内燃机车控制原理
- 格式:doc
- 大小:103.00 KB
- 文档页数:12
内燃机车的制动原理
内燃机车的制动原理主要有以下几种方式:
1. 机械制动:机械制动是指通过摩擦来抑制车辆运动的一种制动方法。
内燃机车常用的机械制动方式包括手刹和踏板制动。
手刹一般通过拉动手刹杆将刹车片与车轮接触,从而实现制动效果;踏板制动通过踩踏制动踏板,使刹车片与车轮接触,实现制动。
2. 摩擦制动:摩擦制动是指通过摩擦力来抑制车轮转动的制动方式。
内燃机车常用的摩擦制动方式包括盘式制动和鼓式制动。
盘式制动是通过将制动片与刹车盘接触,制动片通过与刹车盘的夹紧摩擦来实现制动效果;鼓式制动是通过将制动鞋与刹车鼓接触,制动鞋通过与刹车鼓的摩擦来实现制动效果。
3. 动力制动:动力制动是指通过发动机的压缩作用来实现制动效果。
在内燃机车中,通过关闭进气门和喷油器,使发动机进入压缩冲程,利用发动机的压缩产生制动力矩,从而实现制动效果。
4. 辅助制动:辅助制动是指通过其他辅助装置来实现制动效果。
常见的辅助制动装置包括压缩空气制动和电磁制动。
压缩空气制动是利用压缩空气产生制动力矩,通过控制气压来实现制动效果;电磁制动是利用电磁力或电磁感应产生制动力矩,通过控制电流来实现制动效果。
需要注意的是,内燃机车的制动系统通常采用多种制动方式组合使用,以提高制动可靠性和安全性。
液力传动内燃机车的工作原理液力传动内燃机车是指使用液体传递动力的内燃机车,这种车辆具有一定的功率和速度,同时可以承载相当的负载。
其工作原理是将引擎的动力传递给一系列压力泵,然后压力泵会产生压力将液体送到液力变速器中,通过液力偶合器将动力传到车轮中,实现车辆行驶。
液力传动内燃机车的主要设备是压力泵和液力变速器。
其工作原理可以简单地分为三个步骤:动力传递、液体压力传送和车轮的驱动。
动力传递是指内燃机的引擎将动力传递给压力泵,这样压力泵就可以产生压力来驱动液体的运动。
液体压力传送是指液体在压力泵的作用下产生压力,然后通过管道的传递将压力传送到液力变速器中,液体的流动使得车轮开始运转。
最后,液体的压力通过液力偶合器将动力传输到车轮轮轴,进而驱动车辆的运行。
液力传动内燃机车工作原理的优点在于其性能稳定,同时具有一定的灵活度和适应性。
在行驶过程中,其可以快速的响应驾驶员的操作,同时具有较大的扭矩输出,非常适合在起伏或者坡度较大的路面行驶。
液力传动内燃机车的工作原理还有一些特殊之处,例如液力偶合器是该车型机车的特色之一。
液力偶合器是由液体驱动的机械偶合器,通过液体的流动将引擎的动力传递到液力变速器中。
液力偶合器模拟了传统的机械式离合器,这意味着其相对于其他车型具有较小的滑移率和较高的扭矩输出,这使得该车型能够在较高的载重能力下提供高速和大扭矩输出的驱动力。
当然,液力传动内燃机车的工作原理也存在着一些不足之处。
首先其比机械传动的内燃机车辆更为复杂。
液力传动内燃机车的关键组件包括动力装置、液力变速器、液力偶合器和液压控制系统等。
这些部件也容易受到腐蚀或者损坏,并且在出现问题时维修难度也很大。
总的来说,液力传动内燃机车的工作原理是以液体压力传递为基础的,并通过液体压力与车轮建立起连接的关系,实现向前行驶这一目的。
虽然该车型在使用过程中存在一些不足,但是其相对于传统内燃机车灵活度和适应性较强,特别是扭矩输出相对于载重性能更强,在某些特殊的路段和地形下表现出了较强的竞争力。
内燃机车的基本工作原理-概述说明以及解释1.引言1.1 概述内燃机车作为一种重要的交通工具,在现代社会中扮演着至关重要的角色。
它利用内燃机的工作原理,将化学能转化为机械能,驱动车辆行驶。
本文将重点介绍内燃机车的基本工作原理,帮助读者更好地理解这一关键的交通工具。
通过对内燃机车的工作原理和关键部件进行剖析,我们可以深入了解其运行机理,从而更好地理解其在现代交通中的重要性和未来发展方向。
1.2文章结构1.2 文章结构本文将首先介绍内燃机车的概念和历史背景,然后深入探讨内燃机车的工作原理,包括燃烧过程、动力传递机制等方面。
接着将详细介绍内燃机车的关键部件,如发动机、传动系统等。
最后,通过总结内燃机车的基本工作原理和在现代交通中的重要性,展望其未来发展趋势。
通过本文的讲解,读者将对内燃机车的运行原理有一个清晰的认识,并了解其在现代社会中的重要作用和发展前景。
1.3 目的:本文旨在深入探讨内燃机车的基本工作原理,帮助读者了解内燃机车是如何运作的。
通过对内燃机车的简介、工作原理和关键部件的介绍,读者可以更好地了解内燃机车在现代交通中的重要性。
同时,通过展望内燃机车未来的发展,我们希望读者能够对内燃机车技术的进步和发展方向有更深入的认识。
最终,本文旨在帮助读者对内燃机车有一个全面而清晰的了解,为其在相关领域的学习和工作提供参考和指导。
2.正文2.1 内燃机车简介内燃机车是一种通过内燃机产生动力来驱动车辆的机车。
内燃机车被广泛应用于铁路运输和工业领域,在汽车、飞机和船舶等交通工具中也有广泛的应用。
内燃机车与蒸汽机车相比具有结构简单、操作方便、效率高等优点。
内燃机车使用内燃机燃烧燃料产生热能,通过发动机的工作循环将热能转化为机械能,从而驱动车轮转动,推动车辆前进。
内燃机车的运作原理是利用内燃机的燃烧过程产生的高压气体推动活塞运动,通过连杆和曲轴将往复运动转化为旋转运动传递给车轮,从而使车辆前进。
内燃机车的类型多样,包括柴油机车、汽油机车和天然气机车等。
东风7c内燃机车工作原理东风7C内燃机车是一种常见的铁路机车,它采用内燃机作为动力源,通过机械传动将能量转化为牵引力,从而推动列车行驶。
下面将为您详细介绍东风7C内燃机车的工作原理。
一、内燃机的工作原理内燃机是利用燃料在氧气的作用下进行燃烧产生高温高压气体,通过气体的膨胀驱动活塞运动,从而转化为机械能。
东风7C内燃机车采用的是柴油机作为内燃机。
当列车需要行驶时,首先启动柴油机。
柴油机内燃过程的基本原理是,柴油和空气在气缸内混合后被压缩,然后由喷油器喷入燃烧室进行燃烧。
这个过程产生的高温高压气体推动活塞运动,通过连杆和曲轴的传动,将往复运动转化为旋转运动。
柴油机的燃烧产生的废气排出后,再次进入气缸,循环进行。
二、机械传动系统柴油机的旋转运动通过传动系统传递到车轮,推动列车行驶。
东风7C内燃机车采用的是柴油机和电传动的组合方式。
具体来说,柴油机的旋转运动通过曲轴传递给主发电机,主发电机将机械能转化为电能,并输出给牵引电动机。
牵引电动机接收电能后,将其转化为机械能,通过齿轮传动将动力传递给转向架上的传动轴。
传动轴将动力传递给车轮,从而推动列车运行。
三、辅助设备和控制系统除了柴油机和机械传动系统外,东风7C内燃机车还配备了多种辅助设备和控制系统,以确保列车的安全和正常运行。
其中,冷却系统负责保持柴油机的温度在适宜范围内,防止过热损坏。
润滑系统负责给柴油机各个部件提供润滑油,减少磨损和摩擦。
供油系统负责向柴油机提供燃油,确保燃烧正常。
点火系统负责点火,启动柴油机。
控制系统则负责控制各个部件的工作,协调整个系统的运行。
东风7C内燃机车的工作原理是通过柴油机的燃烧产生高温高压气体,通过机械传动将能量转化为牵引力,从而推动列车行驶。
辅助设备和控制系统则保证整个系统的正常运行。
这种工作原理的内燃机车在铁路运输中发挥着重要作用,为人们的出行提供了便利。
内燃机车联合调节器构造一、引言内燃机车联合调节器是一种重要的机车部件,它可以对内燃机的工作状态进行调节,以达到最佳的效果。
本文将详细介绍内燃机车联合调节器的构造。
二、内燃机车联合调节器的定义内燃机车联合调节器是指一种能够对内燃机进行自动控制和监测的装置,它由多个部件组成,能够实现对内燃机的点火、进气、排气、供油等方面进行综合控制。
三、内燃机车联合调节器的组成1. 控制电路:控制电路是整个联合调节器中最为关键的部分,它由多个电子元件组成,能够通过接收传感器信号来进行控制。
2. 传感器:传感器是用来监测各种参数变化并将其转换为电信号输出给控制电路的装置。
常见的传感器有温度传感器、压力传感器、流量传感器等。
3. 电动执行元件:电动执行元件是指通过接收控制电路信号来实现相应操作的部件。
例如点火线圈、进气阀门、排气阀门等。
4. 油路系统:油路系统是指联合调节器中用于供油的部分,它由多个部件组成,能够实现对内燃机的供油控制。
5. 机械连接件:机械连接件是联合调节器中用于连接各个部件的部件,它能够保证各个部件之间的协调运作。
四、内燃机车联合调节器的工作原理内燃机车联合调节器通过接收传感器信号来进行控制,其工作原理如下:1. 接收传感器信号:传感器可以监测各种参数变化,并将其转换为电信号输出给控制电路。
2. 控制电路处理信号:控制电路会对接收到的信号进行处理,并根据需要发送相应的指令给电动执行元件。
3. 电动执行元件实现操作:根据控制电路发出的指令,电动执行元件会实现相应操作。
例如点火线圈会发出高压电流来点火,进气阀门和排气阀门会打开或关闭以实现进气和排气等操作。
4. 油路系统供油:油路系统会根据内燃机需要来进行相应的供油。
例如当内燃机需要加速时,油路系统会自动增加燃油的供给量。
五、内燃机车联合调节器的应用内燃机车联合调节器广泛应用于各种类型的内燃机车,例如汽车、摩托车等。
它能够实现对内燃机的自动控制和监测,从而提高了内燃机的工作效率和可靠性。
HXN3型内燃机车牵引控制系统分析摘要:新经济时期,由于铁道工业的积极发展,对内燃机车提出了更高需求。
通过运用交流传动控制技术,改善HXN3型柴油机车的性能,不仅增加公司最大产值,增强HXN3型柴油机车的客货运输能力。
文章从HXN3型柴油机车辆使用情况和控制系统设计等方面入手,对我国目前HXN3型柴油机车辆的主要技术概况、基本设计原理和交流传动系统的操作方式等加以分析,以供同行参考和借鉴。
关键词:HXN3型机车;牵引控制系统;技术分析引言:随着我国国民经济的高速增长,铁路及沿线产业增长得很快,对火车的需求量也愈来愈大,因此未来中高功率内燃机车的性能也将进一步改善。
而采用HXN3系列柴油机车的内燃机车技术水平不但改善了铁道设备的生产水平,也同时提升了铁道设备的生产水平。
因此,对HXN3系列内燃机车的交流驱动技术必须进行系统分析研究。
而近十年来,交流驱动技术和相关系统控制技术也逐步运用到柴油机车辆的研究中。
因此有关牵引控制系统的研究作为一种主要方向受到了关注,需要对其中的关键技术进行理论分析以及技术研究。
一、技术概述(一)直流驱动最传统的内燃机车牵引驱动就是直流电驱动技术,技术原理比较简单,利用内燃机的机械能与直流电电能转化,并利用温度控制和调整能量的大小来进行操控。
调节内燃机的工作功率、力矩、速度等数值后,使变速箱直接连接在联轴器上,同时驱动机车和变速器,从而完成直流牵引和传动过程。
由于上述的内燃机电驱动过程均依赖于直流驱动器,因此属于直流驱动器技术。
(二)交直流驱动随着科学技术的不断发展以及与内燃机车的不断结合,各种传动技术也在不断发展,内燃机车发展过程中需要不断提高工作能力,也就是增加内燃机的效率和内燃机车的牵引能力,在原有的设计基础上优化设计结构。
由于原有的直流传动技术已经无法适应现代内燃机车的科技发展需要而逐步被抛弃,限制较少的交流驱动技术可以突破最大输出值,且易于整流输出,但是成本较高[1]。
内燃机车简介汇报人:2023-12-14•内燃机车概述•内燃机车的结构与原理•内燃机车的性能与参数目录•内燃机车的应用与前景•内燃机车的安全与环保问题01内燃机车概述内燃机车是一种以柴油机为动力源,通过燃烧柴油产生动力,驱动车轮前进的机车。
定义内燃机车具有功率大、速度快、爬坡能力强、牵引力大等特点,但同时也会产生较大的噪音和震动。
特点内燃机车的定义与特点内燃机车起源于20世纪初,最早的内燃机车是由德国人发明和制造的。
早期发展二战后的发展现代发展二战后,随着铁路运输的快速发展,内燃机车得到了广泛的应用和推广。
进入21世纪,随着环保和能源问题的日益突出,内燃机车的技术和性能也在不断升级和改进。
030201内燃机车的发展历程内燃机车按照用途可以分为干线内燃机车、调车内燃机车、工矿内燃机车等。
干线内燃机车主要用于铁路干线上的货物运输,调车内燃机车主要用于铁路车站的调车作业,工矿内燃机车主要用于工业企业的货物运输。
内燃机车的分类与用途用途分类02内燃机车的结构与原理柴油机传动装置车体走行部01020304内燃机车的动力来源,将柴油燃烧产生的热能转化为机械能。
将柴油机的动力传递到车轮,包括离合器、变速器和传动轴等。
承载旅客和货物,包括车架、车壳和车门等。
支撑车体并引导机车行走,包括转向架、轮对和制动装置等。
根据用途和功率不同,内燃机车可采用不同型号的柴油机,如6缸、8缸、12缸等。
柴油机类型包括燃油箱、燃油滤清器、喷油泵和喷油器等,确保柴油机正常工作。
燃油系统包括空气滤清器、进气管和排气管等,为柴油机提供清洁的空气。
空气系统离合器用于连接或断开柴油机与传动装置之间的动力传递。
变速器根据行驶需要,将柴油机的动力传递到不同的车轮上,实现机车在不同速度下的行驶。
传动轴将变速器输出的动力传递到车轮上,使机车行驶。
包括制动盘、制动缸和制动阀等,用于对机车进行制动。
制动装置利用压缩空气作为制动介质,通过控制制动阀来实现机车的制动。
浅谈GK1F型内燃机车柴油机调速工作原理及优化改进通过GK1F型内燃机车柴油机调速工作原理分析,找出了柴油机转速粗暴的原因,并对十六位气控阀进行了优化改进,改善了内燃机车使用工况,保障了设备稳定运行。
标签:GK1F型内燃机车;调速工作原理;十六位气控阀;步进电机;优化改进引言山东石横铁钢集团有限公司2005年购置一台GK1F型内燃机车,车号1069,由南车四方机车车辆有限公司生产。
该车为液力传动内燃机车,适用于厂矿企业内部铁路调车及小运转作业。
车上安装一台Z12V190BJ8型柴油机,装车功率993KW,配备SF4010-2A型液力传动箱。
柴油机调速采用十六位档位控制方式,文章通过对GK1F型内燃机车柴油机调速工作原理分析,找出了柴油机转速粗暴的原因,并提出优化改进措施,改善了内燃机车使用工况,保障了设备稳定运行。
1 调速工作原理1.1 调速控制路径司机控制器通过触点闭合或断开,将电信号传送到PLC(机车微机),PLC 经逻辑运算处理后向电空阀发出驱动电势,电空阀得电接通主风路和控制风路,控制风路控制十六位气控阀通过连杆机构拉动供油杆来改变调速弹簧的预紧力,实现柴油机的升速和降速。
1.2 司机控制器司机控制器是直接由司机控制的一个主要机构。
操作面板由两个手柄组成,一是控制手柄,用于控制柴油机转速。
它有五个位置,分别是0位、1位、升位、保位和降位。
0位是待机位也是启动位,车不动时或刚启动时手柄必须在此位。
1位是机车低速位。
升位和降位是用来提高和降低柴油机转速的位置,手柄不能在这两个位置保持,只能由司机用手力使其保持在一个位置,松手后就会靠凸轮轴的弹力使手柄回到保位,保位的意思就是保持柴油机当前的转速,也是机车正常运行位。
另一手柄是换向手柄,用于改变机车运行方向,它有三个位置,前进位、0位和后退位。
司机控制器是由两根凸轮轴组成的触点组,通过改变凸轮的位置来改变触点的闭合与断开,故其作用是根据机车的不同状态给PLC(机车微机)一个不同的电信号。
内燃机车乘务员手册一、内燃机车乘务员工作概述 (1)1.1工作性质与职责 (1)1.2工作环境与特点 (2)二、内燃机车结构与原理 (2)2.1机车主要结构组成 (2)2.2内燃机车工作原理 (2)三、乘务员出乘准备 (2)3.1出勤与接车检查 (2)3.2行车备品检查与准备 (3)四、内燃机车操作规范 (3)4.1启动与停机操作 (3)4.2运行中的操作要点 (3)五、运行安全与应急处理 (3)5.1运行安全规定与注意事项 (3)5.2常见应急情况处理 (4)六、机车日常维护与保养 (4)6.1日常维护工作内容 (4)6.2定期保养要求与流程 (4)七、乘务员培训与技能提升 (4)7.1入职培训内容与要求 (4)7.2在职技能提升途径 (4)八、乘务员职业素养与团队协作 (5)8.1职业素养要求 (5)8.2团队协作的重要性与方式 (5)一、内燃机车乘务员工作概述1.1工作性质与职责内燃机车乘务员主要负责内燃机车的驾驶操作与运行监控。
其工作性质要求具备高度的责任心和安全意识。
在职责方面,要严格按照列车运行图行车,保证列车正点、安全运行。
在机车出库前,需对机车进行全面检查,包括走行部、制动系统、电气设备等各个关键部位,保证机车处于良好的运行状态。
在运行过程中,密切关注机车的各项运行参数,如油温、水温、压力等,一旦发觉异常,及时采取措施处理,保证列车运行安全。
1.2工作环境与特点内燃机车乘务员的工作环境较为特殊。
他们长期处于相对狭小的机车驾驶室内,面临着噪音、震动以及各种复杂的工作条件。
内燃机车运行时产生的噪音可能影响乘务员的听力健康,长时间的震动也会对身体造成一定的疲劳影响。
乘务员的工作时间不固定,需要适应不同的班次安排,包括夜间行车等,这对他们的身体和精神状态都是一种考验。
二、内燃机车结构与原理2.1机车主要结构组成内燃机车主要由车体、走行部、柴油机、传动装置、制动装置和电气设备等部分组成。
车体是机车的骨架,为其他部件提供安装基础。
JMY450内燃机车PLC控制系统的分析与研究潘振华发布时间:2021-07-26T16:39:51.777Z 来源:《基层建设》2021年第14期作者:潘振华[导读] 随着科学技术的快速发展,微机技术被广泛的应用到工业自动化和工业智能控制中。
它的应用,使得系统工作更加高效,精准。
而内燃机车正是先进技术发展的产物四川省成都市成都地铁运营有限公司四川成都 610000摘要:随着科学技术的快速发展,微机技术被广泛的应用到工业自动化和工业智能控制中。
它的应用,使得系统工作更加高效,精准。
而内燃机车正是先进技术发展的产物,它主要用于地铁,电客车的调车和救援中,以此来提高机车运行效率,降低运营风险。
PLC技术的不断成熟为内燃机车逻辑控制改造提供了有利条件。
本文以型号为JMY450的内燃机车为例,分析了内燃机车PLC控制系统的设计工作,并提出了PLC控制系统清洁装置以及机车应急功能中的运用,以期提高JMY450内燃机车的运行效率。
关健词:内燃机车;PLC控制;分析与研究引言内燃机车是地铁运营及维护要用到的一种很重要的行车设备,在许多地铁系统的维护作业中都需要使用,例如:地铁列车、运输车辆、无动力轨道车辆的牵引与调车;隧道内和车辆段内事故车辆的救援牵引作业;地铁供电设备施工和维修时工程车作为牵引动力的设备;地铁正线货物运输及地铁工程维修等等。
1、内燃机车PLC控制系统的组成及工作原理 1.1内燃机车重要信号收集工作 PLC控制设备需要接收的关于内燃机车的重要信号有以下几种:PLC控制系统接收柴油机和传动箱等转速信号、发电信号、机车方向控制信号、司机控制信号、各种开关信号以及各水温继电器、压力继电器,根据这些信号经过逻辑判断输出控制信号和安全保护信号,信号放大后驱动执行元件。
机车当前运行状态对司机而言极为重要,司机了解机车当前运行状态之后,可按照作业要求,调节机车当前的运行状态。
不仅如此,若数据显示异常,司机也可及时中断车辆操作,令车辆处于停运状态,以免机车处于带故障运行状态,既保证了设备本身的安全,同时也保证了司机的人身安全。
标题:深度解析:gkd0型内燃机车无线遥控微机控制系统原理一、引言gkd0型内燃机车无线遥控微机控制系统在铁路运输中起着至关重要的作用。
它的原理和应用对于提高铁路运输的安全性、效率和智能化水平都具有重要意义。
二、gkd0型内燃机车无线遥控微机控制系统概述1. gkd0型内燃机车的基本工作原理和结构2. 无线遥控技术在内燃机车中的应用3. 微机控制系统在内燃机车中的作用和优势三、gkd0型内燃机车无线遥控微机控制系统原理深入探讨1. 无线遥控原理及其在内燃机车中的应用a. 无线通讯技术的发展历程及应用现状b. 无线遥控系统的工作原理和关键技术c. 无线遥控在内燃机车中的具体实现方式和优势2. 微机控制系统原理及其在内燃机车中的应用a. 微机控制系统的基本原理和结构b. 微机控制系统在内燃机车中的作用和优势c. 微机控制系统在内燃机车中的具体应用案例分析四、对gkd0型内燃机车无线遥控微机控制系统的总结和展望1. 对内燃机车无线遥控微机控制系统原理的全面梳理和归纳2. 对内燃机车无线遥控微机控制系统未来发展趋势的展望3. 个人对内燃机车无线遥控微机控制系统的理解和看法以上是对于文章结构的初步规划,后续会加强对每个部分的填充和细化。
在文章中,将深入解析gkd0型内燃机车无线遥控微机控制系统的原理和应用,提供全面、深入、有价值的观点和内容,以期能帮助作者更深入地理解这一主题。
一、引言gkd0型内燃机车无线遥控微机控制系统的原理和应用对铁路运输的安全性、效率和智能化水平都具有重要意义。
在现代铁路运输中,利用无线遥控和微机控制技术来实现内燃机车的远程控制,不仅可以提高运输效率,还能使列车运行更加便捷和安全。
深入探讨gkd0型内燃机车无线遥控微机控制系统的原理和应用,对于铁路运输领域具有重要意义。
二、gkd0型内燃机车无线遥控微机控制系统概述1. gkd0型内燃机车的基本工作原理和结构gkd0型内燃机车是一种具有电控柴油机传动的机车,其工作原理是将内燃机产生的动力通过传动系统传递到车轮上,从而驱动列车行驶。
内燃机车联合调节器构造引言内燃机车联合调节器是现代内燃机车中的一种重要装置,它在保证机车安全运行、提高能源利用率等方面起着关键作用。
本文将对内燃机车联合调节器的构造进行全面、详细、完整且深入地探讨。
联合调节器的基本原理1.联合调节器的定义:联合调节器是一种能够控制内燃机工作状态、调节机车牵引力和制动力的装置。
2.内燃机的调节原理:内燃机的调节通过控制燃油供给、进气量和喷油时间等参数来实现。
3.联合调节器的作用:联合调节器通过与内燃机的调节系统相互配合,实现对机车运行状态的调控,保证机车的平稳运行和牵引、制动的稳定性。
联合调节器的构造和工作原理传感器和控制单元1.传感器:联合调节器中的传感器主要用于获取机车的运行状态和参数,如速度、牵引力、制动力等,常用的传感器包括速度传感器、排气温度传感器等。
2.控制单元:控制单元是联合调节器的核心部分,它根据传感器获取的参数信息,通过算法和逻辑控制,实现对内燃机和制动系统的精确控制。
内燃机调节系统1.燃油供给系统:燃油供给系统控制燃油的流量和喷射时间,其中包括燃油泵、喷油器等组件。
2.进气调节系统:进气调节系统负责控制进气量,包括进气门控制机构、进气增压器等组件。
3.排气调节系统:排气调节系统用于控制排气温度和流量,其中包括排气阀门、排气涡轮增压器等组件。
牵引力和制动力调节系统1.牵引力调节系统:牵引力调节系统通过控制内燃机输出扭矩和车轮的抓地力来实现对机车的牵引力调节,常用的方法有调节燃油供给和进气量等。
2.制动力调节系统:制动力调节系统用于控制机车的制动力大小和平稳度,常用的方法有控制制动器气缸压力和制动器释放时间等。
联合调节器的工作流程1.传感器获取机车运行状态和参数信息。
2.控制单元根据传感器信息,计算出合适的燃油供给、进气量和喷油时间等参数。
3.内燃机调节系统根据控制单元的指令,调整相应的参数来控制内燃机的运行状态。
4.牵引力和制动力调节系统根据控制单元的指令,调整牵引力和制动力的大小和平稳度。
大一机车车辆知识点引言:大一学习机车车辆知识点是为了让我们能够更好地了解机车的构造、原理,以及正确使用和维护机车。
本文将为大家介绍一些大一学习机车车辆知识点的重要内容。
一、机车的分类和结构1. 内燃机车:内燃机车是一种使用内燃机作为动力源的机车,它主要分为柴油机车和汽油机车。
柴油机车是通过柴油机产生动力,而汽油机车则是通过汽油机产生动力。
2. 电力机车:电力机车是一种使用电力作为动力源的机车,它通过电力机车牵引供电的电力机车车辆行驶。
3. 蒸汽机车:蒸汽机车是一种使用蒸汽机作为动力源的机车,它通过蒸汽机产生的动力来推动机车前进。
机车的结构主要包括机车车体、动力装置和传动装置。
其中,机车车体包括车头、车身和车尾,动力装置包括发动机、电机等,传动装置包括传动轴、齿轮等。
二、机车的工作原理1. 内燃机车的工作原理:内燃机车通过柴油机或汽油机将燃料燃烧产生的高温高压气体转化为机械能,然后经由传动装置传递给机车的轮轴,从而推动机车行驶。
2. 电力机车的工作原理:电力机车通过接收来自外部的电能,利用电机将电能转化为机械能,然后通过传动装置传递给机车的轮轴,推动机车运行。
3. 蒸汽机车的工作原理:蒸汽机车会燃烧燃料,将产生的热能转化为蒸汽,并通过蒸汽机将热能转化为机械能。
机械能经由传动装置传递给机车的轮轴,从而推动机车前进。
三、机车的使用和维护1. 使用注意事项:(1)在使用机车时,要按照指定的速度、负荷和路线来行驶,确保安全性和稳定性。
(2)在长时间使用机车前,要进行预热和检查,确保机车正常运行。
(3)遵守交通规则和道路交通信号,减少机车发生事故的风险。
2. 维护常识:(1)定期进行机车的保养和维护,包括更换机油、清洗滤清器等。
(2)检查机车的轮胎和制动系统,确保其正常工作。
(3)密切关注机车的温度和润滑情况,确保机车在正常工作范围内运行。
结语:通过学习大一机车车辆知识点,我们能够更好地了解机车的分类、工作原理,以及正确使用和维护机车的方法。
东风型内燃机车牵引电动机磁场削弱原理一、东风型内燃机车牵引电动机磁场削弱原理东风型内燃机车是采用恒定转速牵引电动机驱动的铁道机车,其中使用了“磁场削弱”原理。
该原理是指,当牵引电动机处于高转速时,电动机的磁场强度会降低,而当牵引电动机处于低转速时,电动机的磁场强度则会提高。
这样,可以通过改变牵引电动机的磁场强度来改变机车的牵引力和制动力,从而实现牵引控制的目的。
1、磁场削弱原理电动机的磁场强度是由电动机的定子绕组和转子绕组的结构、线圈数量、电流大小以及转速等因素决定的。
当牵引电动机的转速提高时,电动机的磁场强度会降低;当牵引电动机的转速降低时,电动机的磁场强度则会增强。
因此,可以通过改变牵引电动机的转速,来改变其磁场强度,从而改变机车的牵引力和制动力。
2、磁场削弱技术的实现为了实现磁场削弱技术,东风型内燃机车采用了恒定转速牵引电动机。
这种牵引电动机具有较低的电动机定子阻抗,可以在较低的转速下提供较大的牵引力和制动力。
另外,东风型内燃机车还采用了电动机和发动机之间的联轴器,以确保发动机和电动机的同步运行。
当发动机的转速发生变化时,联轴器会将这种变化传递给电动机,从而达到改变电动机磁场强度的目的。
3、磁场削弱技术的优点磁场削弱技术的实施,使得东风型内燃机车的性能有了显著的改善,具有以下优点:(1)可以减少电动机的损耗:因为电动机的磁场强度与转速成反比,所以可以在低转速时获得较大的牵引力和制动力,从而减少电动机的损耗。
(2)可以提高发动机的功率:由于发动机只需要提供较低的转速,因此可以在较低的转速下提供较大的功率,从而提高发动机的功率。
(3)可以提高车辆的可靠性:由于发动机的转速可以精确的控制,因此可以保证车辆的可靠性。
(4)可以更好的满足客运需求:由于可以精确的控制机车的牵引力和制动力,因此可以更好的满足客运需求。
总之,东风型内燃机车牵引电动机采用了磁场削弱原理,可以提高机车的可靠性和满足客运需求,从而大大改善了机车性能。
浅析内燃机车常见故障及处理方法摘要:淮北矿业集团公司是国有特大型企业,集团公司现有的内燃机车主要从事煤炭的铁路运输工作。
内燃机车质量的好坏直接关系到运输的发展和运能的提高。
为了保证机车的安全运行,对其运行中容易出现的故障进行快速的查找和排除至关重要。
为了提高铁路内燃机车的维修效率,本文对内燃机车的工作原理以及一些常见的故障诸如增压器、电器线路、冷却水系统进行了论述。
关键词:内燃机车增压器电器线路冷却水系统1、内燃机车的工作原理内燃机车是以内燃机作为原动力,通过传动装置驱动车轮的机车。
它的燃料在汽缸内燃烧,所产生的高温高压气体在汽缸内膨胀,推动活塞往复运动,连杆带动曲轴旋转对外做功,燃料的热能转化为机械功。
柴油机发出的动力传输给传动装置,通过对柴油机、传动装置的控制和调节,将适应机车运行工况的输出转速和转矩送到每个车轴齿轮箱驱动动轮,动轮产生的轮周牵引力传递到车架,由车架端部的车钩变为挽钩牵引力来拖动或推送车辆。
2、内燃机车常见故障和处理方法2.1 增压器主要故障及处理方法当前增压器的主要故障大部分集中在油封漏油、轴承烧损、转子固死、壳体裂、动叶片飞出等几个方面。
第一,油封漏油。
这类故障与造成转子固死的漏油(渗油)差别很大,它的形成因素主要有塞环磨损严重超限、轴承烧毁,除此之外,这类故障的形成也可能是由于装配时的失误。
因此,在对增压器故障的统计中,机务段把油封漏油这类故障的形成因素归结为轴承烧毁,或者以活塞环密封的增压器的活塞环质量差,装配间隙不符合要求等。
第二,轴承烧损。
轴承烧损这类故障比较多见。
这类故障的发生主要由以下几个因素引起的:(1)安装机油管路时不慎进入异物;(2)轴承组装不符合要求、润滑不充分;(3)轴承质量差;(4)转子动不平衡量大;(5)滤清器不良。
第三,转子固死。
这类故障主要由于增压器的密封结构存在缺陷、装配间隙不符合要求这两个因素造成的。
它的形成过程为:当增压器涡轮端密封不良或失效时造成漏油,渗漏的润滑油在高温作用下碳化并附着在密封的静止件表面,这样当机车再走行几万千米到二十几万千米之后,一旦密封件的间隙腻死,就会造成转子卡滞。
DF4型内燃机车工作原理及其主电路一、DF4内燃机车工作原理概述机车是一种交通工具,我们熟知的交通工具有汽车、飞机、轮船、火车。
了解机车的特点:一维运动,自动导向,运量大、快速、安全可靠、环境污染小、全天候、最经济。
机车的发展粗略的可以分为3个阶段,蒸汽机车、内燃机车、电力机车。
内燃机车的原动力是柴油机。
同步主发电机F的转子轴端通过弹性连轴器与柴油机相联,主发电机轴通过万向联轴节经变速箱增速后带动启动发电机QF、励磁机L、测速发电机CF等运转。
同步主发电机产生的三相交流电经牵引整流柜1ZL三相桥式全波整流后,输送给给六台牵引电动机,再由牵引电动机通过传动齿轮驱动车轮旋转,使机车运行。
从牵引整流柜到牵引电动机之间,电路的通断由六台主接触器1C~6C分别控制。
威望115 金钱170 贡献值24 好评度24 阅读权限25 在线时间14 小时注册时间2009-11-7 最后登录2010-7-7 查看详细资料TOP跨局、跨段对调工作信息kenke高级工UID170094 帖子132 精华0 积分115 个人空间发短消息加为好友当前离线软卧车大中小发表于2009-11-10 20:03 只看该作者电气线路主电路电气线路图是表示电气系统内,电机、电器、电表、电路等各元件之间电气-机械相互联系、作用原理、动作程序的图形,是对电气系统进行操纵、控制、配线和维修的依据。
机车的主电路就是机车能量传递并产生牵引力或电阻制动力的主要电路。
牵引时,牵引发电机(主发)将柴油机的机械能转换为电能,并将此电能传递给牵引电动机,然后由牵引电动机再转换为驱动机车运行的机械能。
电阻制动时,牵引电动机改接为他励发电机。
将机车的动能转化成电能,并最终使其在制动电阻上以热能的形式逸散。
东风4D型内燃机车为交—直流电力传动,主电路由三相同步交流发电机F(1E16)、主整流柜1ZL、牵引电动机1D~6D、方向转换开关l~2HKf、牵引-制动转换开关1~2HKg、电空接触器1C~6C、磁场削弱组合接触器1~2XC、制动电阻1RZ~6RZ及主电路的保护及测量装置等组成。
内燃机车工作原理
内燃机车是一种以内燃机为动力的火车,它运用内燃机的工作原理来驱动列车
行驶。
内燃机车的工作原理主要包括燃料燃烧产生动力、动力传递到车轮以及控制系统的作用。
首先,内燃机车的工作原理与内燃机相似,它使用燃料和空气的混合物在气缸
内进行燃烧,产生高温高压的气体。
这些气体推动活塞运动,驱动曲轴旋转,最终产生动力。
内燃机车通常采用柴油作为燃料,它经过喷射进入气缸内,与空气混合后被点火,产生爆炸推动活塞运动。
这种燃烧方式能够持续产生动力,推动内燃机车行驶。
其次,内燃机车的动力需要传递到车轮上,推动列车行驶。
内燃机车通常采用
传统的机械传动方式,通过曲轴、齿轮和传动轴将内燃机产生的动力传递到车轮上。
这种传动方式简单可靠,能够有效地将动力传递到车轮,推动列车行驶。
除了动力传递,内燃机车还需要一个完善的控制系统来确保列车安全、稳定地
行驶。
控制系统包括制动系统、加速系统、转向系统等,它们能够根据列车的运行状态和驾驶员的指令来控制内燃机车的行驶。
例如,制动系统能够通过压缩空气或液压来制动列车,确保列车在需要时能够及时停车;加速系统能够通过调节燃料喷射量来控制列车的加速和减速;转向系统能够根据驾驶员的转向指令来控制车轮的转向,确保列车沿着预定的轨道行驶。
总的来说,内燃机车的工作原理是基于内燃机的工作原理,它通过燃料燃烧产
生动力,将动力传递到车轮上,同时通过控制系统来控制列车的行驶。
这种工作原理使得内燃机车成为了现代铁路运输中不可或缺的一部分,它能够高效、稳定地推动列车行驶,为人们的出行和货物运输提供了重要的支持。
内燃机车控制原理本说明适用QSJ11-81A-00-000电气线路图机车电路图是表明机车上全部电机、电器,电气仪表等元件的电气联接关系图,可供机车操作和电气系统安装,维护和检修使用。
机车电路图分为主电路、辅助电路、励磁电路、控制电路、计算机接口、显示电路、照明电路及行车安全电路等,现分别说明如下: 1主电路1.1组成主电路的主要电气元件主电路主要包括1台同步主发电机F,6台直流牵引电动机1~6D,1个主硅整流柜1ZL,机车牵引和制动时,用于接通6台直流牵引电动机电路的电空接触器1~6C,电阻制动用的电空接触器ZC,用于机车二级电阻制动转换的短接接触器1-6RZC,用于改变机车运行方向的转换开关HKF,用于机车牵引与制动工况转换的转换开关HKG ,用于调节机车运行速度的磁场削弱电阻1~2RX和组合接触器XC,供机车进行电阻制动用的制动电阻1~2RG,制动电阻散热用的2台轴流式通风直流电动机1~2RGD,用于机车自负荷试验的自负荷开关ZFK以及为监测、监视和给出信号用的直流电流传感器1~7LH,交流电流互感器9~10LH,制动失风保护继电器FSJ 和其他有关的电气仪表元件等,主电路中还包括1个供移车用的外接电源插座YCZ。
电压信号的检测采用隔离放大器.1.2工作原理1.2.1牵引工况柴油机驱动同步主发电机发出三相交流电,经过主硅整流柜1ZL 整流后变为直流。
6台直流牵引电动机1~6D 并联在主硅整流柜输出的两端,通过6个电空接触器1~6C的闭合,接通各直流牵引电动机电路,电动机驱动轮对转动,机车开始运行。
方向转换开关HKF用来改变流过6台直流牵引电动机励磁绕组的电流方向,使直流牵引电动机改变转向,从而改变机车的运行方向。
为了扩大机车恒功运行范围,直流牵引电动机可进行一级磁场削弱(磁场削弱系数54%)。
当组合接触器XC闭合后,流过直流牵引电动机励磁绕组的电流被分流,一部分流往磁场削弱电阻1~2RX,这就削弱了电动机的励磁电流,实现了磁场削弱。
本说明适用QSJ11-81A-00-000电气线路图机车电路图是表明机车上全部电机、电器,电气仪表等元件的电气联接关系图,可供机车操作和电气系统安装,维护和检修使用。
机车电路图分为主电路、辅助电路、励磁电路、控制电路、计算机接口、显示电路、照明电路及行车安全电路等,现分别说明如下:1主电路1.1组成主电路的主要电气元件主电路主要包括1台同步主发电机F,6台直流牵引电动机1~6D,1个主硅整流柜1ZL,机车牵引和制动时,用于接通6台直流牵引电动机电路的电空接触器1~6C,电阻制动用的电空接触器ZC,用于机车二级电阻制动转换的短接接触器1-6RZC,用于改变机车运行方向的转换开关HKF,用于机车牵引与制动工况转换的转换开关HKG ,用于调节机车运行速度的磁场削弱电阻1~2RX和组合接触器XC,供机车进行电阻制动用的制动电阻1~2RG,制动电阻散热用的2台轴流式通风直流电动机1~2RGD,用于机车自负荷试验的自负荷开关ZFK以及为监测、监视和给出信号用的直流电流传感器1~7LH,交流电流互感器9~10LH,制动失风保护继电器FSJ 和其他有关的电气仪表元件等,主电路中还包括1个供移车用的外接电源插座YCZ。
电压信号的检测采用隔离放大器.1.2工作原理1.2.1牵引工况柴油机驱动同步主发电机发出三相交流电,经过主硅整流柜1ZL整流后变为直流。
6台直流牵引电动机1~6D 并联在主硅整流柜输出的两端,通过6个电空接触器1~6C的闭合,接通各直流牵引电动机电路,电动机驱动轮对转动,机车开始运行。
方向转换开关HKF用来改变流过6台直流牵引电动机励磁绕组的电流方向,使直流牵引电动机改变转向,从而改变机车的运行方向。
为了扩大机车恒功运行范围,直流牵引电动机可进行一级磁场削弱(磁场削弱系数54%)。
当组合接触器XC闭合后,流过直流牵引电动机励磁绕组的电流被分流,一部分流往磁场削弱电阻1~2RX,这就削弱了电动机的励磁电流,实现了磁场削弱。
•••••1.2.2电阻制动工况电阻制动工况时,电路通过工况转换开关HKG,使直流牵引电动机1~6D改接成他励发电机,并将1~6D的励磁绕组全部串联起来,由同步主发电机F经主硅整流柜1ZL供电,其电路由电空接触器ZC接通。
HKG 和1~6C分别接通1~6D向制动电阻1~2RG的供电电路。
为了在机车低速运行时有较大的制动力,以便达到更好的制动效果,机车采用二级电阻制动,当机车运行在30km/h (轮径按1013 mm计)以上时,采用全电阻的一级电阻制动,以获得较大的制动功率和制动力调节范围;机车运行速度低于25km/h轮径按1013 mm计)时,由1-6ZRC短接一半电阻,进入二级电阻制动,以增加低速时的制动力。
当直流牵引电动机1~6D转为他励发电机工作时,将列车的动能转变为电能,消耗在制动电阻带上,通过2台直流电动机1~2RGD带动的轴流式通风机将电阻带上的热能散发到大气中去。
与此同时,1~6D电枢轴上所产生的电磁转矩作用于机车动轮,产生了制动力。
直流电动机1~2RGD从制动电阻上的抽头处供电。
1.2.3自负荷试验工况机车在进行自负荷试验时,主电路中“自负荷开关”ZFK应置于“闭合”位,工况转换开关HKG置于“牵引”位,控制电路中6个“运转--故障--试验”万能转换开关1~6GK(5/B4-11)全部置于“试验”位。
此时1~6C断开,由同步主发电机发出的三相交流电经过主硅整流柜1ZL整流后直接向制动电阻1~2RG以及牵引电动机1~6D 的励磁绕组供电,电能在这里被转换成热能,由制动电阻散热用的轴流式通风机和牵引电动机的通风机将这些热能吹散到大气中去。
自负荷试验电路简化了机车的负载试验过程,但由于制动电阻带的阻值不可调节,因而对柴油机的每一个稳定的转速,自负荷试验只能确定一个对应的功率点。
2辅助电路2.1蓄电池充电电路柴油机起动后带动直流起动发电机QD运转,当闭合辅助发电开关5K (5/F2) 后,QD的励磁接触器FLC (5/G8) 线圈通电,FLC 的两个常开触头(2/B4、2/C4) 闭合,接通QD励磁回路,若选择开关FLK(2/F5)大在EXP位,励磁回路由微机柜EXP(2/H4)控制,实现恒压110V控制。
当QD端电压比蓄电池组电压高时,逆流装置NL (2/A4)导通,QD就向蓄电池组充电。
与此同时,所有控制及辅助电路均由直流起动发电机QD供电;若选择开关FLK打在XZB位,则励磁回路由机车智能充电监控器XZB(2/H3)控制,它除了具有前者的全部功能外,还可根据蓄电池的容量,对蓄电池进行快速、均衡、浮充充电,从而延长蓄电池的使用寿命。
2.2空压机控制电路空压机控制开关6K (5/G2) 置于自动位,若总风缸压力不足(750±20) kPa时,压力继电器3YJ (5/G7) 触头闭合,接通1YC和2YC线圈(5/G8),1YC和2YC主触头(2/C6) 闭合,空压机电机1YD和2YD开始运转,空压机开始工作。
当总风缸压力达到(900±20) kPa时,3YJ触头断开,1YC和2YC线圈失电,1YD和2YD停止运转,空压机停止工作。
空压机控制开关6K (5/G2) 扳至手动位,亦可控制空压机工作,其动作过程与自动相同,只是不受3YJ控制,只要断开6K,空压机就停止工作。
2.3预热锅炉控制电路在柴油机起动以前,如果冷却水和机油的温度低于20℃时,或者在冬季停留机车时,为了防止机件冻裂,则使用预热锅炉或采用空载打温方式对油水加热,预热锅炉由预热锅炉控制柜DKX控制。
详细说明参见“预热锅炉说明书”。
2.4其他机车上还装有空气净化装置KJH(2/E12)、电动洗涤等一些辅助设备,为了改善司乘环境,司机室内配有冰柜BG (2/E10)、电热水器烤箱SKX(2/E10)、电取暖器1~4DNQ (3/A-C4)及热脚炉RJL1-2(3/B4),机车风喇叭和撒砂采用电空阀控制,方便了驾驶和维护。
另外,为了减少车轮和钢轨磨损,东风8B型机车还安装了轮轨润滑装置LGK(3/F3)。
3.励磁电路同步主发电机F的励磁电流由感应子励磁机L发出的三相交流电,经励磁硅整流柜2ZL整流后提供。
在东风8B型内燃机车上,感应子励磁机的励磁采用了两套电路,一套是以80C186CPU 为核心的微机控制系统。
此时万能转换开关WZK(4/B10)置“励磁一”位;一套是由直流测速发电机1CF提供,1CF的励磁电流则由机车控制电源经功调电阻Rgt等供给。
此时万能转换开关WZK 置“励磁二”位。
“励磁二”作为“励磁一”的备用系统在微机系统出现故障时通过转换开关WZK(4/B10)投入使用。
3.1微机控制系统3.1.1系统简介东风8B型内燃机车微机硬件系统由微机柜控制系统、彩色显示屏以及用于控制和检测的各类传感器等组成。
微机具有恒功率励磁控制,电阻制动恒流控制,轮对防空转/滑行控制,机车电气及柴油机保护控制,故障诊断、显示等功能。
机车牵引或自负荷时,由微机控制柜控制系统进行恒功控制,使同步主发电机或柴油机恒功运行。
当柴油机转速在640/min以上时,能利用功调电阻信号实现辅助功率与主发电机功率间的转移,柴油机均以经济工况运行。
当柴油机转速在640/min以下时,实现主发恒功,保证理想的牵引特性。
主发电机具有限压、限流、恒功的理想牵引特性。
机车电阻制动时,微机控制柜控制系统控制牵引电动机在不同的机车速度下具有恒定的电枢电流(即制动电流),或具有恒定的磁场电流及线性限流功能。
通过牵引电动机速度传感器,微机柜控制系统检测轮对空转或滑行情况,根据空转滑行程度不同,采取相应的空转/滑行保护措施,提高机车的粘着性能。
微机接收柴油机转速,滑油压力,冷却水温度等传感器的信号对柴油机进行保护。
微机接收各种电压,电流传感器的信号,对电气系统进行各种保护。
故障诊断的汉字显示与报警系统,采用大屏幕彩色液晶显示屏,可以自动或有选择地显示某些监控参数,自动地显示报警和与机车系统有关的故障信息。
便于运用部门和乘务人员了解机车状态。
3.1.1.2微机控制柜有上层和下层插箱组成。
下层插箱为微机插件,上层插箱包括电源、辅机控制以及信号变换组件。
电源组件提供+5V、10A、±15V、5A和±24V电源。
其中+5V、±15V提供给微机控制柜和信号变换装置(SCM 板);±24V提供给LEM式电压、电流传感器和压力传感器。
辅机控制组件具有电压调整器功能、控制辅助发电机励磁,保持辅助发电机110V电压恒定不变。
辅机控制还具有过压保护。
为了保证可靠地工作,电源和辅机控制组件在箱中均有备件。
辅机控制的转换可由微机控制柜面板上的转换开关来完成。
转换前应断开辅助发电开关5K,严禁带电转换。
微机控制柜机箱上有6个56芯插头座(其中1个为备用)供本装置与机车电路接口用。
具体接口电路参见电气线路图第7页。
3.1.2牵引功率控制3.1.2.1 牵引特性控制东风8B型内燃机车采用有档无级调速方式控制柴油机转速,推动司控器主手柄时,给出编码指令,该指令通过无级调速器WTQ(6/E9),控制柴油机转速,从而控制同步主发电机发出给定的功率。
微机控制柜同时也能接受联合调节器功调电阻Rgt(4/D3)滑臂提供的电压信号。
当滑臂停留在最大增载极限位置时,不降低功率参考值;随着滑臂向减载方向的移动,功率基准降低;当滑臂停留在减载极限位时,功率参考值约降低20%。
当柴油机转速在680r/min以下时,功调电阻不起调节作用,微机控制维持主发电机恒功。
牵引电动机故障切除时,限压数值保持不变,每切除1个牵引电动机时,恒功与限流给定值分别降低1/6。
机车功率同时还受到机车轮对有无空转,柴油机油水温度、压力是否正常等因素的影响。
3.1.2.2加载速率控制为了防止提升主控手柄,加载时柴油机瞬间过载,微机控制对加载速率进行了限制。
加载速率随柴油机功率的不同而有所不同。
3.1.2.3 减载速率控制为了保持在降低主手柄位置时牵引功率的平稳控制,微机控制还规定了同步主发电机的减载速率。
减载速率不是一个常数,而随同步主发电机功率的差异而有所不同。
3.1.2.4电流下降速率控制为了使牵引电动机的转矩在主控手柄档位降低时能平稳地减小,微机控制预先规定了各牵引电动机电流最大下降速率不得超过250A/s。
电流下降速率还受到减载速率的限制。
3.1.2.5电流上升速率控制为了使牵引电动机转矩平稳地增大,微机控制箱预先规定了各牵引电动机的电流最大上升速率为200A/s。
电流上升速率还受到加载速率的限制。
3.1.2.6电压上升速率控制同步主发电机电压上升速率与加载速率或电流上升速率有关。
为使电压平稳上升,微机控制预先规定了同步主发电机工作在“开路”状态时,其开路电压上升速率为150V/s。