵,∴点的横坐标为:,故答案为:.【名师点睛】本题考查数字类规律,解题的关键是读懂题意,得到的横坐标为.18.(2019•泰安)在平面直角坐标系中,直线与轴交于点,如图所示,依次作正方形,正方形,正方形,正方形,…,点,,,,…在直线上,点,,,,…在轴正半轴上,则前个正方形对角线的和是__________.【答案】【解析】根据根据题意可得,,,…,,所以可得正方形的对角线为,正方形的对角线为,正方形的对角线为,正方形的对角线为,…,正方形的对角线为,所以前个正方形对角线的和为=,故答案为:.【名师点睛】本题主要考查学生的归纳总结能力,关键在于根据前面的简单的规律,总结出后面的规律.。
第十七章图表信息与方案设计专题课标要求1. 能看懂图表中给出的信息,通过建立合适的数学模型来解决问题.2. 会通过计算、分析等方法进行筛选,从而确定符合实际问题的方法.1. 图表信息一、选择题1. (2019·潍坊)如图,在矩形ABCD中,AB=2,BC=3,动点P沿折线BCD从点B开始运动到点D.设运动的路程为x,△ADP的面积为y,则y与x之间的函数关系的图象大致是()第1题A BC D2. (2019·广元) 如图,P是菱形ABCD边上的动点,它从点A出发沿A→B→C→D的路径匀速运动到点D.设△PAD的面积为y,点P的运动时间为x,则y关于x的函数图象大致为()第2题A BC D3. (2019·陇南)如图①,在矩形ABCD中,AB<AD,对角线AC,BD相交于点O,动点P由点A出发,沿A→B→C→D运动.设点P运动的路程为x,△AOP的面积为y,y与x 的函数关系的图象如图②所示,则边AD的长是()第3题A. 3B. 4C. 5D. 6二、填空题4. (2019·黄石)根据下面的统计图,回答问题:第4题该超市十月份的水果类销售额________十一月份的水果类销售额(填“>”“<”或“=”).5. (2019·怀化)探索与发现:如图所示为用分数(数字表示面积)砌成的“分数墙”,则整面“分数墙”的总面积是________.第5题6. (2019·苏州) “七巧板”是我们祖先的一项卓越创造,可以拼出许多有趣的图形,被誉为“东方魔板”.如图①是由边长为10 cm的正方形薄板分为7块制作成的“七巧板”,如图②是用该“七巧板”拼成的一个“家”的图形,则该“七巧板”中的正方形(涂色部分)的边长为________cm(结果保留根号).第6题三、解答题7. (2019·嘉兴)在推进嘉兴市城乡生活垃圾分类的行动中,某社区对居民掌握垃圾分类知识的情况进行了测试.其中A,B小区分别有500名居民参加了测试,社区从中各随机抽取50名居民成绩进行整理,得到部分信息:【信息一】A小区50名居民成绩的频数分布直方图如图所示(每一组含前一个边界值,不含后一个边界值):【信息二】【信息三】A,B小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)根据以上信息,回答下列问题:(1) 求A小区50名居民成绩的中位数;(2) 请估计A小区500名居民成绩能超过平均数的人数;(3) 请尽量从多个角度,选择合适的统计量分析A,B小区参加测试的居民掌握垃圾分类知识的情况.第7题8. (2019·威海)在画二次函数y=ax2+bx+c(a≠0)的图象时,甲写错了一次项的系数,列表如下:乙写错了常数项,列表如下:(1) 求原二次函数y=ax2+bx+c(a≠0)的解析式.(2) 对于二次函数y=ax2+bx+c(a≠0),当x取何值时,y的值随x的值的增大而增大?(3) 若关于x的方程ax2+bx+c=k(a≠0)有两个不相等的实数根,求k的取值范围.9. (2019·毕节)某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入.已知某种土特产每袋的成本为10元.试销阶段每袋的销售价x(元)与该土特产的日销售量y(袋)之间的关系如下表:已知y是x的一次函数.(1) 求y与x的函数解析式.(2) 假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?10. (2019·武汉)某商店销售一种商品,童威经市场调查发现:该商品的周销售量y(件)是售价x(元/件))的三组对应值如下表:注:周销售利润=周销售量×(售价-进价).(1) ①求y关于x的函数解析式(不要求写出自变量的取值范围);②该商品进价是________元/件;当售价是________元/件时,周销售利润最大,最大利润是________元.(2) 由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1 400元,求m的值.11. (2019·青岛)问题提出:如图①是一张由三个边长为1的小正方形组成的“L”形纸片,图②是一张a×b的方格纸(a×b的方格纸指边长分别为a,b的矩形,被分成a×b个边长为1的小正方形,其中a≥2,b≥2,且a,b为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在2×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于2×2的方格纸,要用图①盖住其中的三个小正方形,显然有4种不同的放置方法.探究二:把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在3×2的方格纸中,共可以找到2个位置不同的2×2方格,依据探究一的结论可知,把图①放置在3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有2×4=8(种)不同的放置方法.探究三:把图①放置在a ×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在a ×2的方格纸中,共可以找到________个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a ×2的方格纸中,使它恰好盖住其中的三个小正方形,共有________种不同的放置方法.探究四:把图①放置在a ×3的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在a ×3的方格纸中,共可以找到________个位置不同的2×2方格,依据探究一的结论可知,把图①放置在a ×3的方格纸中,使它恰好盖住其中的三个小正方形,共有________种不同的放置方法.……问题解决:把图①放置在a ×b 的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法(仿照前面的探究方法,写出解答过程,不需画图)?问题拓展:如图⑦是一个由4个棱长为1的小立方体构成的几何体,图⑧是一个长、宽、高分别为a ,b ,c(a ≥2,b ≥2,c ≥2,且a ,b ,c 是正整数)的长方体,被分成了a ×b ×c 个棱长为1的小立方体.在图⑧的不同位置共可以找到________个图⑦这样的几何体.第11题12. (2019·镇江)【材料阅读】地球是一个球体,任意两条相对的子午线都组成一个经线圈(如图①中的⊙O).人们在北半球可观测到北极星,我国古人在观测北极星的过程中发明了如图②所示的工具尺(古人称它为“复矩”),尺的两边互相垂直,角顶系有一段棉线,棉线末端系一个铜锤,这样棉线就与地平线垂直.站在不同的观测点,当工具尺的长边指向北极星时,短边与棉线的夹角α的大小是变化的.【实际应用】观测点A 在如图①所示的⊙O 上,现在利用这个工具尺在点A 处测得α为31°,在点A 所在子午线往北的另一个观测点B ,用同样的工具尺测得α为67°.PQ 是⊙O 的直径,PQ ⊥ON.(1) 求∠POB 的度数;(2) 已知OP =6 400 km ,求这两个观测点之间的距离,即⊙O 上AB ︵的长(π取3.1).第12题1. 图表信息一、 1. D 2. A 3. B 二、 4. > 5. n -1 6.522三、 7. (1) 由题意,得中位数为75+752=75(分) (2) 估计能超过平均数的人数为2450×500=240 (3) 答案不唯一,如① 从平均数看,A ,B 小区居民掌握垃圾分类知识情况的平均水平相同;② 从方差看,B 小区居民掌握垃圾分类知识的情况比A 小区稳定;③ 从中位数看,B 小区至少有一半的居民掌握垃圾分类知识的情况在平均水平之上8. (1) 由题意,知c =3,而乙将c 错写成了-1,则将x =-1,y =-2;x =1,y =2代入y =ax 2+bx -1中,得⎩⎪⎨⎪⎧-2=a -b -1,2=a +b -1,解得⎩⎪⎨⎪⎧a =1,b =2.∴ 原二次函数的解析式为y =x 2+2x +3 (2) 易知二次函数的图象的对称轴为x =-1,∴ 当x ≥-1时,y 的值随x 的值的增大而增大 (3) 由题意,知x 2+2x +(3-k)=0有两个不相等的实数根,则令Δ=22-4(3-k)>0,解得k >29. (1) 由题意,可设y =kx +b ,则⎩⎪⎨⎪⎧25=15k +b ,20=20k +b ,解得⎩⎪⎨⎪⎧k =-1,b =40,∴ y 与x 之间的函数解析式为y =-x +40 (2) 设每日销售的利润为w 元,则w =(x -10)(-x +40)=-(x -25)2+225,∴ 当x =25时,w 取得最大值,最大值为225.答:要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元10. (1)① 由题意,可设y =kx +b ,则⎩⎪⎨⎪⎧100=50k +b ,80=60k +b ,解得⎩⎪⎨⎪⎧k =-2,b =200,∴ y 关于x 的函数解析式为y =-2x +200 ②4070 1 800 (2) 由题意,可知w =(x -40-m)(-2x +200)=-2x 2+(280+2m)x -(8 000+200m).易知二次函数图象的对称轴为x =-280+2m -2×2=70+m 2.∵ m >0,∴ 70+m2>65.当x 取65时,w 最大,即(65-40-m)(-2×65+200)=1 400,解得m =511. 探究三:(a -1) (4a -4) 探究四:(2a -2) (8a -8) 问题解决:在a ×b 的方格纸中,共可以找到(a -1)(b -1)个位置不同的2×2方格,依照探究一的结论可知,把图①放置在a ×b 的方格纸中,使它恰好盖住其中的三个小正方形,共有4(a -1)(b -1)种不同的放置方法 问题拓展:8(a -1)(b -1)(c -1)12. (1) 如图,设点B 的切线CB 交ON 的延长线于点E ,HD ⊥BC 于点D ,CH ⊥BH 交BC 于点C ,则∠DHC =67°.∵ ∠HBD +∠BHD =∠BHD +∠DHC =90°,∴ ∠HBD =∠DHC =67°.∵ ON ∥BH ,∴ ∠BEO =∠HBD =67°.∵ CB 是⊙O 的切线,∴ OB ⊥BE.∴ ∠OBE =90°.∴ ∠BOE =90°-67°=23°.∵ PQ ⊥ON ,∴ ∠POE =90°.∴ ∠POB =90°-23°=67° (2) 如图,连接AO ,同(1)可得∠POA =31°,∴ ∠AOB =∠POB -∠POA =67°-31°=36°.∴ AB ︵的长为36×π×6 400180≈3 968(km)第12题11。
2019年全国中考数学真题精选分类汇编:四边形(解答题)含答案解析1.(2019•抚顺)如图,点E,F分别在正方形ABCD的边CD,BC上,且DE=CF,点P 在射线BC上(点P不与点F重合).将线段EP绕点E顺时针旋转90°得到线段EG,过点E作GD的垂线QH,垂足为点H,交射线BC于点Q.(1)如图1,若点E是CD的中点,点P在线段BF上,线段BP,QC,EC的数量关系为.(2)如图2,若点E不是CD的中点,点P在线段BF上,判断(1)中的结论是否仍然成立.若成立,请写出证明过程;若不成立,请说明理由.(3)正方形ABCD的边长为6,AB=3DE,QC=1,请直接写出线段BP的长.2.(2019•盘锦)如图,四边形ABCD是菱形,∠BAD=120°,点E在射线AC上(不包括点A和点C),过点E的直线GH交直线AD于点G,交直线BC于点H,且GH∥DC,点F在BC的延长线上,CF=AG,连接ED,EF,DF.(1)如图1,当点E在线段AC上时,①判断△AEG的形状,并说明理由.②求证:△DEF是等边三角形.(2)如图2,当点E在AC的延长线上时,△DEF是等边三角形吗?如果是,请证明你的结论;如果不是,请说明理由.3.(2019•朝阳)如图,四边形ABCD是正方形,连接AC,将△ABC绕点A逆时针旋转α得△AEF,连接CF,O为CF的中点,连接OE,OD.(1)如图1,当α=45°时,请直接写出OE与OD的关系(不用证明).(2)如图2,当45°<α<90°时,(1)中的结论是否成立?请说明理由.(3)当α=360°时,若AB=4,请直接写出点O经过的路径长.4.(2019•青海)如图,在△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F,连接CF.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形.5.(2019•鄂尔多斯)(1)【探究发现】如图1,∠EOF的顶点O在正方形ABCD两条对角线的交点处,∠EOF=90°,将∠EOF 绕点O旋转,旋转过程中,∠EOF的两边分别与正方形ABCD的边BC和CD交于点E 和点F(点F与点C,D不重合).则CE,CF,BC之间满足的数量关系是.(2)【类比应用】如图2,若将(1)中的“正方形ABCD”改为“∠BCD=120°的菱形ABCD”,其他条件不变,当∠EOF=60°时,上述结论是否仍然成立?若成立,请给出证明;若不成立,请猜想结论并说明理由.(3)【拓展延伸】如图3,∠BOD=120°,OD=,OB=4,OA平分∠BOD,AB=,且OB>2OA,点C是OB上一点,∠CAD=60°,求OC的长.6.(2019•湘潭)如图一,在射线DE的一侧以AD为一条边作矩形ABCD,AD=5,CD =5,点M是线段AC上一动点(不与点A重合),连结BM,过点M作BM的垂线交射线DE于点N,连接BN.(1)求∠CAD的大小;(2)问题探究:动点M在运动的过程中,①是否能使△AMN为等腰三角形,如果能,求出线段MC的长度;如果不能,请说明理由.②∠MBN的大小是否改变?若不改变,请求出∠MBN的大小;若改变,请说明理由.(3)问题解决:如图二,当动点M运动到AC的中点时,AM与BN的交点为F,MN的中点为H,求线段FH的长度.7.(2019•沈阳)如图,在四边形ABCD中,点E和点F是对角线AC上的两点,AE=CF,DF=BE,且DF∥BE,过点C作CG⊥AB交AB的延长线于点G.(1)求证:四边形ABCD是平行四边形;(2)若tan∠CAB=,∠CBG=45°,BC=4,则▱ABCD的面积是.8.(2019•娄底)如图,点E、F、G、H分别在矩形ABCD的边AB、BC、CD、DA(不包括端点)上运动,且满足AE=CG,AH=CF.(1)求证:△AEH≌△CGF;(2)试判断四边形EFGH的形状,并说明理由.(3)请探究四边形EFGH的周长一半与矩形ABCD一条对角线长的大小关系,并说明理由.9.(2019•陕西)问题提出:(1)如图1,已知△ABC,试确定一点D,使得以A,B,C,D为顶点的四边形为平行四边形,请画出这个平行四边形;问题探究:(2)如图2,在矩形ABCD中,AB=4,BC=10,若要在该矩形中作出一个面积最大的△BPC,且使∠BPC=90°,求满足条件的点P到点A的距离;问题解决:(3)如图3,有一座塔A,按规定,要以塔A为对称中心,建一个面积尽可能大的形状为平行四边形的景区BCDE.根据实际情况,要求顶点B是定点,点B到塔A的距离为50米,∠CBE=120°,那么,是否可以建一个满足要求的面积最大的平行四边形景区BCDE?若可以,求出满足要求的平行四边形BCDE的最大面积;若不可以,请说明理由.(塔A的占地面积忽略不计)10.(2019•大庆)如图,在矩形ABCD中,AB=3,BC=4.M、N在对角线AC上,且AM =CN,E、F分别是AD、BC的中点.(1)求证:△ABM≌△CDN;(2)点G是对角线AC上的点,∠EGF=90°,求AG的长.11.(2019•百色)如图,菱形ABCD中,作BE⊥AD、CF⊥AB,分别交AD、AB的延长线于点E、F.(1)求证:AE=BF;(2)若点E恰好是AD的中点,AB=2,求BD的值.12.(2019•宁夏)如图,已知矩形ABCD中,点E,F分别是AD,AB上的点,EF⊥EC,且AE=CD.(1)求证:AF=DE;(2)若DE=AD,求tan∠AFE.13.(2019•玉林)如图,在正方形ABCD中,分别过顶点B,D作BE∥DF交对角线AC所在直线于E,F点,并分别延长EB,FD到点H,G,使BH=DG,连接EG,FH.(1)求证:四边形EHFG是平行四边形;(2)已知:AB=2,EB=4,tan∠GEH=2,求四边形EHFG的周长.14.(2019•内江)如图,在正方形ABCD中,点E是BC上的一点,点F是CD延长线上的一点,且BE=DF,连结AE、AF、EF.(1)求证:△ABE≌△ADF;(2)若AE=5,请求出EF的长.15.(2019•本溪)如图,在四边形ABCD中,AB∥CD,AD⊥CD,∠B=45°,延长CD到点E,使DE=DA,连接AE.(1)求证:AE=BC;(2)若AB=3,CD=1,求四边形ABCE的面积.16.(2019•贵阳)(1)数学理解:如图①,△ABC是等腰直角三角形,过斜边AB的中点D 作正方形DECF,分别交BC,AC于点E,F,求AB,BE,AF之间的数量关系;(2)问题解决:如图②,在任意直角△ABC内,找一点D,过点D作正方形DECF,分别交BC,AC于点E,F,若AB=BE+AF,求∠ADB的度数;(3)联系拓广:如图③,在(2)的条件下,分别延长ED,FD,交AB于点M,N,求MN,AM,BN的数量关系.17.(2019•通辽)如图,点P是正方形ABCD内的一点,连接CP,将线段CP绕点C顺时旋转90°,得到线段CQ,连接BP,DQ.(1)如图1,求证:△BCP≌△DCQ;(2)如图,延长BP交直线DQ于点E.①如图2,求证:BE⊥DQ;②如图3,若△BCP为等边三角形,判断△DEP的形状,并说明理由.18.(2019•吉林)如图,在矩形ABCD中,AD=4cm,AB=3cm,E为边BC上一点,BE =AB,连接AE.动点P、Q从点A同时出发,点P以cm/s的速度沿AE向终点E运动;点Q以2cm/s的速度沿折线AD﹣DC向终点C运动.设点Q运动的时间为x(s),在运动过程中,点P,点Q经过的路线与线段PQ围成的图形面积为y(cm2).(1)AE=cm,∠EAD=°;(2)求y关于x的函数解析式,并写出自变量x的取值范围;(3)当PQ=cm时,直接写出x的值.19.(2019•长春)如图,在Rt△ABC中,∠C=90°,AC=20,BC=15.点P从点A出发,沿AC向终点C运动,同时点Q从点C出发,沿射线CB运动,它们的速度均为每秒5个单位长度,点P到达终点时,P、Q同时停止运动.当点P不与点A、C重合时,过点P作PN⊥AB于点N,连结PQ,以PN、PQ为邻边作▱PQMN.设▱PQMN与△ABC重叠部分图形的面积为S,点P的运动时间为t秒.(1)①AB的长为;②PN的长用含t的代数式表示为.(2)当▱PQMN为矩形时,求t的值;(3)当▱PQMN与△ABC重叠部分图形为四边形时,求S与t之间的函数关系式;(4)当过点P且平行于BC的直线经过▱PQMN一边中点时,直接写出t的值.20.(2019•吉林)如图,在▱ABCD中,点E在边AD上,以C为圆心,AE长为半径画弧,交边BC于点F,连接BE、DF.求证:△ABE≌△CDF.21.(2019•云南)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=OC,BO=OD,且∠AOB=2∠OAD.(1)求证:四边形ABCD是矩形;(2)若∠AOB:∠ODC=4:3,求∠ADO的度数.22.(2019•贵阳)如图,四边形ABCD是平行四边形,延长AD至点E,使DE=AD,连接BD.(1)求证:四边形BCED是平行四边形;(2)若DA=DB=2,cos A=,求点B到点E的距离.23.(2019•吉林)性质探究如图①,在等腰三角形ABC中,∠ACB=120°,则底边AB与腰AC的长度之比为.理解运用(1)若顶角为120°的等腰三角形的周长为8+4,则它的面积为;(2)如图②,在四边形EFGH中,EF=EG=EH.①求证:∠EFG+∠EHG=∠FGH;②在边FG,GH上分别取中点M,N,连接MN.若∠FGH=120°,EF=10,直接写出线段MN的长.类比拓展顶角为2α的等腰三角形的底边与一腰的长度之比为(用含α的式子表示).24.(2019•柳州)平行四边形的其中一个判定定理是:两组对边分别相等的四边形是平行四边形.请你证明这个判定定理.已知:如图,在四边形ABCD中,AB=CD,AD=BC.求证:四边形ABCD是平行四边形.证明:25.(2019•常州)【阅读】数学中,常对同一个量(图形的面积、点的个数、三角形的内角和等)用两种不同的方法计算,从而建立相等关系,我们把这一思想称为“算两次”.“算两次”也称做富比尼原理,是一种重要的数学思想.【理解】(1)如图1,两个边长分别为a、b、c的直角三角形和一个两条直角边都是c的直角三角形拼成一个梯形.用两种不同的方法计算梯形的面积,并写出你发现的结论;(2)如图2,n行n列的棋子排成一个正方形,用两种不同的方法计算棋子的个数,可得等式:n2=;【运用】(3)n边形有n个顶点,在它的内部再画m个点,以(m+n)个点为顶点,把n边形剪成若干个三角形,设最多可以剪得y个这样的三角形.当n=3,m=3时,如图3,最多可以剪得7个这样的三角形,所以y=7.①当n=4,m=2时,如图4,y=;当n=5,m=时,y=9;②对于一般的情形,在n边形内画m个点,通过归纳猜想,可得y=(用含m、n的代数式表示).请对同一个量用算两次的方法说明你的猜想成立.26.(2019•鸡西)如图,在平面直角坐标系中,矩形ABCD的边AB在x轴上,AB、BC的长分别是一元二次方程x2﹣7x+12=0的两个根(BC>AB),OA=2OB,边CD交y轴于点E,动点P以每秒1个单位长度的速度,从点E出发沿折线段ED﹣DA向点A运动,运动的时间为t(0≤t<6)秒,设△BOP与矩形AOED重叠部分的面积为S.(1)求点D的坐标;(2)求S关于t的函数关系式,并写出自变量的取值范围;(3)在点P的运动过程中,是否存在点P,使△BEP为等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.27.(2019•湘西州)如图,在正方形ABCD中,点E,F分别在边CD,AD上,且AF=CE.(1)求证:△ABF≌△CBE;(2)若AB=4,AF=1,求四边形BEDF的面积.28.(2019•哈尔滨)已知:在矩形ABCD中,BD是对角线,AE⊥BD于点E,CF⊥BD于点F.(1)如图1,求证:AE=CF;(2)如图2,当∠ADB=30°时,连接AF、CE,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于矩形ABCD面积的.29.(2019•贺州)如图,在矩形ABCD中,E,F分别是BC,AD边上的点,且AE=CF.(1)求证:△ABE≌△CDF;(2)当AC⊥EF时,四边形AECF是菱形吗?请说明理由.30.(2019•舟山)小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.(1)温故:如图1,在△ABC中,AD⊥BC于点D,正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,若BC=a,AD=h,求正方形PQMN的边长(用a,h表示).(2)操作:如何画出这个正方形PQMN呢?如图2,小波画出了图1的△ABC,然后按数学家波利亚在《怎样解题》中的方法进行操作:先在AB上任取一点P',画正方形P'Q'M'N',使点Q',M'在BC边上,点N'在△ABC 内,然后连结BN',并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PQMN.(3)推理:证明图2中的四边形PQMN是正方形.(4)拓展:小波把图2中的线段BN称为“波利亚线”,在该线上截取NE=NM,连结EQ,EM(如图3),当∠QEM=90°时,求“波利亚线”BN的长(用a,h表示).请帮助小波解决“温故”、“推理”、“拓展”中的问题.31.(2019•天门)如图,E,F分别是正方形ABCD的边CB,DC延长线上的点,且BE=CF,过点E作EG∥BF,交正方形外角的平分线CG于点G,连接GF.求证:(1)AE⊥BF;(2)四边形BEGF是平行四边形.32.(2019•新疆)如图,在菱形ABCD中,对角线AC,BD相交于点O,E是CD中点,连接OE.过点C作CF∥BD交OE的延长线于点F,连接DF.求证:(1)△ODE≌△FCE;(2)四边形OCFD是矩形.33.(2019•海南)如图,在边长为1的正方形ABCD中,E是边CD的中点,点P是边AD 上一点(与点A、D不重合),射线PE与BC的延长线交于点Q.(1)求证:△PDE≌△QCE;(2)过点E作EF∥BC交PB于点F,连结AF,当PB=PQ时,①求证:四边形AFEP是平行四边形;②请判断四边形AFEP是否为菱形,并说明理由.34.(2019•益阳)如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半轴上随之上下移动.(1)当∠OAD=30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cos∠OAD的值.35.(2019•郴州)如图,▱ABCD中,点E是边AD的中点,连接CE并延长交BA的延长线于点F,连接AC,DF.求证:四边形ACDF是平行四边形.36.(2019•北京)如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE =DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O.若BD=4,tan G=,求AO的长.37.(2019•兰州)如图,AC=8,分别以A、C为圆心,以长度5为半径作弧,两条弧分别相交于点B和D.依次连接A、B、C、D,连接BD交AC于点O.(1)判断四边形ABCD的形状并说明理由;(2)求BD的长.38.(2019•天水)如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD的对角线AC、BD交于点O,AC⊥BD.试证明:AB2+CD2=AD2+BC2;(3)解决问题:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结CE、BG、GE.已知AC=4,AB=5,求GE的长.39.(2019•泰安)如图,四边形ABCD是正方形,△EFC是等腰直角三角形,点E在AB 上,且∠CEF=90°,FG⊥AD,垂足为点G.(1)试判断AG与FG是否相等?并给出证明;(2)若点H为CF的中点,GH与DH垂直吗?若垂直,给出证明;若不垂直,说明理由.40.(2019•杭州)如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E 在DC边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.2019年全国中考数学真题精选分类汇编:四边形(解答题)含答案解析参考答案与试题解析一.解答题(共40小题)1.(2019•抚顺)如图,点E,F分别在正方形ABCD的边CD,BC上,且DE=CF,点P 在射线BC上(点P不与点F重合).将线段EP绕点E顺时针旋转90°得到线段EG,过点E作GD的垂线QH,垂足为点H,交射线BC于点Q.(1)如图1,若点E是CD的中点,点P在线段BF上,线段BP,QC,EC的数量关系为BP+QC=EC.(2)如图2,若点E不是CD的中点,点P在线段BF上,判断(1)中的结论是否仍然成立.若成立,请写出证明过程;若不成立,请说明理由.(3)正方形ABCD的边长为6,AB=3DE,QC=1,请直接写出线段BP的长.【分析】(1)由ASA证明△PEQ≌△EGD,得出PQ=ED,即可得出结论;(2)由ASA证明△PEQ≌△EGD,得出PQ=ED,即可得出结论;(3)①当点P在线段BC上时,点Q在线段BC上,由(2)可知:BP=EC﹣QC,求出DE=2,EC=4,即可得出答案;②当点P在线段BC上时,点Q在线段BC的延长线上,由全等三角形的性质得出PQ=DE=2,求出PC=1,得出BP=5;即可得出答案.【解答】解:(1)BP+QC=EC;理由如下:∵四边形ABCD是正方形,∴BC=CD,∠BCD=90°,由旋转的性质得:∠PEG=90°,EG=EP,∴∠PEQ+∠GEH=90°,∵QH⊥GD,∴∠H=90°,∠G+∠GEH=90°,∴∠PEQ=∠G,又∵∠EPQ+∠PEC=90°,∠PEC+∠GED=90°,∴∠EPQ=∠GED,在△PEQ和△EGD中,,∴△PEQ≌△EGD(ASA),∴PQ=ED,∴BP+QC=BC﹣PQ=CD﹣ED=EC,即BP+QC=EC;故答案为:BP+QC=EC;(2)(1)中的结论仍然成立,理由如下:由题意得:∠PEG=90°,EG=EP,∴∠PEQ+∠GEH=90°,∵QH⊥GD,∴∠H=90°,∠G+∠GEH=90°,∴∠PEQ=∠G,∵四边形ABCD是正方形,∴∠DCB=90°,BC=DC,∴∠EPQ+∠PEC=90°,∵∠PEC+∠GED=90°,∴∠GED=∠EPQ,在△PEQ和△EGD中,,∴△PEQ≌△EGD(ASA),∴PQ=ED,∴BP+QC=BC﹣PQ=CD﹣ED=EC,即BP+QC=EC;(3)分两种情况:①当点P在线段BC上时,点Q在线段BC上,由(2)可知:BP=EC﹣QC,∵AB=3DE=6,∴DE=2,EC=4,∴BP=4﹣1=3;②当点P在线段BC上时,点Q在线段BC的延长线上,如图3所示:同(2)可得:△PEQ≌△EGD(AAS),∴PQ=DE=2,∵QC=1,∴PC=PQ﹣QC=1,∴BP=BC﹣PC=6﹣1=5;综上所述,线段BP的长为3或5.【点评】本题是四边形综合题目,考查了正方形的性质、旋转变换的性质、全等三角形的判定与性质、直角三角形的性质以及分类讨论等知识;本题综合性强,证明三角形全等是解题的关键.2.(2019•盘锦)如图,四边形ABCD是菱形,∠BAD=120°,点E在射线AC上(不包括点A和点C),过点E的直线GH交直线AD于点G,交直线BC于点H,且GH∥DC,点F在BC的延长线上,CF=AG,连接ED,EF,DF.(1)如图1,当点E在线段AC上时,①判断△AEG的形状,并说明理由.②求证:△DEF是等边三角形.(2)如图2,当点E在AC的延长线上时,△DEF是等边三角形吗?如果是,请证明你的结论;如果不是,请说明理由.【分析】(1)①由菱形的性质得出AD∥BC,AB=BC=CD=AD,AB∥CD,∠CAD=∠BAD=60°,由平行线的性质得出∠BAD+∠ADC=180°,∠ADC=60°,∠AGE=∠ADC=60°,得出∠AGE=∠EAG=∠AEG=60°,即可得出△AEG是等边三角形;②由等边三角形的性质得出AG=AE,由已知得出AE=CF,由菱形的性质得出∠BCD =∠BAD=120°,得出∠DCF=60°=∠CAD,证明△AED≌△CFD(SAS),得出DE =DF,∠ADE=∠CDF,再证出∠EDF=60°,即可得出△DEF是等边三角形;(2)同(1)①得:△AEG是等边三角形,得出AG=AE,由已知得出AE=CF,由菱形的性质得出∠BCD=∠BAD=120°,∠CAD=∠BAD=60°,得出∠FCD=60°=∠CAD,证明△AED≌△CFD(SAS),得出DE=DF,∠ADE=∠CDF,再证出∠EDF =60°,即可得出△DEF是等边三角形.【解答】(1)①解:△AEG是等边三角形;理由如下:∵四边形ABCD是菱形,∠BAD=120°,∴AD∥BC,AB=BC=CD=AD,AB∥CD,∠CAD=∠BAD=60°,∴∠BAD+∠ADC=180°,∴∠ADC=60°,∵GH∥DC,∴∠AGE=∠ADC=60°,∴∠AGE=∠EAG=∠AEG=60°,∴△AEG是等边三角形;②证明:∵△AEG是等边三角形,∴AG=AE,∵CF=AG,∴AE=CF,∵四边形ABCD是菱形,∴∠BCD=∠BAD=120°,∴∠DCF=60°=∠CAD,在△AED和△CFD中,,∴△AED≌△CFD(SAS)∴DE=DF,∠ADE=∠CDF,∵∠ADC=∠ADE+∠CDE=60°,∴∠CDF+∠CDE=60°,即∠EDF=60°,∴△DEF是等边三角形;(2)解:△DEF是等边三角形;理由如下:同(1)①得:△AEG是等边三角形,∴AG=AE,∵CF=AG,∴AE=CF,∵四边形ABCD是菱形,∴∠BCD=∠BAD=120°,∠CAD=∠BAD=60°,∴∠FCD=60°=∠CAD,在△AED和△CFD中,,∴△AED≌△CFD(SAS),∴DE=DF,∠ADE=∠CDF,∵∠ADC=∠ADE﹣∠CDE=60°,∴∠CDF﹣∠CDE=60°,即∠EDF=60°,∴△DEF是等边三角形.【点评】本题是四边形综合题目,考查了菱形的性质、全等三角形的判定与性质、等边三角形的判定与性质、平行线的性质等知识;本题综合性强,熟练掌握菱形的性质,证明三角形全等是解题的关键.3.(2019•朝阳)如图,四边形ABCD是正方形,连接AC,将△ABC绕点A逆时针旋转α得△AEF,连接CF,O为CF的中点,连接OE,OD.(1)如图1,当α=45°时,请直接写出OE与OD的关系(不用证明).(2)如图2,当45°<α<90°时,(1)中的结论是否成立?请说明理由.(3)当α=360°时,若AB=4,请直接写出点O经过的路径长.【分析】(1)由旋转的性质得:AF=AC,∠AFE=∠ACB,由正方形的性质得出∠ACB =∠ACD=∠F AC=45°,得出∠ACF=∠AFC=67.5°,因此∠DCF═∠EFC=22.5°,由直角三角形斜边上的中线性质得出OE=CF=OC=OF,同理:OD=CF,得出OE =OD=OC=OF,证出∠EOC=2∠EFO=45°,∠DOF=2∠DCO=45°,得出∠DOE =90°即可;(2)连接CE,DF,根据正方形的性质得到AD=AE根据全等三角形的性质得到CE=DF,∠ECA=∠DF A求得∠ECO=∠DFO根据全等三角形的性质即可得到结论;连接AO,则AO⊥CF,A、C、O、D四点共圆,由圆周角定理得出∠AOD=∠ACD=45°,同理A、E、O、F四点共圆,得出∠AOE=∠AFE=45°,进而得出结论;(3)连接AO,由等腰三角形的性质得出AO⊥CF,∠AOC=90°,得出点O在以AC 为直径的圆上运动,证出点O经过的路径长等于以AC为直径的圆的周长,求出AC=AB=8,即可得出答案.【解答】解:(1)OE=OD,OE⊥OD;理由如下:由旋转的性质得:AF=AC,∠AFE=∠ACB,∵四边形ABCD是正方形,∴∠ACB=∠ACD=∠F AC=45°,∴∠ACF=∠AFC=(180°﹣45°)=67.5°,∴∠DCF═∠EFC=22.5°,∵∠FEC=90°,O为CF的中点,∴OE=CF=OC=OF,同理:OD=CF,∴OE=OD=OC=OF,∴∠EOC=2∠EFO=45°,∠DOF=2∠DCO=45°,∴∠DOE=180°﹣45°﹣45°=90°,∴OE⊥OD;(2)当45°<α<90°时,(1)中的结论成立,理由如下:连接CE,DF,如图所示:在正方形ABCD中,AB=AD∴AD=AE∵O为CF的中点,∴OC=OF∵AF=AC∴∠ACF=∠AFC∵∠DAC=∠EAF∴∠DAC﹣∠DAE=∠EAF﹣∠DAE∴∠EAC=∠DAF在△ACE和△AFD中,,∴△ACE≌△AFD(SAS)∴CE=DF,∠ECA=∠DF A又∵∠ACF=∠AFC∴∠ACF﹣∠ECA=∠AFC﹣∠DF A,∴∠ECO=∠DFO,在△EOC和△DOF中,,∵EC=DF,∠ECO=∠DFO,CO=FO∴△EOC≌△DOF(SAS)∴OE=OD.连接AO,则AO⊥CF,∴∠AOC=∠ADC=90°,∴A、C、O、D四点共圆,∴∠AOD=∠ACD=45°,同理A、E、O、F四点共圆,∴∠AOE=∠AFE=45°,∴∠DOE=45°+45°=90°,∴OD⊥OE.(3)连接AO,如图3所示:∵AC=AF,CO=OF,∴AO⊥CF,∴∠AOC=90°,∴点O在以AC为直径的圆上运动,∵α=360°,∴点O经过的路径长等于以AC为直径的圆的周长,∵AC=AB=×4=8,∴点O经过的路径长为:πd=8π.【点评】本题是四边形综合题目,考查了正方形的性质、旋转变换的性质、全等三角形的判定与性质、等腰三角形的判定与性质、直角三角形的性质、圆周长等知识;本题综合性强,证明三角形全等是解题的关键.4.(2019•青海)如图,在△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F,连接CF.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形.【分析】(1)由“AAS”可证△AFE≌△DBE;(2)由一组对边平行且相等的四边形是平行四边形,可得四边形ADCF是平行四边形,由直角三角形的性质可得AD=CD,即可得四边形ADCF是菱形.【解答】证明:(1)∵AF∥BC,∴∠AFE=∠DBE∵△ABC是直角三角形,AD是BC边上的中线,E是AD的中点,∴AE=DE,BD=CD在△AFE和△DBE中,,∴△AFE≌△DBE(AAS)(2)由(1)知,AF=BD,且BD=CD,∴AF=CD,且AF∥BC,∴四边形ADCF是平行四边形∵∠BAC=90°,D是BC的中点,∴AD=BC=CD,∴四边形ADCF是菱形.【点评】本题考查了菱形的判定,全等三角形的判定和性质,直角三角形的性质,证明AD=CD是本题的关系.5.(2019•鄂尔多斯)(1)【探究发现】如图1,∠EOF的顶点O在正方形ABCD两条对角线的交点处,∠EOF=90°,将∠EOF 绕点O旋转,旋转过程中,∠EOF的两边分别与正方形ABCD的边BC和CD交于点E 和点F(点F与点C,D不重合).则CE,CF,BC之间满足的数量关系是CE+CF=BC.(2)【类比应用】如图2,若将(1)中的“正方形ABCD”改为“∠BCD=120°的菱形ABCD”,其他条件不变,当∠EOF=60°时,上述结论是否仍然成立?若成立,请给出证明;若不成立,请猜想结论并说明理由.(3)【拓展延伸】如图3,∠BOD=120°,OD=,OB=4,OA平分∠BOD,AB=,且OB>2OA,点C是OB上一点,∠CAD=60°,求OC的长.【分析】(1)如图1中,结论:CE+CF=BC.证明△BOE≌△COF(ASA),即可解决问题.(2)如图2中,结论不成立.CE+CF=BC.连接EF,在CO上截取CJ=CF,连接FJ.首先证明CE+CF=OC,再利用直角三角形30度角的性质即可解决问题.(3)如图3中,由OB>2OA可知△BAO是钝角三角形,∠BAO>90°,作AH⊥OB于H,设OH=x.构建方程求出x可得OA=1,再利用(2)中结论即可解决问题.【解答】解:(1)如图1中,结论:CE+CF=BC.理由如下:∵四边形ABCD是正方形,∴AC⊥BD,OB=OC,∠OBE=∠OCF=45°,∵∠EOF=∠BOC=90°,∴∠BOE=∠OCF,∴△BOE≌△COF(ASA),∴BE=CF,∴CE+CF=CE+BE=BC.故答案为CE+CF=BC.(2)如图2中,结论不成立.CE+CF=BC.理由:连接EF,在CO上截取CJ=CF,连接FJ.∵四边形ABCD是菱形,∠BCD=120°,∴∠BCO=∠OCF=60°,∵∠EOF+∠ECF=180°,∴O,E,C,F四点共圆,∴∠OFE=∠OCE=60°,∵∠EOF=60°,∴△EOF是等边三角形,∴OF=FE,∠OFE=60°,∵CF=CJ,∠FCJ=60°,∴△CFJ是等边三角形,∴FC=FJ,∠JFC=∠OFE=60°,∴∠OFJ=∠CFE,∴△OFJ≌△EFC(SAS),∴OJ=CE,∴CF+CE=CJ+OJ=OC=BC,(3)如图3中,由OB>2OA可知△BAO是钝角三角形,∠BAO>90°,作AH⊥OB于H,设OH=x.在Rt△ABH中,BH=,∵OB=4,∴+x=4,解得x=或,∴OH=或,∴OA=2OH=1或3(舍弃),∵∠COD+∠CAD=180°,∴A,C,O,D四点共圆,∵OA平分∠COD,∴∠AOC=∠AOD=60°,∴∠ADC=∠AOC=60°,∵∠CAD=60°,∴△ACD是等边三角形,由(2)可知:OC+OD=OA,∴OC=1﹣=.【点评】本题属于四边形综合题,考查了正方形的性质,菱形的性质,解直角三角形,四点共圆,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.6.(2019•湘潭)如图一,在射线DE的一侧以AD为一条边作矩形ABCD,AD=5,CD =5,点M是线段AC上一动点(不与点A重合),连结BM,过点M作BM的垂线交射线DE于点N,连接BN.(1)求∠CAD的大小;(2)问题探究:动点M在运动的过程中,①是否能使△AMN为等腰三角形,如果能,求出线段MC的长度;如果不能,请说明理由.②∠MBN的大小是否改变?若不改变,请求出∠MBN的大小;若改变,请说明理由.(3)问题解决:如图二,当动点M运动到AC的中点时,AM与BN的交点为F,MN的中点为H,求线段FH的长度.【分析】(1)在Rt△ADC中,求出∠DAC的正切值即可解决问题.(2)①分两种情形:当NA=NM时,当AN=AM时,分别求解即可.②∠MBN=30°.利用四点共圆解决问题即可.(3)首先证明△ABM是等边三角形,再证明BN垂直平分线段AM,解直角三角形即可解决问题.【解答】解:(1)如图一(1)中,∵四边形ABCD是矩形,∴∠ADC=90°,∵tan∠DAC===,∴∠DAC=30°.(2)①如图一(1)中,当AN=NM时,∵∠BAN=∠BMN=90°,BN=BN,AN=NM,∴Rt△BNA≌Rt△BNM(HL),∴BA=BM,在Rt△ABC中,∵∠ACB=∠DAC=30°,AB=CD=5,∴AC=2AB=10,∵∠BAM=60°,BA=BM,∴△ABM是等边三角形,∴AM=AB=5,∴CM=AC﹣AM=5.如图一(2)中,当AN=AM时,易证∠AMN=∠ANM=15°,∵∠BMN=90°,∴∠CMB=75°,∵∠MCB=30°,∴∠CBM=180°﹣75°﹣30°=75°,∴∠CMB=∠CBM,∴CM=CB=5,综上所述,满足条件的CM的值为5或5.②结论:∠MBN=30°大小不变.理由:如图一(1)中,∵∠BAN+∠BMN=180°,∴A,B,M,N四点共圆,∴∠MBN=∠MAN=30°.如图一(2)中,∵∠BMN=∠BAN=90°,∴A,N,B,M四点共圆,∴∠MBN+∠MAN=180°,∵∠DAC+∠MAN=180°,∴∠MBN=∠DAC=30°,综上所述,∠MBN=30°.(3)如图二中,∵AM=MC,∴BM=AM=CM,∴AC=2AB,∴AB=BM=AM,∴△ABM是等边三角形,∴∠BAM=∠BMA=60°,∵∠BAN=∠BMN=90°,∴∠NAM=∠NMA=30°,∴NA=NM,∵BA=BM,∴BN垂直平分线段AM,∴FM=,∴NM==,∵∠NFM=90°,NH=HM,∴FH=MN=.【点评】本题属于四边形综合题,考查了矩形的性质,全等三角形的判定和性质,解直角三角形,等边三角形的判定和性质,锐角三角函数,等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.7.(2019•沈阳)如图,在四边形ABCD中,点E和点F是对角线AC上的两点,AE=CF,DF=BE,且DF∥BE,过点C作CG⊥AB交AB的延长线于点G.(1)求证:四边形ABCD是平行四边形;(2)若tan∠CAB=,∠CBG=45°,BC=4,则▱ABCD的面积是24.【分析】(1)根据已知条件得到AF=CE,根据平行线的性质得到∠DF A=∠BEC,根据全等三角形的性质得到AD=CB,∠DAF=∠BCE,于是得到结论;(2)根据已知条件得到△BCG是等腰直角三角形,求得BG=CG=4,解直角三角形得到AG=10,根据平行四边形的面积公式即可得到结论.【解答】(1)证明:∵AE=CF,∴AE+EF=CF+EF,即AF=CE,∵DF∥BE,∴∠DF A=∠BEC,∵DF=BE,∴△ADF≌△CBE(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形;(2)解:∵CG⊥AB,∴∠G=90°,∵∠CBG=45°,∴△BCG是等腰直角三角形,∵BC=4,∴BG=CG=4,∵tan∠CAB=,∴AG=10,∴AB=6,∴▱ABCD的面积=6×4=24,故答案为:24.【点评】本题考查了平行相交线的判定和性质,全等三角形的判定和性质,解直角三角形,正确的识别图形是解题的关键.8.(2019•娄底)如图,点E、F、G、H分别在矩形ABCD的边AB、BC、CD、DA(不包括端点)上运动,且满足AE=CG,AH=CF.(1)求证:△AEH≌△CGF;(2)试判断四边形EFGH的形状,并说明理由.(3)请探究四边形EFGH的周长一半与矩形ABCD一条对角线长的大小关系,并说明理由.【分析】(1)根据全等三角形的判定定理SAS证得结论;(2)由(1)中全等三角形的性质得到:EH=GF,同理可得FE=HG,即可得四边形EFGH是平行四边形;(3)由轴对称﹣﹣最短路径问题得到:四边形EFGH的周长一半大于或等于矩形ABCD 一条对角线长度.【解答】证明:(1)∵四边形ABCD是矩形,∴∠A=∠C.∴在△AEH与△CGF中,,∴△AEH≌△CGF(SAS);(2)四边形EFGH是平行四边形,理由如下:∵由(1)知,△AEH≌△CGF,则EH=GF,同理证得△EBF≌△GDH,则EF=GH,∴四边形EFGH是平行四边形;(3)四边形EFGH的周长一半大于或等于矩形ABCD一条对角线长度.理由如下:作G关于BC的对称点G′,连接EG′,可得EG′的长度就是EF+FG的最小值.连接AC,∵CG′=CG=AE,AB∥CG′,∴四边形AEG′C为平行四边形,∴EG′=AC.在△EFG′中,∵EF+FG′>EG′=AC,∴四边形EFGH的周长一半大于或等于矩形ABCD一条对角线长度.【点评】考查了矩形的性质,全等三角形的判定与性质.灵活运用这些性质进行推理证明是本题的关键.9.(2019•陕西)问题提出:(1)如图1,已知△ABC,试确定一点D,使得以A,B,C,D为顶点的四边形为平行四边形,请画出这个平行四边形;问题探究:(2)如图2,在矩形ABCD中,AB=4,BC=10,若要在该矩形中作出一个面积最大的△BPC,且使∠BPC=90°,求满足条件的点P到点A的距离;问题解决:。
001(2019•呼和浩特)二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是()A.B.C.D.解:由一次函数y=ax+a可知,一次函数的图象与x轴交于点(﹣1,0),排除A、B;当a>0时,二次函数开口向上,一次函数经过一、三、四象限,当a<0时,二次函数开口向下,一次函数经过二、三、四象限,排除C;故选:D.002(2019•深圳)已知y=ax2+bx+c(a≠0)的图象如图,则y=ax+b和y=c的图象为()xA.B.C .D .解:根据二次函数y =ax 2+bx +c (a ≠0)的图象, 可得a <0,b >0,c <0, ∴y =ax +b 过一、二、四象限, 双曲线y =cx 在二、四象限, ∴C 是正确的. 故选:C .003(2019•湖州)已知a ,b 是非零实数,|a |>|b |,在同一平面直角坐标系中,二次函数y 1=ax 2+bx 与一次函数y 2=ax +b 的大致图象不可能是( )A .B .C .D .解:{y =ax 2+bx y =ax +b 解得{x =−ba y =0或{x =1y =a +b .故二次函数y =ax 2+bx 与一次函数y =ax +b (a ≠0)在同一平面直角坐标系中的交点在x 轴上为(−ba ,0)或点(1,a +b ).在A 中,由一次函数图象可知a >0,b >0,二次函数图象可知,a >0,b >0,−ba <0,a +b >0,故选项A 错误;在B中,由一次函数图象可知a>0,b<0,二次函数图象可知,a>0,b<0,由|a|>|b|,则a+b>0,故选项B错误;在C中,由一次函数图象可知a<0,b<0,二次函数图象可知,a<0,b<0,a+b<0,故选项C错误;在D中,由一次函数图象可知a<0,b>0,二次函数图象可知,a<0,b>0,由|a|>|b|,则a+b<0,故选项D正确;故选:D.004(2019•德州)若函数y=k与y=ax2+bx+c的图象如图所示,则函数y=kx+b的大致图象x为()A.B.C.D.解:根据反比例函数的图象位于二、四象限知k<0,根据二次函数的图象确知a>0,b<0,∴函数y=kx+b的大致图象经过二、三、四象限,故选:C.005(2019•青岛)已知反比例函数y=ab的图象如图所示,则二次函数y=ax2﹣2x和一次函x数y=bx+a在同一平面直角坐标系中的图象可能是()A.B.C.D.解:∵当x=0时,y=ax2﹣2x=0,即抛物线y=ax2﹣2x经过原点,故A错误;∵反比例函数y=abx的图象在第一、三象限,∴ab>0,即a、b同号,当a<0时,抛物线y=ax2﹣2x的对称轴x=1a<0,对称轴在y轴左边,故D错误;当a>0时,b>0,直线y=bx+a经过第一、二、三象限,故B错误,C正确.故选:C.006(2019•攀枝花)在同一坐标系中,二次函数y=ax2+bx与一次函数y=bx﹣a的图象可能是()A.B.C.D.解:由方程组{y =ax 2+bxy =bx −a 得ax 2=﹣a ,∵a ≠0∴x 2=﹣1,该方程无实数根,故二次函数与一次函数图象无交点,排除B .A :二次函数开口向上,说明a >0,对称轴在y 轴右侧,则b <0;但是一次函数b 为一次项系数,图象显示从左向右上升,b >0,两者矛盾,故A 错;C :二次函数开口向上,说明a >0,对称轴在y 轴右侧,则b <0;b 为一次函数的一次项系数,图象显示从左向右下降,b <0,两者相符,故C 正确;D :二次函数的图象应过原点,此选项不符,故D 错. 故选:C .007(2019•自贡)一次函数y =ax +b 与反比列函数y =c x的图象如图所示,则二次函数y =ax 2+bx +c 的大致图象是( )A .B .C .D .解:∵一次函数y 1=ax +b 图象过第一、二、四象限, ∴a <0,b >0, ∴−b2a >0,∴二次函数y 3=ax 2+bx +c 开口向下,二次函数y 3=ax 2+bx +c 对称轴在y 轴右侧; ∵反比例函数y 2=cx 的图象在第一、三象限, ∴c >0,∴与y 轴交点在x 轴上方.满足上述条件的函数图象只有选项A . 故选:A .008(2019•宁夏)函数y =kx 和y =kx +2(k ≠0)在同一直角坐标系中的大致图象是( )A .B .C .D .解:在函数y =k x和y =kx +2(k ≠0)中,当k >0时,函数y =k x的图象在第一、三象限,函数y =kx +2的图象在第一、二、三象限,故选项A 、D 错误,选项B 正确,当k <0时,函数y =k x 的图象在第二、四象限,函数y =kx +2的图象在第一、二、四象限,故选项C 错误, 故选:B .009(2019•通辽)关于x 、y 的二元一次方程组{x −2y =k 2x −3y =−4k 的解满足x <y ,则直线y =kx ﹣k ﹣1与双曲线y =k x 在同一平面直角坐标系中大致图象是( )A .B .C .D .解:二元一次方程组{x −2y =k2x −3y =−4k 中第二个方程减去第一个方程得:x ﹣y =﹣5k ,∵关于x 、y 的二元一次方程组{x −2y =k2x −3y =−4k 的解满足x <y ,∴x ﹣y <0, ∴﹣5k <0, 即:k >0,∴y =kx ﹣k ﹣1经过一三四象限,双曲线y =kx 的两个分支位于一三象限,B 选项符合, 故选:B .010(2019•贺州)已知ab <0,一次函数y =ax ﹣b 与反比例函数y =ax 在同一直角坐标系中的图象可能( )A .B .C .D .解:若反比例函数y=ax经过第一、三象限,则a>0.所以b<0.则一次函数y=ax﹣b的图象应该经过第一、二、三象限;若反比例函数y=ax经过第二、四象限,则a<0.所以b>0.则一次函数y=ax﹣b的图象应该经过第二、三、四象限.故选项A正确;故选:A.011(2019•鄂州)在同一平面直角坐标系中,函数y=﹣x+k与y=kx(k为常数,且k≠0)的图象大致是()A.B.C.D.解:∵函数y=﹣x+k与y=kx(k为常数,且k≠0),∴当k>0时,y=﹣x+k经过第一、二、四象限,y=kx经过第一、三象限,故选项A、B错误,当k<0时,y=﹣x+k经过第二、三、四象限,y=kx经过第二、四象限,故选项C正确,选项D错误,故选:C.012(2019•大庆)正比例函数y=kx(k≠0)的函数值y随着x增大而减小,则一次函数y=x+k的图象大致是()A.B.C.D.解:∵正比例函数y=kx(k≠0)的函数值y随x的增大而减小,∴k<0,∵一次函数y=x+k的一次项系数大于0,常数项小于0,∴一次函数y=x+k的图象经过第一、三象限,且与y轴的负半轴相交.故选:A.013(2019•辽阳)若ab<0且a>b,则函数y=ax+b的图象可能是()A.B.C.D.解:∵ab<0,且a>b,∴a>0,b<0,∴函数y=ax+b的图象经过第一、三、四象限.故选:A.014(2019浙江杭州)(2019•杭州)已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A.B.C.D.解:A、由①可知:a>0,b>0.∴直线②经过一、二、三象限,故A正确;B、由①可知:a<0,b>0.∴直线②经过一、二、三象限,故B错误;C、由①可知:a<0,b>0.∴直线②经过一、二、四象限,交点不对,故C错误;D、由①可知:a<0,b<0,∴直线②经过二、三、四象限,故D错误.故选:A.015(2019•河池)如图,抛物线y=ax2+bx+c的对称轴为直线x=1,则下列结论中,错误的是()A.ac<0B.b2﹣4ac>0C.2a﹣b=0D.a﹣b+c=0解:A、由抛物线的开口向下知a<0,与y轴的交点在y轴的正半轴上,可得c>0,因此ac<0,故本选项正确,不符合题意;B、由抛物线与x轴有两个交点,可得b2﹣4ac>0,故本选项正确,不符合题意;C、由对称轴为x=−b=1,得2a=﹣b,即2a+b=0,故本选项错误,符合题意;2aD、由对称轴为x=1及抛物线过(3,0),可得抛物线与x轴的另外一个交点是(﹣1,0),所以a﹣b+c=0,故本选项正确,不符合题意.故选:C.016(2019•梧州)已知m>0,关于x的一元二次方程(x+1)(x﹣2)﹣m=0的解为x1,x2(x1<x2),则下列结论正确的是()A.x1<﹣1<2<x2B.﹣1<x1<2<x2C.﹣1<x1<x2<2D.x1<﹣1<x2<2解:关于x的一元二次方程(x+1)(x﹣2)﹣m=0的解为x1,x2,可以看作二次函数m=(x+1)(x﹣2)与x轴交点的横坐标,∵二次函数m=(x+1)(x﹣2)与x轴交点坐标为(﹣1,0),(2,0),如图:当m>0时,就是抛物线位于x轴上方的部分,此时x<﹣1,或x>2;又∵x1<x2∴x1=﹣1,x2=2;∴x1<﹣1<2<x2,故选:A.017(2019•沈阳)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论正确的是()A.abc<0B.b2﹣4ac<0C.a﹣b+c<0D.2a+b=0解:由图可知a>0,与y轴的交点c<0,对称轴x=1,∴b=﹣2a<0;∴abc>0,A错误;由图象可知,函数与x轴有两个不同的交点,∴△>0,B错误;当x=﹣1时,y>0,∴a﹣b+c>0,C错误;∵b=﹣2a,D正确;故选:D.018(2019•临沂)从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球运动时间t(单位:s)之间的函数关系如图所示.下列结论:①小球在空中经过的路程是40m;②小球抛出3秒后,速度越来越快;③小球抛出3秒时速度为0;④小球的高度h=30m时,t=1.5s.其中正确的是()A.①④B.①②C.②③④D.②③解:①由图象知小球在空中达到的最大高度是40m;故①错误;②小球抛出3秒后,速度越来越快;故②正确;③小球抛出3秒时达到最高点即速度为0;故③正确;④设函数解析式为:h=a(t﹣3)2+40,把O(0,0)代入得0=a(0﹣3)2+40,解得a=−409,∴函数解析式为h=−409(t﹣3)2+40,把h=30代入解析式得,30=−409(t﹣3)2+40,解得:t=4.5或t=1.5,∴小球的高度h=30m时,t=1.5s或4.5s,故④错误;故选:D.019(2019•成都)如图,二次函数y=ax2+bx+c的图象经过点A(1,0),B(5,0),下列说法正确的是()A.c<0B.b2﹣4ac<0C.a﹣b+c<0D.图象的对称轴是直线x=3解:A.由于二次函数y=ax2+bx+c的图象与y轴交于正半轴,所以c>0,故A错误;B.二次函数y=ax2+bx+c的图象与x轴由2个交点,所以b2﹣4ac>0,故B错误;C.当x=﹣1时,y<0,即a﹣b+c<0,故C错误;D.因为A(1,0),B(5,0),所以对称轴为直线x=1+52=3,故D正确.故选:D.020(2019•广元)如图,抛物线y=ax2+bx+c(a≠0)过点(﹣1,0),(0,2),且顶点在第一象限,设M=4a+2b+c,则M的取值范围是﹣6<M<6.解:将(﹣1,0)与(0,2)代入y=ax2+bx+c,∴0=a﹣b+c,2=c,∴b=a+2,∵−b2a>0,a<0,∴b>0,∴a>﹣2,∴﹣2<a<0,∴M=4a+2(a+2)+2=6a+6=6(a+1)∴﹣6<M<6,故答案为:﹣6<M<6;021二次函数y=x2﹣ax+b的图象如图所示,对称轴为直线x=2,下列结论不正确的是()A.a=4B.当b=﹣4时,顶点的坐标为(2,﹣8)C.当x=﹣1时,b>﹣5D.当x>3时,y随x的增大而增大解:∵二次函数y=x2﹣ax+b∴对称轴为直线x=a2=2∴a=4,故A选项正确;当b=﹣4时,y=x2﹣4x﹣4=(x﹣2)2﹣8∴顶点的坐标为(2,﹣8),故B选项正确;当x=﹣1时,由图象知此时y<0即1+4+b<0∴b<﹣5,故C选项不正确;∵对称轴为直线x=2且图象开口向上∴当x>3时,y随x的增大而增大,故D选项正确;故选:C.022(2019•资阳)如图是函数y=x2﹣2x﹣3(0≤x≤4)的图象,直线l∥x轴且过点(0,m),将该函数在直线l上方的图象沿直线l向下翻折,在直线1下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m的取值范围是()A.m≥1B.m≤0C.0≤m≤1D.m≥1或m≤0解:如图1所示,当t等于0时,∵y=(x﹣1)2﹣4,∴顶点坐标为(1,﹣4),当x=0时,y=﹣3,∴A(0,﹣3),当x=4时,y=5,∴C(4,5),∴当m=0时,D(4,﹣5),∴此时最大值为0,最小值为﹣5;如图2所示,当m=1时,此时最小值为﹣4,最大值为1.综上所述:0≤m≤1,故选:C.。
专题11 尺规作图、投影与视图1.(2019•广东)如图,由4个相同正方体组合而成的儿何体,它的左视图是A.B.C.D.2.(2019•深圳)下列哪个图形是正方体的展开图A.B.C.D.3.(2019•深圳)如图,已知AB=AC,AB=5,BC=3,以A,B两点为圆心,大于12AB的长为半径画圆弧,两弧相交于点M,N,连接MN与AC相交于点D,则△BDC的周长为A.8 B.10 C.11 D.134.(2019年广东省潮州市中考数学5月份模拟试卷)如图所示的几何体的主视图是A.B.C.D.5.(广东省汕头市潮南区2019届九年级中考一模试卷)如图是由几个相同的小正方体堆砌成的几何体,它的左视图是A.B.C.D.6.(广东省2019届九年级中考数学6月份宝塔密卷)下列水平放置的四个几何体中,左视图是四边形的几何体共有A.1个B.2个C.3个D.4个7.(2019年广东省汕头市澄海区中考数学一模试卷)如图是由3个相同的正方体组成的一个立体图形,它的俯视图是A.B.C.D.8.(2019年广东省深圳市二十三校联考中考数学4月份模拟试卷)下列立体图形中,主视图是三角形的是A.B.C.D.9.(广东省广州市荔湾区2019届九年级中考第一次模拟考试数学试题)某几何体的三视图如图所示,则该几何体的体积为A.3 B.C.D.10.(2019年广东省揭阳市空港经济区中考数学一模试卷)从正面看下列的几何体,得到的图形为三角形的是A.B.C.D.11.(2019年广东省佛山市顺德区中考数学三模试卷)展开图可能是如图的几何体是A.三棱柱B.圆柱C.四棱柱D.圆锥12.(广东省深圳市罗湖区2019届九年级第二学期一模质量检测数学试卷)将如图所示的正方体地展开图重新折叠成正方体后,和“应”字相对的面上的汉字是A.静B.沉C.冷D.着13.(广东省茂名市电白县2019年中考一模数学试卷)如图是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面与“生”相对应的面上的汉字是A.数B.学C.活D.的14.(2019年广东省深圳市罗湖区中考数学二模试卷)如图,在△ABC中,∠B=70°,∠C=30°,分别以点A和点C为圆心,大于12AC的长为半径画弧,两弧相交于点M、N,作直线MN,交BC于点D,连接AD,则∠BAD的度数为A.40°B.45°C.50°D.60°15.(2019年广东省深圳市二十三校联考中考数学4月份模拟试卷)如图仔细观察其中的两个尺规作图痕迹,两直线相交于点O,则下列说法中不正确的是A.EF是△ABC的中位线B.∠BAC+∠EOF=180°C.O是△ABC的内心D.△AEF的面积等于△ABC的面积的1 416.(广东省深圳市2019年中考数学信息卷试题)如图,AC是矩形ABCD的一条对角线,E是AC中点,连接BE,再分别以A,D为圆心,大于12AD的长为半径作弧,两弧相交于点F,连接EF交AD于点G.若AB=3,BC=4,则四边形ABEG的周长为A.8 B.8.5 C.9 D.9.5 17.(2019•广东)如图,在△ABC中,点D是AB边上的一点.(1)请用尺规作图法,在△ABC内,求作∠ADE,使∠ADE=∠B,DE交AC于E;(不要求写作法,保留作图痕迹)(2)在(1)的条件下,若ADDB2,求AEEC的值.18.(2019•广州)如图,⊙O的直径AB=10,弦AC=8,连接BC.(1)尺规作图:作弦CD,使CD=BC(点D不与B重合),连接AD;(保留作图痕迹,不写作法)(2)在(1)所作的图中,求四边形ABCD的周长.19.(广东省肇庆市怀集县2019届九年级中考一模数学试题)如图,在直角△ABC中,∠C=90°.用尺规作图作∠A的平分线AD,交BC于D,过D作AB的垂线,垂足为E,并求证:DE=DC(保留作图痕迹,不要求写作法和证明).20.(广东省惠州市博罗县2019届九年级中考一模数学试卷)如图,在Rt△ABC中,∠ACB=90°.(1)请用直尺和圆规作∠ABC的平分线,交AC于点D(保留作图痕迹,不要求写作法和证明);(2)在(1)作出的图形中,若∠A=30°,BC,则点D到AB的距离等于__________.21.(广东省汕头市龙湖区2019年中考数学一模试卷)如图,点D在△ABC的AB边上.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,若直线DE与直线AC平行,则∠ACD=∠A吗?为什么?22.(2019年广东省揭阳市空港经济区中考数学一模试卷)如图,在△ABC中,已知∠CDB=110°,∠ABD=30°.(1)请用直尺和圆规在图中直接作出∠A的平分线AE交BD于E;(不写作法,保留作图痕迹)(2)在(1)的条件下,求出∠AED的度数.23.(广东省珠海市香洲区2019届九年级中考模拟数学试题)如图,锐角△ABC中,AB=8,AC=5.(1)请用尺规作图法,作BC的垂直平分线DE,垂足为E,交AB于点D(不要求写作法,保留作图痕迹);(2)在(1)的条件下,连接CD ,求△ACD 周长.24.(广东省广州市增城区2019届九年级综合测试一模数学试题)如图,在ABC V 中,90ACB ∠=︒,点O 是BC 上一点.(1)尺规作图:作O e ,使O e 与AC 、AB 都相切.(不写作法与证明,保留作图痕迹) (2)若O e 与AB 相切于点D ,与BC 的另一个交点为点E ,连接CD 、DE ,求证:2DB BC BE =⋅.25.(广东省佛山市顺德区2019届九年级第二次模拟考试数学试题)如图,△ABC 中,AC =8,BC =10,AC >AB . (1)用尺规作图法在△ABC 内求作一点D ,使点D 到两点A 、C 的距离相等,又到边AC 、BC 的距离相等(保留作图痕迹,不写作法).(2)若△ACD 的周长为18,求△BCD 的面积.26.(广东省广州市荔湾区2019届九年级中考第一次模拟考试数学试题)已知,如图,△ABC 中,∠C =90°,E 为BC 边中点.(1)尺规作图:以AC 为直径,作⊙O ,交AB 于点D (保留作图痕迹,不需写作法). (2)连接DE ,求证:DE 为⊙O 的切线; (3)若AC =5,DE =815,求BD 的长.。
2019年全国中考试题解析版分类汇编-尺规作图注意事项:认真阅读理解,结合历年的真题,总结经验,查找不足!重在审题,多思考,多理解!【一】选择题1.〔2017•台湾33,4分〕如图,AB为圆O的直径,在圆O上取异于A、B的一点C,并连接BC、AC、假设想在AB上取一点P,使得P与直线BC的距离等于AP长,判断以下四个作法何者正确?〔〕A、作的中垂线,交于P点B、作∠ACB的角平分线,交于P点C、作∠ABC的角平分线,交于D点,过D作直线BC平行线,交于P点D、过A作圆O的切线,交直线BC于D点,作∠ADC的角平分线,交于P点考点:切线的性质;角平分线的性质。
分析:A圆内弦中垂线过原点;角平分线上点到到两边距离相等;角平分线上点到两边距离相等;D角平分线上点到两边距离相等,与切线与过切点的直径垂直、从而判断出来、解答:解:A、圆内弦的中垂线过原点,有圆内弦性质可知,所以交AB于圆点O,故本选项错误;B、作∠ACB的角平分线,那么点P到BC的距离等于点P到AC的距离,而不等于AP,故本选项错误;C、假设过点D作直线BC的平行线交AB于点P,那么点P的距离,等于DP也不等于AP,故本选项错误;D、角平分线DP交直径AB与点P,根据角平分线定理,由PA⊥AD,得到点P到BC的距离等于AP,故正确、点评:此题考查了切线的性质,A考查了圆内弦中垂线过原点;B考查了角平分线上点到到两边距离相等;C考查了角平分线上点到两边距离相等;D考查了角平分线上点到两边距离相等,与切线与过切点的直径垂直、2.〔2017湖北荆州,15,3分〕请将含60°顶角的菱形分割成至少含一个等腰梯形且面积相等的六部分,用实线画出分割后的图形、答案不唯一、考点:作图—应用与设计作图、专题:作图题、分析:整个图形含有36个小菱形,分为面积相等的六部分,那么每一个部分含6个小菱形,由此设计分割方案、解答:解:分割后的图形如下图、此题答案不唯一、点评:此题考查了应用与设计作图、关键是理解题意,根据图形设计分割方案、3.〔2017•西宁〕用直尺和圆规作一个菱形,如图,能得到四边形ABCD是菱形的依据是〔〕A、一组临边相等的四边形是菱形B、四边相等的四边形是菱形C、对角线互相垂直的平行四边形是菱形D、每条对角线平分一组对角的平行四边形是菱形考点:菱形的判定;作图—复杂作图。
一、选择题1.(2019·温州)验光师测得一组关于近视眼镜的度数y (度)与镜片焦距x (米)的对应数据如下表.根据表中数据,可得y 关于x 的函数表达式为 ( )A .y x =B .100y =C .y x =D .400y = 【答案】A【解析】从表格中的近视眼镜的度数y (度)与镜片焦距x (米)的对应数据可以知道,它们满足xy=100,因此,y 关于x 的函数表达式为100y x=.故选A. 2.(2019·株洲)如图所示,在直角坐标系xOy 中,点A 、B 、C 为反比例函数(0)ky k x=>上不同的三点,连接OA 、OB 、OC ,过点A 作AD ⊥y 轴于点D ,过点B 、C 分别作BE ,CF ⊥x 轴于点E 、F ,OC 与BE 相交于点M ,记△AOD 、△BOM 、四边形CMEF 的面积分别为S 1、S 2、S 3,则( ) A .S 1=S 2+S 3 B .S 2=S 3 C .S 3>S 2>S 1 D .S 1S 2<S 32第9题【答案】B【解析】由题意知S 1=2k ,S △BOE =S △COF =2k,因为S 2=S △BOE -S △OME ,S 3=S △COF -S △OME ,所以S 2=S 3 ,所以选B 。
3.(2019·娄底)将1y x=的图象向右平移1个单位长度,再向上平移1个单位长度所得图象如图(3).则所得图象的解析式为( )A.111yx=++B.111yx=-+C.111yx=+-D.111yx=--【答案】C.【解析】二次函数平移的规律“左加右减,上加下减”对所有函数的图象平移均适合.∵将1yx=的图象向右平移1个单位长度后所得函数关系式为11yx=-,∴将1yx=的图象向右平移1个单位长度,再向上平移1个单位长度所得图象的解析式为111yx=+-.故选C.4.(2019·娄底)如图(1),⊙O的半径为2,双曲线的解析式分别为1yx=和1yx=-,则阴影部分的面积为( )A.4π B.3π C.2π D.π【答案】C【解析】根据反比例函数1y x =,1y x=-及圆的中心对称性和轴对称性知,将二、四象限的阴影部分旋转到一、三象限对应部分,显然所有阴影部分的面积之和等于一、三象限内两个扇形的面积之和,也就相当于一个半径为2的半圆的面积. ∴21222S ππ=⨯=阴影. 故选C .5.(2019·衡阳)如图,一次函数y 1=kx +b (k ≠0)的图象与反比例函数y 2=mx(m 为常数且m ≠0)的图象,都经过A (-1,2),B (2,-1),结合图象,则不等式kx +b >mx的解集是( ). A. x <-1 B. -1<x <0 C. x <-1或0<x <2 D.-1<x <0或x >2【答案】C .【解析】由图象得,不等式kx +b >mx的解集是x <-1或0<x <2,故选C . 6. (2019·滨州)如图,在平面直角坐标系中,菱形OABC 的边OA 在x 轴的正半轴上,反比例函数y =kx(x >0)的图象经过对角线OB 的中点D 和顶点C .若菱形OABC 的面积为12,则k 的值为( )A .6B .5C .4D .3【答案】C【解析】如图,连接AC ,∵四边形OABC 是菱形,∴AC 经过点D ,且D 是AC 的中点.设点A 的坐标为(a ,0),点C 坐标为(b ,c ),则点D 坐标为(2a b,2c ).∵点C 和点D 都在反比例函数y=kx的图象上,∴bc=2ab×2c,∴a=3b ;∵菱形的面积为12,∴ac=12,∴3bc=12,bc=4,即k=4.故选C .法2:设点A 的坐标为(a ,0),点C 的坐标为(c ,),则,点D 的坐标为(),∴,解得,k =4,故选C .7. (2019·无锡)如图,已知A 为反比例函数ky x(x <0)的图像上一点,过点A 作AB ⊥y 轴,垂足为B .若△OAB 的面积为2,则k 的值为( )B. -2C. 4【答案】D【解析】如图,∵AB ⊥y 轴, S △OAB =2,而S △OAB 12|k |,∴12|k |=2,∵k <0,∴k =﹣4.故选D .xy-6O8. (2019·济宁)如图,点A的坐标是(-2,0),点B的坐标是(0,6),C为OB的中点,将△ABC绕点B逆时针旋转90°后得到△A'BC'.若反比例函数y=kx的图象恰好经过A'B的中点D,则k的值是()A.9 B.12 C.15 D.18【答案】C【解析】取AB的中点(-1,3),旋转后D(3,5)∴k=3×5=15,故选C.9. (2019·枣庄) 如图,在平面直角坐标系中等腰直角三角形ABC的顶点A,B分别在x轴,y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数kyx(x>0)的图象上,若AB=1,则k的值为【答案】A【解析】在等腰直角三角形ABC中,AB=1,∴AC∵CA⊥x轴,∴y C,Rt△ABC中,∠BAC=45°,CA⊥x轴,∴∠BAO=45°,∴∠ABO=45°,∴△ABO是等腰直角三角形,∴OA,∴x C,k=x C`y C=1,故选A10. (2019·淄博)如图,11122233,,,OA B A A B A A B ∆∆∆…是分别以123,,,A A A …为直角顶点,一条直角边在x 轴正半轴上的等腰直角三角形,其斜边的中点111222333(,),(,),(,),C x y C x y C x y …均在反比例函数4y x=(x >0)的图象上,则12100y y y +++的值为( )A .10C .42D .7【答案】20【解析】如图,过点C 1作C 1M ⊥x 轴,∵△OC 1A 1是等腰直角三角形,∴C 1M =OM =MA 1,设C 1的坐标是(a ,a )(a >0),,把(a ,a )代入解析式4y x=(a >0)中,得a =2, ∴y 1=2,∴A 1的坐标是(4,0),又∵△C 2A 1A 2是等腰直角三角形,∴设C 2的纵坐标是b (b >0),则C 2的横坐标是4+b ,把(4+b ,b )代入函数解析式得b =44b+,解得b =2﹣2, ∴y 2=2﹣2,∴A 2的坐标是(2,0),设C 3的纵坐标是c (c >0),则C 3横坐标为42+c ,把(42+c ,c )代入函数解析式得c =42c,解得c =23﹣22,∴y 3=23﹣22.∵y 1=21﹣20,y 2=22﹣21,y 3=23﹣22,…∴y 100=2100﹣299,∴y 1+y 2+y 3+…+y 100=2+22﹣2+2﹣22+…+2100﹣299=2100=20.11.(2019·凉山)如图,正比例函数y =kx 与反比例函数y =x4的图象相交于A 、C 两点,过点A 作x 轴的垂线交x 轴于点B ,连接BC ,则△ABC 的面积等于( )【答案】C【解析】设A 点的坐标为(m ,4m),则C 点的坐标为(-m ,-4m),∴1414422ABC OBC OAB S S S m m m m ∆∆∆=+=⨯+-⨯-=,故选C.12. (2019·天津) 若点A(-3,y 1),B(-2,y 2),C(1,y 3)都在反比例函数xy 12-=的图像上,则y 1,y 2,y 3的大小关系是A. y 2<y 1<y 3B. y 3 <y 1 <y 2C. y 1 <y 2<y 3D. y 3 <y 2<y 1 【答案】B【解析】因为反比例函数x y 12-=的图像在二四象限, 将A,B,C 三点在图像上表示,答案为B13. (2019·台州)已知某函数的图象C 与函数3y x =的图象关于直线y =2对称.下列命题:①图象C 与函数3y x=的图象交于点(32,2);②点(12,-2)在图象C 上;③图象C 上的点的纵坐标都小于4;④A(x 1,y 1),B(x 2,y 2)是图象C 上任意两点,若x 1>x 2,则y 1>y 2.其中真命题是( )A.①②B.①③④C.②③④D.①②③④【答案】A【解析】令y =2,得x =32,这个点在直线y =2上,∴也在图象C 上,故①正确;令x =12,得y =6,点(12,6)关于直线y =2的对称点为(12,-2),∴点(12,-2)在图象C 上,②正确;经过对称变换,图象C 也是类似双曲线的形状,没有最大值和最小值,故③错误;在同一支上,满足x 1>x 2,则y 1>y 2,但是没有限制时,不能保证上述结论正确,故④错误.综上所述,选A.【知识点】反比例函数图象的性质,对称变换,交点坐标,增减性14.(2019·重庆B 卷)如图,在平面直角坐标系中,菱形OABC 的边OA 在x 轴上,点A (10,0),sin ∠COA =45.若反比例函数y =kx(k ﹥0,x ﹥0)经过点C ,则k 的值等于( )【答案】C【解析】过C 作CD ⊥OA 交x 轴于D ∵OABC 为菱形,A (10,0)∴OC=OA =10.∵sin ∠COA =45 ∴CD OC =45即10CD =45∴CD =8, ∴OC =6, ∴C (6,8) ∵反比例函数y =kx(k ﹥0,x ﹥0)经过点C , k =6×8=48. 故选C.15. (2019·重庆A 卷)如图,在平面直角坐标系中,矩形ABCD 的顶点A ,D 分别在x 轴、y 轴上,对角线BD ∥x 轴,反比例函数y =kx(k >0,x >0)的图象经过矩形对角线的交点E .若点A (2,0),D (0,4),则k 的值为 ( )A .16B .20C .32D .409题图【答案】B.【解析】如图,过点B作BF⊥x轴于点F,则∠AFB=∠DOA=90°.∵四边形ABCD是矩形,∴ED=EB,∠DAB=90°.∴∠OAD+∠BAF=∠BAF+∠ABF=90°.∴∠OAD=∠FBA.∴△AOD∽△BFA.∴OA OD BF AF=.∵BD∥x轴,A(2,0),D(0,4),∴OA=2,OD=4=BF.∴244AF =.∴AF=8.∴OF=10,E(5,4).∵双曲线y=kx过点E,∴k=5×4=20.故选B.二、填空题1.(2019·威海)如图,在平面直角坐标系中,点A ,B 在反比例函数()0ky k x=≠的图像上运动,且始终保持线段AB =长度不变,M 为线段AB 的中点,连接OM .则线段OM 的长度的最小值是 (用含k 的代数式表示).【解析】过点A 作x 轴⊥AC ,过点B 作y 轴⊥BD ,垂足为C ,D ,AC 与BD 相交于点F ,连接OF .当点O 、F 、M 在同一直线上时OM 最短.即OM 垂直平分AB .设点A 坐标为(a ,a +4),则点B 坐标为(a +4,a ),点F 坐标为(a ,a ).由题意可知△AFB 为等腰直角三角形, ∵AB=∴AF =BF =4,∵点A 在反比例函数y =的图像上,∴a (a +4)=k , 解得a =2,在RT △OCF 中,OFa =2)=,∴OM =OF +FM =2.(2019·山西)如图,在平面直角坐标系中,点O 为坐标原点,菱形ABCD 的顶点B 在x 轴的正半轴上,点A 的坐标为(-4,0),点D 的坐标为(-1,4),反比例函数y =kx(x>0)的图象恰好经过点C,则k 的值为________.第14题图 【答案】16【解析】分别过点D,C 作x 轴的垂线,垂足为E,F,则AD =5,∴AB =CB =5,∴B(1,0),由△DAE ≌△CBF,可得BF =AE =3,CF =DE =4,∴C(4,4),∴k =xy =16.第14题答图3.(2019·黄冈) 如图,一直线经过原点0,且与反比例函数y =kx(k >0)相交于点A ,点B ,过点A 作AC ⊥y 轴,垂足为C.连接B C.若△ABC 的面积为8,则k = .【答案】8【解析】因为反比例函数与正比例函数的图象相交于A 、B 两点,∴A、B 两点关于原点对称,∴OA=OB ,∴△BOC 的面积=△AOC 的面积=8÷2=4, 又∵A 是反比例函数y =kx图象上的点,且AC ⊥y 轴于点C , ∴△AOC 的面积=12|k |,∴12|k |=2,∵k >0,∴k =8.4.(2019·益阳)反比例函数xky =的图象上有一点P(2,n),将点P 向右平移1个单位,再向下平移1个单位得到点Q.若点Q 也在该函数的图象上,则k = . 【答案】6【解析】∵P(2,n)向右平移1个单位,再向下平移1个单位得到点Q (3,n-1),且点P 、Q 均在反比例函数xky =的图象上,∴⎪⎪⎩⎪⎪⎨⎧=-=312kn k n ,∴312k k =-,解得k=6.5. (2019·潍坊)如图,Rt △AOB 中,∠AOB =90°,顶点A ,B 分别在反比例函数1(0)y x x =>与5(0)y x x-=<的图象上.则tan ∠BAO 的值为 .【解析】分别过点A 、B 作x 轴的垂线AC 和BD ,垂足为C 、D .则△BDO ∽△OCA ,∴2S =()SBDO OCABD OA∵S △BDO =52,S △ACO =12, ∴2()=5BD OA, ∴tan ∠BAO =BDOA.6. (2019·巴中)如图,反比例函数kyx(x>0)经过A,B 两点,过点A 作AC ⊥y 轴于点C,过点B 作BD ⊥y 轴于点D,过点B 作BE ⊥x 轴于点E,连接AD,已知AC =1,BE =1,S 矩形BDOE =4,则S △ACD =________.【答案】32【解析】连接AO,由反比例函数k 的几何意义可知,S △AOC =12S 矩形BDOE =2,因为AC =1,所以CO =4,因为DO =BE =1,所以CD =3,所以S△ACD =32.7. (2019·达州) 如图,A 、B 两点在反比例函数x k y 1=的图像上,C 、D 两点在反比例函数xky 2=的图像上,AC ⊥x 轴于点E ,BD ⊥x 轴于点F ,AC=2,BD=4,EF=3,则12k k -=___________..〈【答案】4【解析】设A (m ,m k 1) B (m ,m k 2) C (n ,n k 1) D (n ,nk2) 由题意得:m-n=3 ,212=-m k k ,421=-n kk , 联立三个式子,解得:412=-k k . 8.(2019·长沙)如图,函数ky x=(k 为常数,k >0)的图象与过原点的O 的直线相交于A ,B 两点,点M 是第一象限内双曲线上的动点(点M 在点A 的左侧),直线AM 分别交x 轴,y 轴于C ,D 两点,连接BM 分别交x 轴,y 轴于点E ,F .现有以下四个结论:①△ODM 与△OCA 的面积相等;②若BM ⊥AM 于点M ,则∠MBA=30°;③若M 点的横坐标为1,△OAM 为等边三角形,则k =2;④若MF=25MB ,则MD=2MA .其中正确的结论的序号是 .【答案】①③④9. (2019·眉山)如图,反比例函数()0ky x x=>的图像经过矩形OABC 对角线的交点M ,分别交AB 、BC 于点D 、E ,若四边形ODBE 的面积为12,则k 的值为 .【答案】4【解析】由题意得:E 、M 、D 位于反比例函数图象上,则S △OCE =12|k|,S △OAD =12|k|, 过点M 作MG ⊥y 轴于点G ,作MN ⊥x 轴于点N ,则S 矩形ONMG =|k|,又∵M 为矩形ABCO 对角线的交点,则S 矩形ABCO =4S矩形ONMG=4|k|,由于函数图象在第一象限,∴k >0,则12422k kk ++=,∴k=4.故选:B.10. (2019·湖州)如图,已知在平面直角坐标系xOy 中,直线y =12x -1分别交x 轴、y 轴于点A 和点B ,分别交反比例函数y 1=k x (k >0,x >0),y 2=2k x(x <0)的图像于点C 和点D ,过点C 作CE ⊥x 轴于点E ,连结OC ,OD .若△COE 的面积与△DOB 的面积相等,则k 的值是 .【答案】2.【解析】如答图,过点D作DF⊥y轴于点F,则由CE⊥x轴于点E可知:S△OCE=k,S△ODF=2k.∵△COE的面积与△DOB的面积相等,∴S△OBD=S△FBD.易知A(2,0),B(0,-1),从而OB=BF=1,OF=2.令D(m,-2),则由D点在直线y=12x-1上,得-2=12m-1,解得m=-2,故D(-2,-2),从而2k=(-2)×(-2),解得k=2.11.(2019·宁波)如图,过原点的直线与反比例函数kyx(k>0)的图象交于A,B两点,点A在第一象限,点C在x轴正半轴上,连接AC交反比例函数图象于点为∠BAC的平分线,过点B作AE的垂线,垂足为E,连接DE,若AC =3DC,△ADE的面积为8,则k的值为________.【答案】6【解析】连接OE,在Rt △ABE 中,点O 是AB 的中点,∴OE =12AB =OA,∴∠OAE =∠OEA,∵AE 为∠BAC 的平分线,∴∠OAE =∠DAE,∴∠OEA =∠DAE,∴AD ∥OE,∴S △ADE =S △ADO ,过点A 作AM ⊥x 轴于点M,过点D 作DN ⊥x 轴于点N,易得S 梯AMND =S △ADO ,∵△CAM ∽△CDN,CD:CA =1:3,∴S △CAM =9,延长CA 交y 轴于点P,易得△CAM ∽△CPO,可知DC =AP,∴CM:MO =CA:AP =3:1,∴S △CAM :S △AMO =3:1,∴S △AMO =3,∵反比例函数图象在一,三象限,∴k =6.12. (2019·衢州) 如图,在平面直角坐标系中,O 为坐标原点,口ABCD 的边AB 在x 轴上,顶点D 在y 轴的正半轴上,点C 在第一象限,将△AOD 沿y 轴翻折,使点A 落在x 轴上的点E 处,点B 恰好为OE 的中点,DE 与BC 交于点F.若y=kx(k ≠0)图象经过点C.且S △BEF =1,则k 的值为 .【答案】24【解析】连接OC ,作FM ⊥AB 于M ,延长MF 交CD 于N ,设BE= a ,FM=b ,由题意知OB=BE=a ,OA=2a ,DC=3a,因为四这形ABCD 为平行四边形,所以DC∥AB,所以△BEF ∽△CDF,所以BE :CD=EF:DF=1:3,所以NF=3b ,OD=FM+FN=4b ,因为S △BEF =1,即12ab=1,S △CDO =12CD ·OD=123a ×4b=6ab=12,所以k=xy=2S △CDO =24.三、解答题FNF1.(2019浙江省杭州市,20,10分)(本题满分10分)方方驾驶小汽车匀速地从A地行驶到B地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速股为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v关于t的函数表达式.(2)方方上午8点驾驶小汽车从A地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B地.求小汽车行驶速度v的范围.②方方能否在当天11点30分前到达B地说明理由.【解题过程】(1)∵ vt=480,且全程速度限定为不超过120千米/小时,∴ v关于t的函数表达式为:v=480t(0≤t≤4);(2)① 8点至12点48分时间长为245小时,8点至14点时间长为6小时,将t=6代入v=480t得v=80;将t=245代入v=480t得v=100.∴小汽车行驶速度v的范围为:80≤v≤100.②方方不能在当天11点30分前到达B地.理由如下:8点至11点30分时间长为72小时,将t=72代入v=480t得v=9607>120千米/小时,超速了.故方方不能在当天11点30分前到达B地.2.(2019·苏州,25,8)如图,A为反比例函数y=kx(其中k>0)图像上的一点,在上轴正半轴上有一点B,OB=4连接OA,A B.且OA =AB (1)求K的值;(2)过点B作BC⊥OB,交反比例函数y=kx(其中k>0)的图像于点C,连接OC交AB于点D,求ADDB的值.第25题图【解题过程】解:(1)过点A 作AE ⊥OB 于E .∵ OA =AB = 2OB =4,∴ OE =BE =12OB =2, 在Rt △OAE 中,AE =6=,∴点A 坐标为(2,6), ∵点A 是反比倒函数k y x=图像上的点,∴ 6=2k,解得k =12.第25题答图(2)记AE 与OC 的交点为F .∵OB =4且BC ⊥OB ,点C 的横坐标为4,又∵点C 为反比例函数y =12x图像上的点,∴点C 的坐标为(4,3),∴BC =3. 设直线OC 的表达式y =mx ,将C (4,3)代入可得m =34,∴直线OC 的表达式y =34x ,∵AE ⊥OB ,OE =2,∴点F 的横坐标为2.将x =2代入y =34x 可得y =32,即EF =32;∴AF =A E -EF =6 -32=92.∵AE ,BC 都与x 轴垂直,∴AE ∥BC ,∴△ADF ∽△BD C .∴32AD AF EB BC ==. 3.(2019山东威海,21,8分) (1)阅读理解如图,点A ,B 在反比例函数的图象上,连接AB ,取线段AB 的中点C ,分别过点A ,C ,B 作x 轴的垂线,1y x=垂足为E ,F ,G ,CF 交反比例函数的图象于点D ,点E ,F ,G 的横坐标分别为n -1,n ,n +1(n >1). 小红通过观察反比例的图象,并运用几何知识得到结论: AE +BG =2CF ,CF >DF .由此得出一个关于之间数量关系的命题: 若n >1,则(2)证明命题小东认为:可以通过“若≥0,则≥”的思路证明上述命题.小晴认为:可以通过“若>0,>0,且≥1,则≥”的思路证明上述命题.请你选择一种方法证明(1)中的命题.【解题过程】(1)∵A ,D ,B 都在反比例的图象上,且点E ,F ,G 的横坐标分别为n -1,n ,n +1(n >1), ∴AE =BG =DF =. 又∵AE +BG =2CF ,∴CF = 又∵CF >DF ,n >1,1y x =1y x =112,,11n n n-+a b -a b a b a b ÷a b 1y x=1,1n -1,1n +1n111(),211n n +-+∴>,即>. 故答案为>. (2)选择选择小东的思路证明结论>, ∵n >1,∴>0, ∴>. 4、(2019江苏盐城卷,19,8) 如图,一次函数y =x +1的图像交y 轴于点A ,与反比例函数x k y =(x >0)图像交于点B (m ,2).(1)求反比例函数的表达式.(2)求△AOB 的面积.【思路分析】(1)根据已知条件,可以求出点A 的坐标,在根据一次函数与反比例函数交于点B ,就可以求出点B 点的横坐标m ,则点B 的坐标就有了,所以就可以求出反比例函数的表达式。
2019年啊全国中考数学真题作图题集锦1 (2019江西).在△ABC 中,AB=AC ,点A 在以BC 为直径的半圆内.请仅用无刻度的直尺分别按下列要求画图(保留作图痕迹).(1)在图1中作弦EF ,使EF//BC ;(2)在图2中以BC 为边作一个45°的圆周角.2. (2019福建). (本小题满分8分)如图,已知△ABC 为和点A'.(1)以点A'为顶点求作△A'B'C',使△A'B'C'∽△ABC ,S △A'B'C'=4S △ABC ; (尺规作图,保留作图痕迹,不写作法)(2)设D 、E 、F 分别是△ABC 三边AB 、BC 、AC 的中点,D'、E'、F'分别是你所作的△A'B'C'三边A'B'、B'C'、A'C'的中点,求证:△DEF ∽△D'E'F'.3. (2019甘肃陇南). 已知:在△ABC 中,AB =AC .(1)求作:△ABC 的外接圆.(要求:尺规作图,保留作图痕迹,不写作法)(2)若△ABC 的外接圆的圆心O 到BC 边的距离为4,BC =6,则S ⊙O =______. A'C B A4.(2019甘肃)(4分)如图,在△ABC中,点P是AC上一点,连接BP,求作一点M,使得点M到AB和AC两边的距离相等,并且到点B和点P的距离相等.(不写作法,保留作图痕迹)5.(2019湖北武汉)(本题8分)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD的顶点在格点上,点E是边DC与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由(1) 如图1,过点A画线段AF,使AF∥DC,且AF=DC(2) 如图1,在边AB上画一点G,使∠AGD=∠BGC(3) 如图2,过点E画线段EM,使EM∥AB,且EM=AB6.(2019江苏无锡)(10分)按要求作图,不要求写作法,但要保留作图痕迹.(1)如图1,A为⊙O上一点,请用直尺(不带刻度)和圆规作出⊙O的内接正方形;(2)我们知道,三角形具有性质:三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高所在直线相交于一点.请运用上述性质,只用直尺(不带刻度)作图.①如图2,在▱ABCD中,E为CD的中点,作BC的中点F.②如图3,在由小正方形组成的4×3的网格中,△ABC的顶点都在小正方形的顶点上,作△ABC的高AH.7. (2019江苏宿迁)(2)在图②中作圆M,使它满足以下条件:①圆心在边AB上;②经过点B。
尺规作图1 2BC的长为半径1. .在△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于作弧,两弧相交于两点M、N;②作直线MN交AB于点D,连接CD. 若CD=AC,∠B=250,则∠ACB的度数为 .答案:1050.解析:由①的作图可知CD=BD,则∠DCB=∠B=250,∴∠ADC=500,又∵CD=AC,∴∠A=∠ADC=500,∴∠ACD=800,∴∠ACB==800+250=1050.三、解答题1.(2018•湖南怀化,第21题,10分)两个城镇A、B与两条公路ME,MF位置如图所示,其中ME是东西方向的公路.现电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路ME,MF的距离也必须相等,且在∠FME的内部(1)那么点C应选在何处?请在图中,用尺规作图找出符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)(2)设AB的垂直平分线交ME于点N,且MN=2(+1)km,在M处测得点C位于点M的北偏东60°方向,在N处测得点C位于点N的北偏西45°方向,求点C到公路ME的距离.表示出MD和ND的长,从而求得CD的长即可.∵在Rt△CMD中,=tan∠CMN,∴MD==tan∠CNM,∴ND=∵MN=2(∴MN=MD+DN=CD+CD=22.(2018•江西抚州,第15题,5分)如图,△ABC与△DEF关于直线对称,请用无刻度的直尺,在下面两个图中分别作出直线.解析:利用轴对称性质:对应线段(或延长线)的交于对称轴上一点.如图,直线l 就是所求作的对称轴.3. (2018•浙江杭州,第20题,10分)把一条12个单位长度的线段分成三条线段,其中一条线段成为4个单位长度,另两条线段长都是单位长度的整数倍.(1)不同分段得到的三条线段能组成多少个不全等的三角形?用直尺和圆规作这些三角形(用给定的单位长度,不写作法,保留作图痕迹);(2)求出(1)中所作三角形外接圆的周长..三角形为等边三角形,此时外接圆的半径为=(1)用尺规作图作AB边上的中垂线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);(2)连接BD,求证:BD平分∠CBA.一点O为圆心,过A、D两点作⊙O(用尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)6、(2018•广州,第23题12分)如图6,中,,.(1)动手操作:利用尺规作以为直径的,并标出与的交点,与的交点(保留作图痕迹,不写作法):(2)综合应用:在你所作的圆中,①求证:;②求点到的距离.【考点】(1)尺规作图;(2)①圆周角、圆心角定理;②勾股定理,等面积法【分析】(1)先做出中点,再以为圆心,为半径画圆.(2)①要求,根据圆心角定理,同圆中圆心角相等所对的弧也相等,只需证出即可,再根据等腰三角形中的边角关系转化.②首先根据已知条件可求出,依题意作出高,求高则用勾股定理或面积法,注意到为直径,所以想到连接,构造直角三角形,进而用勾股定理可求出,的长度,那么在中,求其高,就只需用面积法即可求出高.【答案】(1)如图所示,圆为所求(2)①如图连接,设,又则②连接,过作于,过作于cosC=, 又,又为直径设,则,在和中,有即解得:即又即7.(2018•广东梅州,第16题7分)如图,在Rt△ABC中,∠B=90°,分别以A、C为圆心,大于AC长为半径画弧,两弧相交于点M、N,连接MN,与AC、BC分别交于点D、E,连接AE,则:(1)∠ADE=90 °;(2)AE = EC;(填“=”“>”或“<”)(3)当AB=3,AC=5时,△ABE的周长= 7 .∴BC=。
2019中考数学专题汇编全集创新画图题(15道)2)作图如解图②,连接AD,作∠BDE=30°的角,DE即为所求直角边.第4题解图作法提示】(1)如解图①,以AB为边作一个等边三角形△AOB,连接OB并延长交CF于点G,连接AG,由正六边形的对称性可得AG=AB=BC,而AG=OG,∴OG=BC,于是得到BC=OG,连接CG,∠OCG=120°,∠OGC=30°,所以∠AGC=60°,即△AGC为等边三角形,而∠AOC=120°,∠AOG=60°,∠BOG=60°,∠BOC=120°,所以四边形AOCB为菱形,AC即为所求.(2)如解图②,以AB为边作一个正三角形△ABD,连接AD,作∠BDE=30°的角,DE即为所求直角边,∠BDE=60°,∠BDC=120°,又∠ABD=60°,∠ADB=30°,所以△ABD和△BDC相似,而AB=BD,所以BC=AD,连接CD,∠BCD=60°,∠CBD=30°,所以△BCD为等腰三角形,CD即为所求.作法提示】(1)如解图①,连接AC并延长交BD于点E,连接PE,易证△APE≌△CDE,则AP=CD,连接AQ,由平行四边形性质,得AQ=CP=CD,∴Q为CD上所求点;2)如解图②,连接AC并延长交BD于点E,连接PE,易证△BPE≌△DQE,则BP=DQ,连接BQ,由平行四边形性质,得BQ=DP=BD,∴Q为BD上所求点。
作法提示】11.如图,已知△ABC中,AD是BC的中线,P是AB的中点,Q是AC的三分点,连接BQ,交AD于点E,连接BE,交AC于点F,连接CF,交AB于点G,连接EG,交BC于点H,试画出△AEF与△BGH的位置关系如何?解:作图如解图所示.解图由题意可知,AE=ED,BP=PA,AQ=2QD,∴AQ=3QF,∠XXX∠XXX,∠A+∠B=180°,∠XXX∠EGB+∠XXX∠EAB+∠XXX∠XXX∠XXX,∠G+∠H=180°,∴△AEF与△BGH全等.12.如图,已知△ABC中,AB=AC,D为BC中点,E为AD中点,F为AB中点,连接EF,交BC于点G,试画出△AFG与△ABC的位置关系如何?解:作图如解图所示.解图由题意可知,AB=AC,BD=DC,AE=ED,AF=FB,∠XXX∠XXX,∠AGF=∠XXX∠FAC+∠XXX∠ABC,∴△AFG与△ABC全等.13.如图,已知△ABC中,AB=AC,D为BC中点,E为AD中点,F为AB的三分点,连接EF,交BC于点G,试画出△AFG与△ABC的位置关系如何?解:作图如解图所示.解图由题意可知,AB=AC,BD=DC,AE=ED,AF=2FB,∠XXX∠XXX,∠AGF=∠XXX∠FAC+∠XXX∠ABC,∴△AFG与△ABC全等.14.如图,已知△ABC中,AB=AC,D为BC中点,E为AD中点,F为AB的三分点,连接EF,交BC于点G,连接AG,交EF于点H,试画出△AHG与△ABC的位置关系如何?解:作图如解图所示.解图由题意可知,AB=AC,BD=DC,AE=ED,AF=2FB,∠XXX∠XXX,∠AGF=∠XXX∠FAC+∠XXX∠ABC,∠XXX∠AGF,∠A+∠H+∠G=180°,∴△AHG与△ABC全等.请你用无刻度的直尺在图①中画出△ABC,使得△ABC的三个顶点都在格点上,且AB=3,BC=4,AC=5;然后用无刻度的直尺在图②中画出一个与△ABC全等的三角形A′B′C′,使得A′,B′,C′都在格点上.第14题图解:作图如解图所示.第14题解图作法提示】(1)如解图①,先在纸上画出一条长度为5的线段,再在这条线段的一端点上画出一个长度为3的线段,使其与5的线段成一个角,再在另一端点上画出一个长度为4的线段,使其与另一条边成一个角,连接两个端点,即可得到所求的△ABC;(2)如解图②,将△ABC平移至A′B′C′,使得A与A′重合,AB与A′B′重合,再将△ABC绕点A顺时针旋转180°,即可得到所求的△A′B′C′,注意旋转后的图形要与原图重合,即A′,B′,C′要分别与A,B,C重合.14.解题思路:需要画出一个等腰直角三角形和一个面积为四倍的正方形,并将正方形分割成四个全等的直角三角形和一个正方形。
2019全国中考数学真题知识点32矩形、菱形与正方形(解析版)一、选择题9.(2019·苏州)如图,菱形ABCD 的对角线AC 、BD 交于点O ,AC =4,BD =16将△ABO 沿点A 到点C 的方向平移,得到△A 'B 'O '.当点A '与点C 重合时,点A 与点B '之问的距离为 ( ) A .6 B .8 C .10 D .12(第9题)【答案】C【解析】∵四边形ABCD 是菱形,∴AC ⊥BD ,AO =OC 12=AC =2,OB =OD 12=BD =8,∵△ABO 沿点A 到点C 的方向平移,得到△A 'B 'O ',点A '与点C 重合,∴O 'C =OA =2,O 'B '=OB =8,∠CO 'B '=90°, ∴AO '=AC +O 'C =6,∴AB'=10,故选C .10.(2019·温州)如图,在矩形ABCD 中,E 为AB 中点,以BE 为边作正方形BEFG ,边EF 交CD 于点H ,在边BE 上取点M 使BM=BC ,作MN ∥BG 交CD 于点L ,交FG 于点N .欧几里得在《几何原本》中利用该图解释了(a+b)(a-b)=a 2-b 2.现以点F 为圆心,FE 为半径作圆弧交线段DH 于点P ,连结EP ,记△EPH 的面积为S 1,图中阴影部分的面积为S 2.若点A ,L ,G 在同一直线上,则12S S 的值为 ( )ABCD【答案】C【解析】如图,连接ALGL ,PF .由题意:S 矩形AMLD =S 阴=a 2﹣b 2,PH=22-a b ,∵点A ,L ,G 在同一直线上,AM ∥GN ,∴△AML ∽△GNL ,∴=,∴=,整理得a =3b ,∴===,故选C .9.(2019·绍兴)正方形ABCD 的边AB 上有一动点E ,以EC 为边作矩形ECFG ,且边FG 过点D ,在点E 从点A 移动到点B 的过程中,矩形ECFG 的面积 ( )A.先变大后变小B.先变小后变大C.一直变大D.保持不变10. (2019·烟台)如图,面积为24的ABCD 中,对角线BD 平分,过点D 作交BC 的延长线于点E ,6DE =,则sin DCE ∠的值为( ).A .2425B .45C .34D .1225【答案】A【解析】连接AC ,交BD 于点F ,过点D 作DM CE ⊥,垂足为M因为四边形ABCD 是平行四边形, 所以F 是BD 的中点,AD//BC , 所以DBC ADB ∠=∠,因为BD 是 ABC ∠的平分线, 所以ABD DBC ∠=∠, 所以ABD ADB ∠=∠, 所以AB AD =,所以□ABCD 是菱形, 所以AC BD ⊥, 又因为DE BD ⊥, 所以AC//DE ,FADB因为AC//DE ,F 是BD 的中点, 所以C 是BE 的中点, 所以132CF DE ==, 因为四边形ABCD 是菱形, 所以26AC FC ==,2ABCD AC BDS ⨯=菱形, 所以222486ABCDS BD AC⨯===菱形, 所以142BF BD ==, 在Rt △BFD 中,由勾股定理得5BC ==,因为四边形ABCD 是菱形, 所以5DC BC ==,因为ABCD S BC DM =⨯菱形 所以245ABCDS DM BC==菱形, 在Rt △DCM 中,24sin 25DM DCE DC ∠==. 6.(2019·江西)如图,由10根完全相同的小棒拼接而成,请你再添2根与前面完全相同的小棒,拼接后的图形恰好有3个菱形的方法共有( )A.3种B.4种C.5种D.6种【答案】B【解题过程】具体拼法有4种,如图所示:4.(2019·株洲)对于任意的矩形,下列说法一定正确的是() A .对角线垂直且相等B .四边都互相垂直C .四个角都相等D .是轴对称图形,但不是中心对称图形【答案】C 【解析】根据矩形的性质可知,矩形的对角线相等但不一定垂直,所以选项A 是错误的;矩形相邻的边互相垂直,对边互相平行,所以选项B 是错误的;矩形的四个角都是直角,所以四个角都相等是正确的;矩形既是轴对称图形,又是中心对称图形,所以选项D 是错误的;故选C.3. (2019·娄底)顺次连接菱形四边中点得到的四边形是( )A 平行四边形B . 菱形C . 矩形D . 正方形 【答案】C【解析】如图:菱形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、AD 的中点,∴EH ∥FG ∥BD ,EH =FG = 12 BD ;EF ∥HG ∥AC ,EF =HG =12AC ,故四边形EFGH 是平行四边形, 又∵AC ⊥BD ,∴EH ⊥EF ,∠HEF =90° ∴四边形EFGH 是矩形. 故选C .10.(2019·安徽)如图,在正方形ABCD 中,点E 、F 将对角线AC 三等分,且AC=12.点P 在正方形的边上,则满足PE+PF=9的点P 的个数是A. 0B. 4C. 6D. 8【答案】D【解题过程】如图,作点F 关于CD 的对称点F /,连接PF /、PF ,则PE +PF =EF /,根据两点之间线段最知可知此时PE +PF 的值最小.过点E 作EH ⊥FF /,垂足为点H ,FF’交CD 于点G ,易知△EHF 、△CFG 是等腰直角三角形,∴EH =FH =FG =F’GEF =,∴EF’=9.根据正方形的对称性可知正方形ABCD 的每条边上都有一点P 使得PE +PF 最小值.连接DE 、DF ,易求得DE +DF =>9,CE +CF =12>0,故点P 位于点B 、D 时,PE +PF >9,点P 位于点A 、C 时,PE +PF >9,∴该正方形每条边上都有2处点使得PE +PF =9,共计点P 有8处.1.(2019·无锡)下列结论中,矩形具有而菱形不一定具有的性质是() A.内角和为360° B.对角线互相平分 C.对角线相等 D.对角线互相垂直 【答案】C【解析】本题考查了矩形的性质、菱形的性质,矩形的对角线相等且平分,菱形的对角线垂直且平分,所以矩形具有而菱形不具有的为对角线相等,故选C .2. (2019·泰安)如图,矩形ABCD 中,AB =4,AD =2,E 为AB 的中点,F 为EC 上一动点,P 为DF 中点,连接PB,则PBB的最小值是A.2B.4C.2D.22【答案】D【解析】∵F为EC上一动点,P为DF中点,∴点P的运动轨迹为△DEC的中位线MN,∴MN∥EC,连接ME,则四边形EBCM为正方形,连接BM,则BM⊥CE,易证BM⊥MN,故此时点P与点M重合,点F与点C重合,BP取到最小值,在Rt△BCP中,BP=22BC CP=22.3.(2019·眉山)如图,在矩形ABCD中AB=6,BC=8,过对角线交点O作EF⊥AC交AD于点E,交BC于点F,则DE的长是A.1 B.74C.2 D.125【答案】B【解析】连接CE,∵四边形ABCD是矩形,∴∠ADC=90°,OC=OA,AD=BC=8,DC=AB=6,∵EF⊥AC,OA=OC,∴AE=CE,在Rt△DEC中,DE2+DC2=CE2,即DE2+36=(8-DE)2,解得:x=74,故选B.4.(2019·攀枝花)下列说法错误的是()A.平行四边形的对边相等B.对角线相等的四边形是矩形C.对角线互相垂直的平行四边形是菱形D.正方形既是轴对称图形、又是中心对称图形【答案】B【解析】对角线相等的四边形不一定是矩形,如等腰梯形.故选B.5.(2019·攀枝花)如图,在正方形ABCD 中,E 是BC 边上的一点,BE =4,EC =8,将正方形边AB 沿AE 折叠到AF ,延长EF 交DC 于G 。
2019年啊全国中考数学真题
作图题集锦
1 (2019江西).在△ABC 中,AB=AC ,点A 在以BC 为直径的半圆内.请仅用无刻度的直尺分别按下列要求画图(保留作图痕迹).
(1)在图1中作弦EF ,使EF//BC ;
(2)在图2中以BC 为边作一个45°的圆周角
.
2. (2019福建). (本小题满分8分)
如图,已知△ABC 为和点A'.
(1)以点A'为顶点求作△A'B'C',使△A'B'C'∽△ABC ,S △A'B'C'=4S △ABC ; (尺规作图,保留作图痕迹,不写作法)
(2)设D 、E 、F 分别是△ABC 三边AB 、BC 、AC 的中点,D'、E'、F'分别是你所作的△A'B'C'三边A'B'、B'C'、A'C'的中点,求证:△DEF ∽△D'E'F'.
3. (2019甘肃陇南). 已知:在△ABC 中,AB =AC .
(1)求作:△ABC 的外接圆.(要求:尺规作图,保留
作图痕迹,不写作法)
(2)若△ABC 的外接圆的圆心O 到BC 边的距离为4,
BC =6,则S ⊙O =______. A'C B A
4.(2019甘肃)(4分)如图,在△ABC中,点P是AC上一点,连接BP,求作一点M,使得点M到AB和AC两边的距离相等,并且到点B和点P的距离相等.(不写作法,保留作图痕迹)
5.(2019湖北武汉)(本题8分)如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD的顶点在格点上,点E是边DC与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由
(1) 如图1,过点A画线段AF,使AF∥DC,且AF=DC
(2) 如图1,在边AB上画一点G,使∠AGD=∠BGC
(3) 如图2,过点E画线段EM,使EM∥AB,且EM=AB
6.(2019江苏无锡)(10分)按要求作图,不要求写作法,但要保留作图痕迹.
(1)如图1,A为⊙O上一点,请用直尺(不带刻度)和圆规作出⊙O的内接正方形;
(2)我们知道,三角形具有性质:三边的垂直平分线相交于同一点,三条角平分线相交于一点,三条中线相交于一点,事实上,三角形还具有性质:三条高所在直线相交于一点.
请运用上述性质,只用直尺(不带刻度)作图.
①如图2,在▱ABCD中,E为CD的中点,作BC的中点F.
②如图3,在由小正方形组成的4×3的网格中,△ABC的顶点都在小正方形
的顶点上,作△ABC的高AH.
7. (2019江苏宿迁)(2)在图②中作圆M,使它满足以下条件:
①圆心在边AB上;②经过点B。
③与边AC相切。
(尺规作图,只保留作图痕迹,不要求写出作法)
8.(2019江苏盐城)如图,AD是△ABC的角平分线
(1)作线段AD的垂直平分线EF,分别交AB、AC于点E、F;
(用直尺和圆规作图,标明字母,保留作图痕迹,不写作法.)
(2)连接DE、DF,四边形AEDF是________形.(直接写出答案)
9.(2019山东德州)(12分)如图,∠BPD=120°,点A、C分别在射线PB、PD
上,∠P AC=30°,AC=2.
(1)用尺规在图中作一段劣弧,使得它在A、C两点分别与射线PB和PD相切.要求:写出作法,并保留作图痕迹;
10.(2019山东菏泽)(6分)如图,四边形ABCD是矩形.
(1)用尺规作线段AC的垂直平分线,交AB于点E,交CD于点F(不写作法,保留作图痕迹);
(2)若BC=4,∠BAC=30°,求BE的长.
11.(2019山东济宁)(7分)如图,点M和点N在∠AOB内部.
(1)请你作出点P,使点P到点M和点N的距离相等,且到∠AOB两边的距离也相等(保留作图痕迹,不写作法);
(2)请说明作图理由.
12. (2019山东青岛)请用直尺、圆规作图,不写作法,但要保留作图痕迹. 已知:∠α,直线l 及l 上两点A ,B .
求作:Rt △ABC ,使点C 在直线l 的上方,且∠ABC =90°,∠BAC =∠α.
13..(2019四川达州)(7分)如图,在Rt △ABC 中,∠ACB =90°,AC =2,BC =3.
(1)尺规作图:不写作法,保留作图痕迹.
①作∠ACB 的平分线,交斜边AB 于点D ;
②过点D 作BC 的垂线,垂足为点E .
(3)在(1)作出的图形中,求DE 的长.
14.(2019四川攀枝花)(本小题满分8分)
如图1,有一个残缺的圆,请做出残缺圆的圆心O (保留作图痕迹,不写做法)
如图2,设AB 是该残缺圆O e 的直径,C 是圆上一点,CAB ∠的角平分线AD
交O e 于点D ,过点D 作O e 的切线交AC 的延长线于点E 。
(1)求证:AE DE ⊥;(2)若3DE =,2AC =,求残缺圆的半圆面积。
15..(2019浙江嘉兴)(8分)在6×6的方格纸中,点A,B,C都在格点上,按
要求画图:
(1)在图1中找一个格点D,使以点A,B,C,D为顶点的四边形是平行四边形.
(2)在图2中仅用无刻度的直尺,把线段AB三等分(保留画图痕迹,不写画法).
16.(2019浙江金华)(8分)如图,在7×6的方格中,△ABC的顶点均在格点上.试
按要求画出线段EF(E,F均为格点),各画出一条即可.
17.(2019浙江衢州)如图,在4×4的方格子中,△ABC的三个顶点都在格点上,
(1)在图1中画出线段CD,使CD⊥CB,其中D是格点,
(2)在图2中画出平行四边形ABEC,其中E是格点.
18. (2019浙江温州)(8分)如图,在7×5的方格纸ABCD中,请按要求画图,
且所画格点三角形与格点四边形的顶点均不与点A,B,C,D重合.
(1)在图1中画一个格点△EFG,使点E,F,G分别落在边AB,BC,CD 上,且∠EFG=90°.
(2)在图2中画一个格点四边形MNPQ,使点M,N,P,Q分别落在边AB,BC,CD,DA上,且MP=NQ.
19.(2019山东枣庄)(8分)如图,BD是菱形ABCD的对角线,∠CBD=75°,(1)请用尺规作图法,作AB的垂直平分线EF,垂足为E,交AD于F;(不要求写作法,保留作图痕迹)
(2)在(1)条件下,连接BF,求∠DBF的度数.
20. (2019安徽).如图,在边长为1个单位长度的小正方形组成的12×12的网格中,给出了以格点(网格线的交点)为端点的线段AB.
(1)将线段AB向右平移5个单位,再向上平移3个单位得到线段CD,请画出线段CD.
(2)以线段CD为一边,作一个菱形CDEF,且点E,F也为格点.(作出一个菱形即可)。