2018届成都市锦江区二诊数学试题
- 格式:pdf
- 大小:1.67 MB
- 文档页数:8
设集合,,则B. C. D.【答案】【解析】已知向量,,若,则实数的值为(B. C.若复数,则B. C. D.【答案】【解析】的前项和为若,则B. C. D.【解析】.故选D.,是空间中两条不同的直线,,,则 B. 若,, D. 若,则【解析】由题设,,则,,则,,当时不能得到的展开式中含项的系数为,则实数B. C. D.的展开式的通项为,解得,,解得已知函数的部分图象如图所示现将函数图象上的所有点向右个单位长度得到函数的图象,则函数B.D.【解析】由题意可知的振幅,周期,由,,图象上的所有点向右平移个单位长度得到函数的图象,则故选D.为实数,则“”是“B. 必要不充分条件【解析】解不等式,是的真子集,故“”成立的必要不充分条件故选B.B. C. D.【答案】【解析】该几何体为四棱锥底面其中...........................执行如图所示的程序框图,若输出的结果为B. C. D.【解析】当时,;当;当;当时,时已知函数在区间内有唯一零点,则的取值范围为(B.D.【答案】A在区间,解得在区间上单调递增,的取值范围为:,经过点的直线与双曲线,分别位于第一,四象限,当时,的面积为B. C. D.【答案】【解析】的面积为由题意可得,解得,可得即为代入双曲线的方程,可得已知,则【答案】即答案为.如图是调查某学校高三年级男女学生是否喜欢篮球运动的等高条形图,阴影部分的高表示喜欢该项运名(假设所有学生都参加了调查)名女同学中喜欢篮球运动的频率为名男同学中喜欢篮球运动的频率为,即男同学中喜欢篮球运动的由人,则抽取的男生人数为:的焦点为,准线与,是抛物线上的点,且为直径的圆截直线所得的弦长为,则实数【答案】,直线到直线的距离为为直径的圆截直线所得的弦长为,则即答案为已知数列共,记关于的函数,是函数的极值点,且曲线在点处的切线的斜率为数列的个数为__________【答案】,是函数的极值点,即中方法,又曲线在点处的切线的斜率为,即或(或共有(或中方法,所以方法总数为已知函数.)求函数的单调递减区间;的内角所对的边分别为,,,,,求..)【解析】试题分析:(1化简可得,,可得,由正弦定理可得,最后由余弦定理可得试题解析;(1),,.∴函数的单调递减区间为,,∴,∴由正弦定理,得,解得.现从评价系统中选出条较为详细的评价信息进行统计,车辆状况的优惠活动评价的向用户随机派送每张面额为元,元,用户骑行一次获得元券,获得元券的概率分别是,若某用户一天使用了两次该公司的共享单车,记该用户当天获得的骑行券面额,求随机变量参考公式:,其中1)见解析;(2)见解析.)由题意首先求得分布列,然后求解数学期望即可..因此,在犯错误的概率不超过的前提下,不能认为优惠活动好评与车辆状况好评有关系)由题意,可知一次骑行用户获得.,,,,,,∴的分布列为:如图,的中点,四边形是菱形,平面,,,)若点是线段的中点,证明:平面;)求平面与平面所成的锐二面角的余弦值.)连接,由四边形为菱形,可证平面平面.即可证明平面设线段的中点为连接易证平面以为坐标原点,,,所在直线分别为轴建立如图所示的空间直角坐标系求出相应点及向量的坐标,求得平面,平面,。
2018年四川省成都市中考数学二诊试卷一、选择题(本大题共10小题,共30.0分)1.化简的结果是A. 3B.C.D. 9【答案】A【解析】解:,故A正确,故选:A.根据算术平方根是非负数,可得答案.本题考查了二次根式的化简,算术平方根是非负数.2.下列运算正确的是A. B. C. D.【答案】C【解析】解:A、,此选项计算错误;B、,此选项计算错误;C、,此选项计算正确;D、,此选项计算错误;故选:C.根据合并同类项法则、同底数幂的除法、同底数幂的乘法和幂的乘方分别计算即可判断.本题主要考查幂的运算,解题的关键是熟练掌握同底数幂的除法、同底数幂的乘法、幂的乘方及积的乘方运算的法则.3.如图是由六个相同的小正方体搭成的几何体,这个几何体的主视图是A.B.C.D.【答案】B【解析】解:从正面看第一层是三个小正方形,第二层左边一个小正方形,第三层左边一个小正方形,故选:B.根据从正面看得到的图形是主视图,可得答案.本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.把写成n为整数的形式,则n为A. 1B.C. 2D.【答案】B【解析】解:把写成n为整数的形式为,则n为.故选:B.绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.谜语:干活两腿脚,一腿勤,一腿懒,一脚站,一脚转打一数学学习用具,谜底为A. 量角器B. 直尺C. 三角板D. 圆规【答案】D【解析】解:圆规有两只脚,一铁脚固定,另一脚旋转,故选:D.利用圆规的特点直接得到答案即可.本题考查了简单的数学知识,稍有点数学常识的同学就会做出正确的回答,难度不大.6.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:A. 、B. 、3C. 、D. 、3【答案】C【解析】解:这组数据中出现次数最多,有4次,这组数据的众数为,最大数据为、最小数据为,极差为,故选:C.根据众数和极差的定义分别进行解答即可.本题主要考查极差与众数,解题的关键是掌握极差最大值最小值、一组数据中出现次数最多的数据叫做众数.7.将抛物线向左平移2个单位长度,再向下平移3个单位长度,则平移后所得到的抛物线解析式是A. B.C. D.【答案】C【解析】解:将抛物线向左平移2个单位长度,再向下平移3个单位长度,平移后所得抛物线解析式为,故选:C.直接根据平移的规律即可求得答案.本题主要考查函数图象的平移,掌握平移的规律是解题的关键,即“左加右减,上加下减”.8.若关于x的一元二次方程有实根,则m的取值范围是A. B. C. 且 D. 且【答案】D【解析】解:关于x的一元二次方程有实根,,并且,且.故选:D.由于x的一元二次方程有实根,那么二次项系数不等于0,并且其判别式是非负数,由此可以建立关于m的不等式组,解不等式组即可求出m的取值范围.本题考查了根的判别式的知识,总结:一元二次方程根的情况与判别式的关系:方程有两个不相等的实数根;方程有两个相等的实数根;方程没有实数根.此题切记不要忽略一元二次方程二次项系数不为零这一隐含条件.9.如图:有一块含有的直角三角板的两个顶点放在直尺的对边上,如果,那么的度数是A. B. C. D.【答案】B【解析】解:,,,,,,故选:B.直接利用平行线的性质进而结合等腰直角三角形的性质得出答案.此题主要考查了平行线的性质以及等腰直角三角形的性质,正确应用平行线的性质是解题关键.10.如图,正五边形ABCDE内接于,若的半径为5,则的长度为A.B.C.D.【答案】B【解析】解:连接OA、OB,五边形ABCDE是正五边形,,的长度,故选:B.连接OA、OB,根据正五边形的性质求出,根据弧长公式计算即可.本题考查的是正多边形的性质、弧长的计算,掌握正多边形的中心角的计算公式、弧长的计算公式是解题的关键.二、填空题(本大题共9小题,共36.0分)11.因式分解:______.【答案】【解析】解:原式.故答案为:.直接利用完全平方公式分解因式得出答案.此题主要考查了公式法分解因式,正确应用公式是解题关键.12.如图,在“”网格中,有3个涂成黑色的小方格若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是______.【答案】【解析】解:如图,可选2个方格完成的图案为轴对称图案的概率.故答案为:.根据轴对称的性质设计出图案即可.本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键.13.如图,▱ABCD中,点E在边AD上,以BE为折痕,将向上翻折,点A正好落在CD上的F点,若的周长为8 cm,的周长为20cm,则FC的长为______cm.【答案】6【解析】解:,;的周长为,的周长为 cm,分析可得:的周长的周长.故答案为6.根据折叠的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.本题通过折叠变换考查学生的逻辑思维能力,解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.14.把直线向上平移m个单位后,与直线的交点在第一象限,则m的取值范围是______.【答案】【解析】解:方法一:直线向上平移m个单位后可得:,联立两直线解析式得:,解得:,即交点坐标为,交点在第一象限,,解得:.故答案为:.方法二:如图所示:把直线向上平移m个单位后,与直线的交点在第一象限,则m的取值范围是.故答案为:.直线向上平移m个单位后可得:,求出直线与直线的交点,再由此点在第一象限可得出m的取值范围.本题考查了一次函数图象与几何变换、两直线的交点坐标,注意第一象限的点的横、纵坐标均大于0.15.某班体育委员对本班学生一周锻炼时间单位:小时进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是______小时.【答案】11【解析】解:由统计图可知,一共有:人,该班这些学生一周锻炼时间的中位数是第20个和21个学生对应的数据的平均数,该班这些学生一周锻炼时间的中位数是11,故答案为:11.根据统计图中的数据可以得到一共多少人,然后根据中位数的定义即可求得这组数据的中位数.本题考查折线统计图、中位数,解答本题的关键是明确中位数的定义,利用数形结合的思想解答.16.若是关于字母a,b的二元一次方程的一个解,代数式的值是______.【答案】24【解析】解:把,代入,得,.故答案为:24.把,代入原方程可得的值,把代数式变形为,然后计算.本题考查了公式法分解因式,把作为一个整体是解题的关键,而也需要运用公式变形,以便计算.17.如图,同心圆的半径为6,8,AB为小圆的弦,CD为大圆的弦,且ABCD为矩形,若矩形ABCD面积最大时,矩形ABCD的周长为______.【答案】【解析】解:连接OA,OD,作,,,根据矩形的面积和三角形的面积公式发现:矩形的面积为面积的4倍,、OD的长是定值,当的正弦值最大时,三角形的面积最大,即,则,,,,则矩形ABCD的周长是:.故答案是:.连接OA,OD,作,,,将此题转化成三角形的问题来解决,根据三角函数的定义可以证明三角形的面积,根据这一公式分析面积的最大值的情况,然后熟练应用勾股定理,以及直角三角形斜边上的高等于两条直角边乘积除以斜边求得长方形的长和宽,进一步求其周长.本题考查了垂径定理和矩形的性质,考生应注意熟练运用勾股定理,来求边长和周长.18.如图,在矩形ABCD中,将绕点A按逆时针方向旋转一定角度后,BC的对应边交CD边于点连接、若,,,则结果保留根号.【答案】【解析】解:连接AC,AG,,由旋转可得,,,,,∽,,,,是等腰直角三角形,,设,则,,中,,,解得,舍去,,中,,,故答案为:.先连接AC,AG,,构造直角三角形以及相似三角形,根据∽,可得到,设,则,,中,根据勾股定理可得方程,求得AB 的长以及AC的长,即可得到所求的比值.本题主要考查了旋转的性质,相似三角形的判定与性质,等腰直角三角形的性质,解一元二次方程以及勾股定理的综合应用,解决问题的关键是作辅助线构造直角三角形以及相似三角形,依据相似三角形的对应边成比例,将转化为,并依据直角三角形的勾股定理列方程求解,从而得出矩形的宽AB,这也是本题的难点所在.19.在平面直角坐标系,对于点和,给出如下定义:若,则称点Q为点P的“可控变点”例如:点的“可控变点”为点,点的“可控变点”为点点的“可控变点”坐标为______;若点P在函数的图象上,其“可控变点”Q的纵坐标的取值范围是,实数a的值为______.【答案】【解析】解:根据定义,点的“可控变点”坐标为;依题意,图象上的点P的“可控变点”必在函数的图象上,如图.当时,,此时,抛物线的开口向下,故当时,随x的增大而减小,即:,当时,,,,当时,,抛物线的开口向上,故当时,随x的增大而减小,即:,又,的值是:.故答案为,.直接根据“可控变点”的定义直接得出答案;时,求出x的值,再根据“可控变点”的定义即可解决问题.本题主要考查了二次函数图象上点的坐标特征,解答本题的关键是熟练掌握新定义“可控变点”,解答此题还需要掌握二次函数的性质,此题有一定的难度,属于创新题目,中考常考题型.三、计算题(本大题共1小题,共6.0分)20.先化简,再求值:,其中【答案】解:原式,当时,原式.【解析】先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可得.本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.四、解答题(本大题共8小题,共78.0分)21.计算:;解不等式,并把解集在数轴上表示出来.【答案】解:原式;,解不等式得:,解不等式得:,不等式组的解集为,在数轴上表示为.【解析】先求出每一部分的值,再代入求出即可;先求出每个不等式的解集,再求出不等式组的解集即可.本题考查了解一元一次不等式组、在数轴上表示不等式组的解集、零指数幂、负整数指数幂、特殊角的三角函数值等知识点,能求出每一部分的值是解的关键,能正确根据不等式的解集得出不等式组的解集是解的关键.22.为了测量白塔的高度AB,在D处用高为米的测角仪 CD,测得塔顶A的仰角为,再向白塔方向前进12米,又测得白塔的顶端A的仰角为,求白塔的高度参考数据,,,,结果保留整数【答案】解:设,在中,,在中,,由题意得,,解得:,故AB米.答:这个电视塔的高度AB为23米.【解析】设,在中表示出CE,在中表示出FE,再由米,可得出关于x的方程,解出即可得出答案.本题考查了解直角三角形的应用,解答本题要求学生能借助仰角构造直角三角形并解直角三角形,难度一般.23.某销售公司年终进行业绩考核,人事部门把考核结果按照A,B,C,D四个等级,绘制成两个不完整的统计图,如图1,图2.参加考试的人数是______,扇形统计图中D部分所对应的圆心角的度数是______,请把条形统计图补充完整;若考核为D等级的人中仅有2位女性,公司领导计划从考核为D等级的人员中选2人交流考核意见,请用树状图或表格法,求所选人员恰为一男一女的概率;为推动公司进一步发展,公司决定计划两年内考核A等级的人数达到30人,求平均每年的增长率精确到,【答案】50【解析】解:参加考试的总人数为人,扇形统计图中D部分所对应的圆心角的度数是,C等级人数为,补全图形如下:故答案为:50、;画树状图为:共有20种等可能的结果数,其中恰好抽到一名男生和一名女生的结果数为12,所以恰好抽到一名男生和一名女生的概率;设增长率是x,根据题意,得:,解得:负值舍去,所以,答:每年的增长率为.由A等级人数及其百分比可得总人数,用乘以D等级人数所占比例可得其圆心角度数,再用总人数减去其他学生人数求得C等级人数即可补全图形;画树状图展示所有20种等可能的结果数,再找出恰好抽到一名男生和一名女生的结果数,然后利用概率公式求解.设增长率是x,根据“两年内考核A等级的人数达到30人”列出关于x的方程,解之即可得.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率也考查了统计图和一元二次方程.24.如图,已知,是直线AB和某反比例函数的图象的两个交点.求直线AB和反比例函数的解析式;观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;反比例函数的图象上是否存在点C,使得的面积等于的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.【答案】解:设反比例函数解析式为,把代入,可得,反比例函数解析式为;把代入,可得,即,,设直线AB的解析式为,把,代入,可得,解得,直线AB的解析式为;由题可得,当x满足:或时,直线AB在双曲线的下方;存在点C.如图所示,延长AO交双曲线于点,点A与点关于原点对称,,的面积等于的面积,此时,点的坐标为;如图,过点作BO的平行线,交双曲线于点,则的面积等于的面积,的面积等于的面积,由可得OB的解析式为,可设直线的解析式为,把代入,可得,解得,直线的解析式为,解方程组,可得;如图,过A作OB的平行线,交双曲线于点,则的面积等于的面积,设直线的解析式为“,把代入,可得“,解得b“,直线的解析式为,解方程组,可得;综上所述,点C的坐标为,,【解析】运用待定系数法,根据,,即可得到直线AB和反比例函数的解析式;根据直线AB在双曲线的下方,即可得到x的取值范围;分三种情况进行讨论:延长AO交双曲线于点,过点作BO的平行线,交双曲线于点,过A作OB的平行线,交双曲线于点,根据使得的面积等于的面积,即可得到点C的坐标为,,本题主要考查了反比例函数与一次函数交点问题,解决问题的关键是求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解.25.如图,是的外接圆,,,过点B的直线l是的切线,点D是直线l上一点,过点D作交CB延长线于点E,连接AD,交于点F,连接BF、CD交于点G.求证: ∽ ;当时,求的值;若CD平分,,连接CF,求线段CF的长.【答案】证明:如图1中,,,是切线,,,,,,∽ ;解:如图2中,∽ ;四边形ACED是矩形,:DE::2:4,,∽ ,.解:如图3中,,,,易证 ≌ , ∽ ,::AC,,设,则,,,,,可得,,,设CF交AB于H.则.【解析】只要证明,即可;首先证明BE:DE::2:4,由 ∽ ,可得;想办法证明AB垂直平分CF即可解决问题;本题考查相似三角形的判定和性质、圆周角定理、切线的性质、解直角三角形、线段的垂直平分线的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,所以中考常考题型.26.为进一步缓解城市交通压力,湖州推出公共自行车公共自行车在任何一个网店都能实现通租通还,某校学生小明统计了周六校门口停车网点各时段的借、还自行车数,以及停车点整点时刻的自行车总数称为存量情况,表格中时的y的值表示8:00点时的存量,时的y值表示9:00点时的存量以此类推,他发现存量辆与为整数满足如图所示的一个二次函数关系.______,解释m的实际意义:______;求整点时刻的自行车存量y与x之间满足的二次函数关系式;已知10::00这个时段的还车数比借车数的2倍少4,求此时段的借车数.【答案】13 7:00时自行车的存量【解析】解:,,则m的实际意义:7:00时自行车的存量;故答案为:13,7:00时自行车的存量;由题意得:,设二次函数的关系式为:,把、和分别代入得:,解得:,;当时,,当时,,设10::00这个时段的借车数为x,则还车数为,根据题意得:,,答:10::00这个时段的借车数为3辆.根据等量关系式:借车数还车数:00的存量,列式求出m的值,并写出实际意义;先求出9点时自行车的存量,当时所对应的y值,即求出n的值;再设一般式将三点坐标代入求出解析式;先分别计算9::00和10::00的自行车的存量,即当和时所对应的y值,设10::00这个时段的借车数为x,根据上一时段的存量还车数借车数此时段的存量,列式求出x的值即可.本题是二次函数的应用,理解各量的实际意义:还车数、借车数、存量;弄清等量关系式:上一时段的存量还车数借车数此时段的存量,考查了利用待定系数法求二次函数的关系式,并根据图象理解真正意义.27.在正六边形ABCDEF中,N、M为边上的点,BM、AN相交于点P如图1,若点N在边BC上,点M在边DC上,,求证:;如图2,若N为边DC的中点,M在边ED上,,求的值;如图3,若N、M分别为边BC、EF的中点,正六边形ABCDEF的边长为2,请直接写出AP的长.【答案】证明:在正六边形ABCDEF中,,,,≌ ,,,∽ ,,;延长BC,ED交于点H,延长BN交DH于点G,取BG的中点K,连接KC,在正六边形ABCDEF中,,,,,,,,,,,,,≌ ,,,,,四边形MABG是平行四边形,,,即,如图3,过N作,交AB的延长线于H,,,中,,,,,中,,连接FC,延长FC与AN交于G,设FC与BM交于K,易证 ≌ ,,,,,,,,,,,,,,,设,,由得:,,.【解析】先证明 ≌ ,得,再证明 ∽ ,列比例式可得结论;作辅助线,构建等边三角形的三角形的中位线CK,先证明是等边三角形得:,,由 ≌ ,得,,利用四边形MABG是平行四边形,得,所以,即;如图3,作辅助线,构建直角三角形和全等三角形,根据直角三角形的性质得:,,利用勾股定理求,证明 ≌ ,利用和,列比例式可得:,设,,根据得:,可得结论.本题是相似三角形的综合题,考查了正六边形的性质、全等三角形和相似三角形的性质和判定、平行四边形的性质和判定、平行线分线段成比例定理等知识,一般情况下,正多边形的题解答都比较麻烦,熟练掌握正多边形的定义及性质是关键,第三问比较复杂,辅助线的作法是关键.28.如图,直线l:与x轴、y轴分别相交于A、B两点,抛物线经过点B,交x轴正半轴于点C.求该抛物线的函数表达式;已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M的横坐标为m,的面积为S,求S与m的函数表达式,并求出S的最大值及此时动点M的坐标;将点A绕原点旋转得点,连接、,在旋转过程中,一动点M从点B出发,沿线段以每秒3个单位的速度运动到,再沿线段以每秒1个单位长度的速度运动到C后停止,求点M在整个运动过程中用时最少是多少?【答案】解:将代入,得,点B的坐标为,抛物线经过点B,,得,抛物线的解析式为:;将代入,得,,点C的坐标为,点M是抛物线上的一个动点,并且点M在第一象限内,点M的横坐标为m,,点M的坐标为,将代入,得,点A的坐标,的面积为S,,四边形化简,得,当时,S取得最大值,此时,此时点M的坐标为,即S与m的函数表达式是,S的最大值是,此时动点M的坐标是;如右图所示,取点H的坐标为,连接、,,,,∽ ,,即,,,即点M在整个运动过程中用时最少是秒【解析】根据题意可以求得点B的坐标,从而可以求得抛物线的解析式;根据题意可以求得点A的坐标,然后根据题意和图形可以用含m的代数式表示出S,然后将其化为顶点式,再根据二次函数的性质即可解答本题;根据题意作出点H,然后利用三角形相似和勾股定理、两点之间线段最短即可求得t的最小值.这是一道二次函数综合题,主要考查二次函数的最值、最短路径、三角形相似,待定系数法求二次函数解析式,解答本题的关键是明确题意,找出所求问题需要的条件,作出合适的辅助线,利用数形结合的思想和转化的数学思想解答.。
成都市2015级高中毕业班第二次诊断性检测数学(理_)本试卷分选择题和非选择题两部分。
第I卷(选择题)i至2页,第n卷(非选择题)3至4页,共4页,满分150分,考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号。
3.答非选择题时,必须使用0. 5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,只将答题卡交回。
第I卷(选择题,共60分)一、选择题:本大题共12小题,毎小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合P = {x | |x-l|<l} ,Q = U |-l<x<2},则P =(A)(-l,j) (B)(—1,2) (0(1,2) (D)(0,2)2.已知向量a = (2,l),&=(3,4),c=a,2).若(3a~b)#c,则实数i 的值为(A)-8 (B)-6 (0-1 (D)63.若复数z满足(l + i)z=l —2i3,则\z\等于(A)华(B)吾(C)T (D)|4.设等差数列{a H}的前n项和为S B .若S< =20,a5=10,则a16 =(A)-32 (B) 12 (C) 16 (D)325.已知是空间中两条不同的直线,a,芦为空间中两个互相垂直的平面,则下列命题正确的是(A)若znCZa,则m 丄芦(B)若m CZa,n CZp,则m 丄 rt(C)若丄芦,则rn // a(D)若a门资=m,n丄?n,则w丄a6.若a -梦的展开式中含项的系数为160,则实数a的值为(A)2(B)-2 (C)2V2 (D)-2V2数学(理科)“二诊”考试鵬1页(共4页)数学(理科)“二诊”考试题第2页(共4页)7. 已知函数 /(x)=Asin(a*x-|-^)(A >0,<w>0, | <p |<y) 的部分图象如图所示.现将函数/(x)图象上的所有点向 右平移j 个单位长度得到函数g(x)的图象,则函数 g(x)的解析式为(A) g(x) = 2sin(2r +-7)(B) g(x) = 2sin(2r+字)44(C) g(x) = 2cos2z(D) gCz) = 2sin(2z _■)8. 若x 为实数,则“”是“ 242 << 3”成立的zx(A)充分不必要条件 (B)必要不充分条件 (C)充要条件(D)既不充分也不必要条件9. 《九章算术》中将底面为长方形,且有一条侧棱与底面垂直的四棱锥称之为“阳马”.现有 —阳马,其正视图和侧视图是如图所示的直 角三角形.若该阳马的顶点都在同一个球面 上,则该球的体积为(A 呼(C)V6x(D) 24K 10. 执行如图所示的程序框图,若输出的结果为56,则判断框中的条件可以是(A) n < 7?(B)n> 7? (C) n<6? (D)n> 6?11. 已知函数_/Xx) =—■_ 1 —nlnx(m >-0,0^n ^e)在区X间[l ,e]内有唯一零点,则 H 的取值范围为m +1(A )[e d*++1]2 e⑴)[^n ,1] (D)[l,y+ 1]12.已知双曲线C :^-^C 的两条渐近线分别相交于A ,B 两点.若点A ,B 分别位于第一,四象限,O 为坐标原点.当AP=y PB04-, AAOB 的面积为2b ,则双曲线C 的实轴长为 “、32(A )72=l(a>0,6>0)右支上的一点P ,经过点P 的直线与双曲线(B)琴⑹吾4(D )T(B) 8A /6X 側视图i —H正视图s=Q,a=2,n=\是/输出s/ [结束|第II卷(非选择题,共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上.13.已知a= 2^,b= (~^)i,贝!j log2(aZ>) = .2 0. 814.如图是调査某学校髙三年级男女学生是否喜欢篮球运动的等髙条形图,阴影部分的髙表示喜欢该项运动的频率.已知该年级男生女生各500名(假设所有学生都0. 4参加了调査),现从所有喜欢篮球运动的同学中按分层抽样的方式抽取32人,则抽取的男生人数为15.已知抛物线C:y2=2px(/)>0)的焦点为F,准线Z与x轴的交点为A,P是抛物线C上的点,且PF丄轴.若以AF为直径的圆截直线AP 所得的弦长为2,则实数p的值为.16.已知数列{a”}共16项,且ai = 1 ,a8 =毛记关于x的函数f… Or) = yx3—a…x z + (aS — l)x,n6N* .若x =a…+1(l < n < 15)是函数/…(x)的极值点,且曲线=/8(x)在点(ai6,/8(ai6))处的切线的斜率为15.则满足条件的数列的个数为.三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)已知函数/(X)=^3 sin yCOS y — COS2 y +y.(I )求函数/(x)的单调递减区间;(II)若AABC的内角A,B,C所对的边分别为a,b,c,f(M =|,a =73, sinB =2sinC,求c .18.(本小题满分12分)近年来,共享单车已经悄然进人了广大市民的日常生活,并慢慢改变了人们的出行方式.为了更好地服务民众,某共享单车公司在其官方APP中设置了用户评价反馈系统,以了解用户对车辆状况和优惠活动的评价.现从评价系统中选出200条较为详细的评价信息进行统计,对优惠活动好评对优惠活动不满意合计对车辆状况好评10030130对车辆状况不满意403070合计14060200(I )能否在犯错误的概率不超过0.001的醒下认为讎g动好评与车槲鵬评之间有关系? (H )为了回馈用户,公司通过APP向用户随机派送每张面额为0元,1元,2元的三种骑行券.用户每次使用APP扫码用车后,都可获得一张骑行券.用户骑行一次获得1元券,获得2元券的概率分别是y,去,且各次获取骑行券的结果相互独立.若某用户一天使用了两次该公司的共享单车,记该用户当天获得的骑行券面额之和为X,求随机变量X的分布列和数学期望. 参考数据:PGK2彡是) 0.1500.1000. 0500. 0250. 0100. 0050. 001 k 2. 072 2. 706 3. 841 5.024 6. 6357. 87910. 828数学(理科)“二诊”考试题第3页(共4页)…2_ n(ad — be)2 ______参考公式: ,其中n =a +d +c +</ .= U+6)(c+a)(a+c)(6+a)19.(本小»分12分)如图,D是AC的中点,四边形BDEF;^^,平面BDEF丄平面_ABC,ZFBD= 6Cf,AB 丄BC,AB=BC=^2. (I )若点M是线段BF的中点,证明:BF丄平面迦S ;(n )求平面姬与平面BCF所面角wwr.20.(本小题满分12分)工2 y2 已知椭圆C:^+^-=l(a>6>0)的左右焦点分别jo为^,厂2,左顶点为A,离心率为j,点B是楠圆上的动,/9 —1 点,△ABF:的面积的最大值为(1)求楠圆(:的方程;(D )设经过点F.的直线I与楠圆C相交于不同的两点A4,N,线段_ 的中垂线为Z'. 若直线I'与直线I相交于点P,与直线x = 2相交于点Q,求的最小值.21.(本小题满分12分)已知函数/(x) =xlnx +ax + 1,a 6 R .(I )当x>0时,若关于工的不等式/(x) >0恒成立,求a的取值范围;(II)当n 6 N*时,证明:T~^7<ln22 + ln24 + …+ ln2^^<-4f. 2n + 4 2 n n +1请考生在第22.23题中任选一题作答,如果多做,则按所做的第一题计分.作答时,用2B铅笔在答题卡上把所选题目对应的标号涂黑.22.(本小题满分10分)选修4一4:极坐标与参数方程在平面直角坐标系xOy中,曲线C的参数方程为J X==2^C0Sff,其中a为参数,ly = 2sinaa € (0,n).在以坐标原点O为极点,:c轴的正半轴为极轴的极坐标系中,点P的极坐标为(472, j),直线I的极坐标方程为^(^--^)+572 =0.(I )求直线I的直角坐标方程与曲线C的普通方程;(II)若Q是曲线C上的动点,A4为线段PQ的中点.求点M到直线Z的距离的最大值.23.(本小题满分10分)选修4一5:不等式选讲已知函数/(x) = |2x + l|+|x-l| .(I)解不等式/(x)>3;(II)记函数/Gr)的最小值为m.若a,b,c均为正实数,且|a+6 + 2c=/n,求a z+b2+c z的最小值.数学(理科)“二诊”考试题第4页(共4页)。
2018年四川省成都市中考数学二模试卷一.选择题(共10小题,满分30分,每小题3分)1.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>52.下列运算正确的是()A.3x+4y=7xy B.(﹣a)3•a2=a5C.(x3y)5=x8y5D.m10÷m7=m33.如图,几何体的左视图是()A.B.C.D.4.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×10135.“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》6.某校举行汉字听写大赛,参赛学生的成绩如下表:对于这组数据,下列说法错误的是()A.平均数是92B.中位数是92C.众数是92D.极差是67.将抛物线y=x2先向下平移3个单位,再向左平移1个单位,则新的函数解析式为()A.y=(x+1)2+3B.y=(x﹣1)2+3C.y=(x﹣1)2﹣3D.y=(x+1)2﹣38.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6B.m<6C.m≤6且m≠2D.m<6且m≠29.如图,AB∥CD,那么()A.∠BAD与∠B互补B.∠1=∠2C.∠BAD与∠D互补D.∠BCD与∠D互补10.如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中弧FK1,弧K1K2,弧K2K3,弧K3K4,弧K4K5,弧K5K6,…的圆心依次按点A,B,C,D,E,F循环,其弧长分别记为L1,L2,L3,L4,L5,L6,….当AB=1时,L2016等于()A.B.C.D..二.填空题(共4小题,满分16分,每小题4分)11.(4分)若2x+y=4,x﹣=1,则4x2﹣y2=.12.(4分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.13.(4分)如图,平行四边形纸片ABCD中,AC=,∠CAB=30°,将平行四边形纸片ABCD折叠,使点A与点C重合,则折痕MN=.14.(4分)把直线y=﹣x﹣1沿x轴向右平移1个单位长度,所得直线的函数解析式为.三.解答题(共6小题,满分54分)15.(12分)(1)计算:()﹣1﹣(π﹣2018)0﹣4cos30°(2)解不等式组:并把它的解集在数轴上表示出来.16.(6分)先化简,再求值:(x﹣2+)÷,其中x=﹣.17.(8分)如图,飞机沿水平线AC飞行,在A处测得正前方停泊在海面上某船只P的俯角∠CAP(从高处观测低处的目标时,视线与水平线所成的锐角)为15°,飞行10km到达B处,在B处测得该船只的俯角∠CBP=52°,求飞机飞行的高度(精确到1m)18.(8分)某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的沙县﹣﹣我最喜爱的沙县小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.请根据所给信息解答以下问题:(1)请补全条形统计图;(2)在一个不透明的口袋中有4个完全相同的小球,把它们分别标号为四种小吃的序号A,B,C,D.随机地摸出一个小球然后放回,再随机地摸出一个小球.请用列表或画树状图的方法,求出两次都摸到A 的概率.(3)近几年,沙县小吃产业发展良好,给沙县经济带来了发展.2011年底,小吃产业年营业额达50亿元,到了2013年底,小吃产业年营业额达60.5亿元.假设每年的小吃产业年营业额平均增长率不变,求这两年平均增长率是多少?(数据来源于网络)19.(10分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.20.(10分)已知:如图,BD为⊙O的直径,点A是劣弧BC的中点,AD交BC于点E,连接AB.(1)求证:AB2=AE•AD;(2)过点D作⊙O的切线,与BC的延长线交于点F,若AE=2,ED=4,求EF的长.四.填空题(共5小题,满分20分,每小题4分)21.(4分)春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为.22.(4分)当x=5.4,y=2.4时,代数式x2﹣2xy+y2的值是.23.(4分)如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E 与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.则线段EF的最小值为.24.(4分)如图,把矩形ABCD绕着点A逆时针旋转90°可以得到矩形AEFG,则图中三角形AFC是三角形.25.(4分)二次函数y=ax2+bx+c的图象如图所示,其对称轴与x轴交于点(﹣1,0),图象上有三个点分别为(2,y1),(﹣3,y2),(0,y3),则y1、y2、y3的大小关系是(用“>”“<”或“=”连接).五.解答题(共3小题,满分30分)26.(8分)某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?27.(10分)【发现】如图①,已知等边△ABC,将直角三角板的60°角顶点D任意放在BC边上(点D 不与点B、C重合),使两边分别交线段AB、AC于点E、F.(1)若AB=6,AE=4,BD=2,则CF=;(2)求证:△EBD∽△DCF.【思考】若将图①中的三角板的顶点D在BC边上移动,保持三角板与边AB、AC的两个交点E、F都存在,连接EF,如图②所示,问:点D是否存在某一位置,使ED平分∠BEF且FD平分∠CFE?若存在,求出的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC中,AB=AC,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处(其中∠MON=∠B),使两条边分别交边AB、AC于点E、F(点E、F均不与△ABC的顶点重合),连接EF.设∠B=α,则△AEF与△ABC的周长之比为(用含α的表达式表示).28.(12分)如图,已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0),C(0,3),与x轴交于另一点B,抛物线的顶点为D.(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P 的坐标;若不存在,请说明理由.2018年四川省成都市中考数学二模试卷参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.若=x﹣5,则x的取值范围是()A.x<5B.x≤5C.x≥5D.x>5【分析】因为=﹣a(a≤0),由此性质求得答案即可.【解答】解:∵=x﹣5,∴5﹣x≤0∴x≥5.故选:C.【点评】此题考查二次根式的运算方法:=a(a≥0),=﹣a(a≤0).2.下列运算正确的是()A.3x+4y=7xy B.(﹣a)3•a2=a5C.(x3y)5=x8y5D.m10÷m7=m3【分析】根据同类项的定义、幂的运算法则逐一计算即可判断.【解答】解:A、3x、4y不是同类项,不能合并,此选项错误;B、(﹣a)3•a2=﹣a5,此选项错误;C、(x3y)5=x15y5,此选项错误;D、m10÷m7=m3,此选项正确;故选:D.【点评】本题主要考查整式的运算,解题的关键是掌握同类项的定义、幂的运算法则.3.如图,几何体的左视图是()A.B.C.D.【分析】找到从几何体左面看得到的平面图形即可.【解答】解:从几何体左面看得到是矩形的组合体,且长方形靠左.故选:A.【点评】此题主要考查了三视图的相关知识;掌握左视图是从几何体左面看得到的平面图形是解决本题的关键.4.十九大报告指出,我国目前经济保持了中高速增长,在世界主要国家中名列前茅,国内生产总值从54万亿元增长80万亿元,稳居世界第二,其中80万亿用科学记数法表示为()A.8×1012B.8×1013C.8×1014D.0.8×1013【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:80万亿用科学记数法表示为8×1013.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.5.“算经十书”是指汉唐一千多年间的十部著名数学著作,它们曾经是隋唐时期国子监算学科的教科书,这些流传下来的古算书中凝聚着历代数学家的劳动成果.下列四部著作中,不属于我国古代数学著作的是()A.《九章算术》B.《几何原本》C.《海岛算经》D.《周髀算经》【分析】根据数学常识逐一判别即可得.【解答】解:A、《九章算术》是中国古代数学专著,作者已不可考,它是经历代各家的增补修订,而逐渐成为现今定本的;B、《几何原本》是古希腊数学家欧几里得所著的一部数学著作;C、《海岛算经》是中国学者编撰的最早一部测量数学著作,由刘徽于三国魏景元四年所撰;D、《周髀算经》原名《周髀》,是算经的十书之一,中国最古老的天文学和数学著作;故选:B.【点评】本题主要考查数学常识,解题的关键是了解我国古代在数学领域的成就.6.某校举行汉字听写大赛,参赛学生的成绩如下表:A.平均数是92B.中位数是92C.众数是92D.极差是6【分析】根据平均数、中位数、众数及极差的定义逐一计算即可判断.【解答】解:A、平均数为=,符合题意;B、中位数是=92,不符合题意;C、众数为92,不符合题意;D、极差为95﹣89=6,不符合题意;故选:A.【点评】本题考查了极差、众数、平均数、中位数的知识,解答本题的关键是掌握各知识点的概念.7.将抛物线y=x2先向下平移3个单位,再向左平移1个单位,则新的函数解析式为()A.y=(x+1)2+3B.y=(x﹣1)2+3C.y=(x﹣1)2﹣3D.y=(x+1)2﹣3【分析】由平移的规律即可求得答案.【解答】解:将抛物线y=x2向下平移3个单位,则函数解析式变为y=x2﹣3,将y=x2﹣3向左平移1个单位,则函数解析式变为y=(x+1)2﹣3,故选:D.【点评】本题主要考查二次函数的图象变换,掌握平移的规律是解题的关键,即“左加右减,上加下减”.8.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6B.m<6C.m≤6且m≠2D.m<6且m≠2【分析】当m﹣2=0,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,列不等式即可得到结论.【解答】解:当m﹣2=0,即m=2时,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,∵关于x的方程(m﹣2)x2﹣4x+1=0有实数根,∴△=(﹣4)2﹣4(m﹣2)•1≥0,解得:m≤6,∴m的取值范围是m≤6且m≠2,故选:C.【点评】本题考查了根的判别式和一元二次方程的定义,能根据根的判别式和已知得出不等式是解此题的关键.9.如图,AB∥CD,那么()A.∠BAD与∠B互补B.∠1=∠2C.∠BAD与∠D互补D.∠BCD与∠D互补【分析】根据两直线平行,内错角相等;两直线平行,同位角相等;两直线平行,同旁内角互补解答即可.【解答】解:∵AB∥CD,∴∠BAD与∠D互补,即C选项符合题意;当AD∥BC时,∠BAD与∠B互补,∠1=∠2,∠BCD与∠D互补,故选项A、B、D都不合题意,故选:C.【点评】本题考查了平行线的性质,熟记性质并准确识图是解题的关键.10.如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中弧FK1,弧K1K2,弧K2K3,弧K3K4,弧K4K5,弧K5K6,…的圆心依次按点A,B,C,D,E,F循环,其弧长分别记为L1,L2,L3,L4,L5,L6,….当AB=1时,L2016等于()A.B.C.D..【分析】用弧长公式,分别计算出l1,l2,l3,…的长,寻找其中的规律,确定l2016的长.【解答】解:根据题意得:l1==,l2==,l3===π,则L2016=,故选:B.【点评】本题考查的是弧长的计算,先用公式计算,找出规律,求出l2016的长.二.填空题(共4小题,满分16分,每小题4分)11.(4分)若2x+y=4,x﹣=1,则4x2﹣y2=8.【分析】利用平方差公式分解因式,进而把已知代入求出答案.【解答】解:∵x﹣=1,∴2x﹣y=2,则4x2﹣y2=(2x+y)(2x﹣y)=4×2=8.故答案为:8.【点评】此题主要考查了公式法分解因式,正确应用公式是解题关键.12.(4分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解答】解:如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:.故答案为:.【点评】本题考查的是概率公式,熟记随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数的商是解答此题的关键.13.(4分)如图,平行四边形纸片ABCD中,AC=,∠CAB=30°,将平行四边形纸片ABCD折叠,使点A与点C重合,则折痕MN=2.【分析】根据翻折变换,可知△ONC≌△AOM,且是Rt△,在△ONC中解得NO.【解答】解:根据翻折变换,可知△ONC≌△AOM,且是Rt△,∵AC=,∠CAB=30°,∴在Rt△ONC,解得ON=1,∴MN=2.故答案为2.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.14.(4分)把直线y=﹣x﹣1沿x轴向右平移1个单位长度,所得直线的函数解析式为y=﹣x.【分析】直接利用一次函数图象平移规律进而得出答案.【解答】解:把直线y=﹣x﹣1沿x轴向右平移1个单位长度,所得直线的函数解析式为:y=﹣(x﹣1)﹣1=﹣x.故答案为:y=﹣x.【点评】此题主要考查了一次函数图象与几何变换,正确掌握平移规律是解题关键.三.解答题(共6小题,满分54分)15.(12分)(1)计算:()﹣1﹣(π﹣2018)0﹣4cos30°(2)解不等式组:并把它的解集在数轴上表示出来.【分析】(1)直接利用零指数幂、负指数幂的性质以及特殊角的三角函数值和绝对值的性质分别化简得出答案;(2)先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.【解答】(1)解:()﹣1﹣(π﹣2018)0﹣4cos30°=﹣2+2﹣1﹣4×=﹣3;(2)解不等式①得:x≤4解不等式②得:x≤2;∴不等式组的解集为:2≤x≤4不等式组的解集在数轴上表示:【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.(6分)先化简,再求值:(x﹣2+)÷,其中x=﹣.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=(+)•=•=2(x+2)=2x+4,当x=﹣时,原式=2×(﹣)+4=﹣1+4=3.【点评】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.17.(8分)如图,飞机沿水平线AC飞行,在A处测得正前方停泊在海面上某船只P的俯角∠CAP(从高处观测低处的目标时,视线与水平线所成的锐角)为15°,飞行10km到达B处,在B处测得该船只的俯角∠CBP=52°,求飞机飞行的高度(精确到1m)【分析】分别在直角三角形中,利用锐角三角函数定义表示出AC与BC,根据AC﹣BC=AB求出PC的长即可.【解答】解:在Rt△ACP中,tan∠PAC=,即AC=,在Rt△BCP中,tan∠CBP=,即BC=,由AB=AC﹣BC,得到﹣=10000,解得:PC=≈3388,则飞机飞行的高度为3388m.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.18.(8分)某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的沙县﹣﹣我最喜爱的沙县小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.请根据所给信息解答以下问题:(1)请补全条形统计图;(2)在一个不透明的口袋中有4个完全相同的小球,把它们分别标号为四种小吃的序号A,B,C,D.随机地摸出一个小球然后放回,再随机地摸出一个小球.请用列表或画树状图的方法,求出两次都摸到A 的概率.(3)近几年,沙县小吃产业发展良好,给沙县经济带来了发展.2011年底,小吃产业年营业额达50亿元,到了2013年底,小吃产业年营业额达60.5亿元.假设每年的小吃产业年营业额平均增长率不变,求这两年平均增长率是多少?(数据来源于网络)【分析】(1)总人数以及条形统计图求出喜欢“花椒饼”的人数,补全条形统计图即可;(2)列表得出所有等可能的情况数,找出恰好两次都摸到“A”的情况数,即可求出所求的概率;(3)设小吃产业年营业额平均增长率为x,根据等量关系为:2011年的利润×(1+增长率)2=2013年的利润,把相关数值代入即可列出方程.【解答】解:(1)喜欢花椒饼的人数为50﹣14﹣21﹣5=10(人),补全条形统计图如下:(2)列表如下:则P=.(3)设小吃产业年营业额平均增长率为x,由题意可得:50×(1+x)2=60.5,解得:x=10%,答:这两年平均增长率是10%.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=;还考查了一元二次方程的应用;求平均变化率的方法为:若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.19.(10分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).(1)求n和b的值;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.【分析】(1)把点A坐标分别代入反比例函数y=,一次函数y=x+b,求出k、b的值,再把点B的坐标代入反比例函数解析式求出n的值,即可得出答案;(2)求出直线AB与y轴的交点C的坐标,分别求出△ACO和△BOC的面积,然后相加即可;(3)根据A、B的坐标结合图象即可得出答案.【解答】解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∵点B(﹣4,n)也在反比例函数y=的图象上,∴n==﹣1;(2)如图,设直线y=x+3与y轴的交点为C,∵当x=0时,y=3,∴C (0,3),∴S △AOB =S △AOC +S △BOC =×3×1+×3×4=7.5;(3)∵B (﹣4,﹣1),A (1,4),∴根据图象可知:当x >1或﹣4<x <0时,一次函数值大于反比例函数值.【点评】本题考查了一次函数和反比例函数的交点问题,用待定系数法求函数的解析式,三角形的面积,一次函数的图象等知识点,题目具有一定的代表性,是一道比较好的题目,用了数形结合思想. 20.(10分)已知:如图,BD 为⊙O 的直径,点A 是劣弧BC 的中点,AD 交BC 于点E ,连接AB . (1)求证:AB 2=AE •AD ;(2)过点D 作⊙O 的切线,与BC 的延长线交于点F ,若AE =2,ED =4,求EF 的长.【分析】(1)点A 是劣弧BC 的中点,即可得∠ABC =∠ADB ,又由∠BAD =∠EAB ,即可证得△ABE ∽△ADB ,根据相似三角形的对应边成比例,即可证得AB 2=AE •AD ;(2)由(1)求得AB 的长,又由BD 为⊙O 的直径,即可得∠A =90°,由DF 是⊙O 的切线,可得∠BDF =90°,在Rt △ABD 中,求得tan ∠ADB 的值,即可求得∠ADB 的度数,即可证得△DEF 是等边三角形,则问题得解.【解答】解:(1)证明:∵点A 是劣弧BC 的中点, ∴∠ABC =∠ADB .(1分) 又∵∠BAD =∠EAB , ∴△ABE ∽△ADB .(2分) ∴.∴AB 2=AE •AD .(2)解:∵AE =2,ED =4, ∵△ABE ∽△ADB ,∴,∴AB2=AE•AD,∴AB2=AE•AD=AE(AE+ED)=2×6=12.∴AB=2(舍负).(4分)∵BD为⊙O的直径,∴∠A=90°.又∵DF是⊙O的切线,∴DF⊥BD.∴∠BDF=90°.在Rt△ABD中,tan∠ADB=,∴∠ADB=30°.∴∠ABC=∠ADB=30°.∴∠DEF=∠AEB=60°,∠EDF=∠BDF﹣∠ADB=90°﹣30°=60°.∴∠F=180°﹣∠DEF﹣∠EDF=60°.∴△DEF是等边三角形.∴EF=DE=4.(5分)【点评】此题考查了相似三角形的判定与性质,圆的切线的性质,以及三角函数等知识.此题综合性较强,难度适中,解题的关键是数形结合思想的应用.四.填空题(共5小题,满分20分,每小题4分)21.(4分)春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为23.4.【分析】由折线统计图得出这五天游客数量从小到大排列为结果,再根据中位数的定义求解可得.【解答】解:将这5天的人数从小到大排列为21.9、22.4、23.4、24.9、25.4,所以这五天游客数量的中位数为23.4,故答案为:23.4.【点评】本题主要考查折线统计图与中位数,解题的关键是根据折线统计图得出数据,并熟练掌握中位数的概念.22.(4分)当x=5.4,y=2.4时,代数式x2﹣2xy+y2的值是9.【分析】把代数式分解因式,然后把数值代入,计算得出答案即可.【解答】解:x2﹣2xy+y2=(x﹣y)2当x=5.4,y=2.4时,原式=(5.4﹣2.4)2=9,故答案为9.【点评】此题考查因式分解和代数式的求值,掌握完全平方公式是解决问题的关键.23.(4分)如图,点C在以AB为直径的半圆上,AB=8,∠CBA=30°,点D在线段AB上运动,点E与点D关于AC对称,DF⊥DE于点D,并交EC的延长线于点F.则线段EF的最小值为4.【分析】根据“点到直线之间,垂线段最短”可得CD⊥AB时CD最小,由于EF=2CD,求出CD的最小值就可求出EF的最小值.【解答】解:连接CD,当CD⊥AB时,CD取得最小值,∵AB是半圆的直径,∴∠ACB=90°.∵AB=8,∠CBA=30°,∴AC=4,BC===4.∵CD⊥AB,∠CBA=30°,∴CD=BC=2.根据“点到直线之间,垂线段最短”可得:点D在线段AB上运动时,CD的最小值为2.∵点E与点D关于AC对称,∴CE=CD,∴∠CED=∠CDE,∵∠EFD+∠CED=90°,∠CDF+∠CDE=90°,∴∠F=∠CDF,∴CE=CD=CF,∴EF=2CD.∴线段EF的最小值为4,故答案为4【点评】本题考查了圆的综合题、轴对称的性质,垂线段最短,直角三角形30度角性质等知识,解题的关键是求出CD的最小值,学会利用垂线段最短解决最值问题,属于中考常考题型.24.(4分)如图,把矩形ABCD绕着点A逆时针旋转90°可以得到矩形AEFG,则图中三角形AFC是等腰直角三角形.【分析】根据旋转的性质知:两矩形是完全相同的矩形可知AC=AF,∠BAC+∠GAF=90°,则易证△ACF是等腰直角三角形.【解答】解:在矩形ABCD中,根据勾股定理知AC=,在矩形AEFG中,根据勾股定理知AF=.∵根据旋转的性质知,矩形ABCD和AEFG是两个大小完全相同的矩形,∠CAF=90°,∴AB=AE=GF,BC=AD=AG,∴AC=AF,∴△ACF是等腰直角三角形,故填:等腰直角.【点评】本题考查了旋转的性质、等腰直角三角形的判定与性质以及矩形的性质.注意,旋转前后的图形全等.25.(4分)二次函数y=ax2+bx+c的图象如图所示,其对称轴与x轴交于点(﹣1,0),图象上有三个点分别为(2,y1),(﹣3,y2),(0,y3),则y1、y2、y3的大小关系是y3<y2<y1(用“>”“<”或“=”连接).【分析】先确定抛物线对称轴为直线x=﹣1,然后二次函数的性质,通过比较三个点到直线x=﹣1的距离的大小得到y1、y2、y3的大小关系.【解答】解:∵抛物线的对称轴与x轴交于点(﹣1,0),∴抛物线的对称轴为直线x=﹣1,∵点(2,y1)到直线x=﹣1的距离最大,点(0,y3)到直线x=﹣1的距离最小,∴y3<y2<y1.故答案为y3<y2<y1.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.运用二次函数的性质是解决本题的关键.五.解答题(共3小题,满分30分)26.(8分)某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?【分析】(1)根据利润=销售价﹣进价列关系式;(2)总利润=每个的利润×销售量,销售量为400﹣10x,列方程求解,根据题意取舍;(3)利用函数的性质求最值.【解答】解:由题意得:(1)50+x﹣40=x+10(元)(2)设每个定价增加x元.列出方程为:(x+10)(400﹣10x)=6000解得:x1=10 x2=20要使进货量较少,则每个定价为70元,应进货200个.(3)设每个定价增加x元,获得利润为y元.y=(x+10)(400﹣10x)=﹣10x2+300x+4000=﹣10(x﹣15)2+6250当x=15时,y有最大值为6250.所以每个定价为65元时得最大利润,可获得的最大利润是6250元.(4分)【点评】应用题中求最值需先求函数表达式,再运用函数性质求解.此题的关键在列式表示销售价格和销售量.27.(10分)【发现】如图①,已知等边△ABC,将直角三角板的60°角顶点D任意放在BC边上(点D 不与点B、C重合),使两边分别交线段AB、AC于点E、F.(1)若AB=6,AE=4,BD=2,则CF=4;(2)求证:△EBD∽△DCF.【思考】若将图①中的三角板的顶点D在BC边上移动,保持三角板与边AB、AC的两个交点E、F都存在,连接EF,如图②所示,问:点D是否存在某一位置,使ED平分∠BEF且FD平分∠CFE?若存在,求出的值;若不存在,请说明理由.【探索】如图③,在等腰△ABC中,AB=AC,点O为BC边的中点,将三角形透明纸板的一个顶点放在点O处(其中∠MON=∠B),使两条边分别交边AB、AC于点E、F(点E、F均不与△ABC的顶点重合),连接EF.设∠B=α,则△AEF与△ABC的周长之比为1﹣cosα(用含α的表达式表示).【分析】(1)先求出BE的长度后发现BE=BD的,又∠B=60°,可知△BDE是等边三角形,可得∠BDE=60°,另外∠DEF=60°,可证得△CDF是等边三角形,从而CF=CD=BC﹣BD;(2)证明△EBD∽△DCF,这个模型可称为“一线三等角•相似模型”,根据“AA”判定相似;【思考】由角平分可联系到角平分线的性质“角平分线上点到角两边的距离相等”,可过D作DM⊥BE,DG⊥EF,DN⊥CF,则DM=DG=DN,从而证明△BDM≌△CDN可得BD=CD;【探索】由已知不能求得C△ABC=AB+BC+AC=2AB+2OB=2(m+m cosα),则需要用m和α是三角函数表示出C△AEF ,C△AEF=AE+EF+AF=AG+AH=2AG;题中直接已知点O是BC的中点,应用(2)题的方法和结论,作OG⊥BE,OD⊥EF,OH⊥CF,可得EG=ED,FH=DF,则C△AEF=AE+EF+AF=AG+AH=2AG,而AG=AB﹣BO,从而可求得.【解答】(1)解:∵△ABC是等边三角形,∴AB=BC=AC=6,∠B=∠C=60°.∵AE=4,∴BE=2,则BE=BD,∴△BDE是等边三角形,∴∠BED=60°,又∵∠EDF=60°,∴∠CDF=180°﹣∠EDF﹣∠B=60°,则∠CDF=∠C=60°,∴△CDF是等边三角形,∴CF=CD=BC=BD=6﹣2=4.故答案是:4;(2)证明:如图①,∵∠EDF=60°,∠B=60°,∴∠CDF+BDE=120°,∠BED+∠BDE=120°,∴∠BED=∠CDF.又∠B=∠C=60°,∴△EBD∽△DCF;【思考】存在,如图②,过D作DM⊥BE,DG⊥EF,DN⊥CF,垂足分别是M、G、N,∵ED平分∠BEF且FD平分∠CFE.∴DM=DG=DN.又∠B=∠C=60°,∠BMD=∠CND=90°,∴△BDM≌△CDN,∴BD=CD,即点D是BC的中点,∴=;【探索】如图③,连接AO,作OG⊥BE,OD⊥EF,OH⊥CF,垂足分别是G、D、H.则∠BGO=∠CHO=90°,∵AB=AC,O是BC的中点,∴∠B=∠C,OB=OC,∴△OBG≌△OCH,∴OG=OH,GB=CH,∠BOG=∠COH=90°﹣α,则∠GOH=180°﹣(∠BOG+∠COH)=2α,∴∠EOF=∠B=α由(2)题可猜想应用EF=ED+DF=GE+FH(可通过半角旋转证明),=AE+EF+AF=AE+EG+FH+AF=AG+AH=2AG,则C△AEF设AB=m,则OB=m cosα,GB=m cos2α.====1﹣cosα.故答案是:1﹣cosα.。
2018年高考数学二诊试卷(成都市理科带答案和解释)
5 c 5不等式选讲]
23.已知函数f(x)=4﹣|x|﹣|x﹣3|
(Ⅰ)求不等式f(x+ )≥0的解集;
(Ⅱ)若p,q,r为正实数,且 + + =4,求3p+2q+r的最小值.
5不等式选讲]
23.(2018 成都模拟)已知函数f(x)=4﹣|x|﹣|x﹣3|
(Ⅰ)求不等式f(x+ )≥0的解集;
(Ⅱ)若p,q,r为正实数,且 + + =4,求3p+2q+r的最小值.【考点】绝对值三角不等式;绝对值不等式的解法.
【分析】(I)由题意,分类讨论,去掉绝对值,解不等式即可;
(Ⅱ)运用柯西不等式,可3p+2q+r的最小值.
【解答】解(Ⅰ)f(x+ )≥0,即|x+ |+|x﹣|≤4,
x≤﹣,不等式可化为﹣x﹣﹣x+ ≤4,∴x≥﹣2,∴﹣2≤x≤﹣;
﹣<x<,不等式可化为x+ ﹣x+ ≤4恒成立;
x≥ ,不等式可化为x+ +x﹣≤4,∴x≤2,∴ ≤x≤2,
综上所述,不等式的解集为[﹣2,2];
(Ⅱ)∵( + + )(3p+2q+r)≥(1+1+1)2=9, + + =4
∴3p+2q+r≥ ,∴3p+2q+r的最小值为.
【点评】本题考查不等式的解法,考查运用柯西不等式,考查运算和推理能力,属于中档题.
5 c。
2018年四川省成都市高考数学二诊试卷(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|y=},B={x||x|≤2},则A∪B=()A.[﹣2,2] B.[﹣2,4] C.[0,2]D.[0,4]2.函数f(x)=2x+x﹣2的零点所在区间是()A.(﹣∞,﹣1)B.(﹣l,0)C.(0,1)D.(1,2)3.复数z=(其中i为虚数单位)的虚部是()A.﹣1 B.﹣i C.2i D.24.已知某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能为()A. B.C.D.5.将函数f(x)=cos(x+)图象上所有点的横坐标缩短为原来的倍,纵坐标不变,得到函数g(x)的图象,则函数g(x)的一个减区间是()A.[﹣,] B.[﹣,]C.[﹣,]D.[﹣,]6.某校高三(1)班在一次单元测试中,每位同学的考试分数都在区间[100,128]内,将该班所有同学的考试分数分为七组:[100,118),[118,118),[118,112),[112,116),[116,120),[120,124),[124,128],绘制出频率分布直方图如图所示,已知分数低于112分的有18人,则分数不低于120分的人数为()A.10 B.12 C.20 D.407.某微信群中甲、乙、丙、丁、卯五名成员同时抢4个红包,每人最多抢一个,且红包被全部抢光,4个红包中有两个2元,两个3元(红包中金额相同视为相同的红包),则甲乙两人都抢到红包的情况有()A.35种B.24种C.18种D.9种8.在三棱锥P﹣ABC中,已知PA⊥底面ABC,AB⊥BC,E,F分别是线段PB,PC上的动点.则下列说法错误的是()A.当AE⊥PB时,△AEF﹣定为直角三角形B.当AF⊥PC时,△AEF﹣定为直角三角形C.当EF∥平面ABC时,△AEF﹣定为直角三角形D.当PC⊥平面AEF时,△AEF﹣定为直角三角形9.已知函数f(x)=,则不等式f(f(x))<4f(x)+1的解集是()A.(﹣3,0)B.(﹣,1)C.(0,2)D.(﹣,log32)10.已知抛物线y=x2的焦点为F,经过y轴正半轴上一点N作直线l与抛物线交于A,B两点,且=2(O为坐标原点),点F关于直线OA的对称点为C,则四边形OCAB面积的最小值为()A.3 B.C.2D.二、填空题:本大题共5小题,每小题5分,共25分.11.已知双曲线=1的右焦点为(3,0),则该双曲线的离心率等于______.12.的展开式中,x2项的系数为______.(用数字作答)13.已知实数x,y满足,则x2+y2﹣2x的取值范围是______.14.执行如图所示的程序框图,输出的S的值为______15.已知函数f(x)=x+sin2x.给出以下四个命题:①∀x>0,不等式f(x)<2x恒成立;②∃k∈R,使方程f(x)=k有四个不相等的实数根;③函数f(x)的图象存在无数个对称中心;④若数列{a n}为等差数列,且f(a l)+f(a2)+f(a3)=3π,则a2=π.其中的正确命题有______.(写出所有正确命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a=,且b2+c2=3+bc.(I)求角A的大小;(Ⅱ)求bsinC的最大值.17.已知数列{a n}满足a1=1,(n+1)a n=(n﹣1)a n,(n≥2,n∈N*).﹣1(I)求数列{a n}的通项公式a n;(Ⅱ)设数列{a n}的前n项和为S n.证明:S n<2.18.某商场举行购物抽奖活动,抽奖箱中放有除编号不同外,其余均相同的20个小球,这20个小球编号的茎叶图如图所示,活动规则如下:从抽奖箱中随机抽取一球,若抽取的小球编号是十位数字为l的奇数,则为一等奖,奖金100元;若抽取的小球编号是十位数字为2的奇数,则为二等奖,奖金50元;若抽取的小球是其余编号则不中奖.现某顾客有放回的抽奖两次,两次抽奖相互独立.(I)求该顾客在两次抽奖中恰有一次中奖的概率;(Ⅱ)记该顾客两次抽奖后的奖金之和为随机变量X,求X的分布列和数学期望.19.如图.在三棱柱ABC﹣A1B1C1中,已知侧棱与底面垂直,∠CAB=90°,且AC=1,AB=2,E为BB1的中点,M为AC上一点,=.(I)证明:CB1∥平面A1EM;(Ⅱ)若二面角C1﹣A1E﹣M的余弦值为,求AA1的长度.20.已知椭圆C:=1(a>b>0)的左右焦点分别为F1,F2,抛物线y2=4x与椭圆C有相同的焦点,点P为抛物线与椭圆C在第一象限的交点,且|PF1|=.(I)求椭圆C的方程;(Ⅱ)与抛物线相切于第一象限的直线l,与椭圆交于A,B两点,与x轴交于M点,线段AB的垂直平分线与y轴交于N点,求直线MN斜率的最小值.21.设函数f(x)=lnx.(I)求函数g(x)=x﹣1﹣f(x)的极小值;(Ⅱ)若关于x的不等式mf(x)≥在[1,+∞)上恒成立,求实数m的取值范围;(Ⅲ)已知a∈(0,),试比较f(tana)与﹣cos2a的大小,并说明理由.2018年四川省成都市高考数学二诊试卷(理科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|y=},B={x||x|≤2},则A∪B=()A.[﹣2,2] B.[﹣2,4] C.[0,2]D.[0,4]【考点】并集及其运算.【分析】求出集合的等价条件,根据集合的基本运算进行求解即可.【解答】解:A={x|y=}={x|4x﹣x2≥0}={x|0≤x≤4},B={x||x|≤2}={x|﹣2≤x≤2},则A∪B={x|﹣2≤x≤4},故选:B.2.函数f(x)=2x+x﹣2的零点所在区间是()A.(﹣∞,﹣1)B.(﹣l,0)C.(0,1)D.(1,2)【考点】函数零点的判定定理.【分析】据函数零点的判定定理,判断f(﹣1),f(0),f(1),f(2)的符号,即可求得结论.【解答】解:f(﹣1)=2﹣1+1﹣2=﹣<0,f(0)=﹣1<0,f(1)=1>0,f(2)=4>0,故有f(0)•f(1)<0,由零点的存在性定理可知:函数f(x)=2x+x﹣2的零点所在的区间是(0,1)故选:C.3.复数z=(其中i为虚数单位)的虚部是()A.﹣1 B.﹣i C.2i D.2【考点】复数代数形式的乘除运算.【分析】利用复数的化数形式的乘除运算法则求解.【解答】解:∵z=====1+2i,∴复数z=(其中i为虚数单位)的虚部是2.故选:D.4.已知某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能为()A. B.C.D.【考点】简单空间图形的三视图.【分析】几何体为椎体与柱体的组合体,分四种情况进行判断.【解答】解:由主视图和侧视图可知几何体为椎体与柱体的组合体,(1)若几何体为圆柱与圆锥的组合体,则俯视图为A,(2)若几何体为棱柱与圆锥的组合体,则俯视图为B,(3)若几何体为棱柱与棱锥的组合体,则俯视图为C,(4)若几何体为圆柱与棱锥的组合体,则俯视图为故选:D.5.将函数f(x)=cos(x+)图象上所有点的横坐标缩短为原来的倍,纵坐标不变,得到函数g(x)的图象,则函数g(x)的一个减区间是()A.[﹣,] B.[﹣,]C.[﹣,]D.[﹣,]【考点】函数y=Asin(ωx+φ)的图象变换.【分析】根据三角函数的图象变换关系求出g(x)的解析式,结合三角函数的单调性进行求解即可.【解答】解:将函数f(x)=cos(x+)图象上所有点的横坐标缩短为原来的倍,纵坐标不变,则y=cos(2x+),即g(x)=cos(2x+),由2kπ≤2x+≤2kπ+π,k∈Z,得kπ﹣≤x≤kπ+,k∈Z,即函数的单调递减区间为[kπ﹣,kπ+],k∈Z,当k=0时,单调递减区间为[﹣,],故选:D.6.某校高三(1)班在一次单元测试中,每位同学的考试分数都在区间[100,128]内,将该班所有同学的考试分数分为七组:[100,118),[118,118),[118,112),[112,116),[116,120),[120,124),[124,128],绘制出频率分布直方图如图所示,已知分数低于112分的有18人,则分数不低于120分的人数为()A.10 B.12 C.20 D.40【考点】频率分布直方图.【分析】由频率分布直方图求出得分数低于112分的频率,从而求出高三(1)班总人数,再求出分数不低于120分的频率,由此能求出分数不低于120分的人数.【解答】解:由频率分布直方图得分数低于112分的频率为:(0.01+0.18+0.18)×4=0.36,∵分数低于112分的有18人,∴高三(1)班总人数为:n==50,∵分数不低于120分的频率为:(0.18+0.18)×4=0.2,∴分数不低于120分的人数为:50×0.2=10人.故选:A.7.某微信群中甲、乙、丙、丁、卯五名成员同时抢4个红包,每人最多抢一个,且红包被全部抢光,4个红包中有两个2元,两个3元(红包中金额相同视为相同的红包),则甲乙两人都抢到红包的情况有()A.35种B.24种C.18种D.9种【考点】计数原理的应用.【分析】根据红包的性质进行分类,若甲乙抢的是一个2和一个3元的,若两个和2元或两个3元,根据分类计数原理可得.【解答】解:若甲乙抢的是一个2和一个3元的,剩下2个红包,被剩下的3人中的2个人抢走,有A22A32=12种,若甲乙抢的是两个和2元或两个3元的,剩下2个红包,被剩下的3人中的2个人抢走,有A22C32=6种,根据分类计数原理可得,共有12+6=18种,故选:C.8.在三棱锥P﹣ABC中,已知PA⊥底面ABC,AB⊥BC,E,F分别是线段PB,PC上的动点.则下列说法错误的是()A.当AE⊥PB时,△AEF﹣定为直角三角形B.当AF⊥PC时,△AEF﹣定为直角三角形C.当EF∥平面ABC时,△AEF﹣定为直角三角形D.当PC⊥平面AEF时,△AEF﹣定为直角三角形【考点】棱锥的结构特征.【分析】A.当AE⊥PB时,又PA⊥底面ABC,AB⊥BC,可得AE⊥BC,利用线面垂直的判定与性质定理可得AE⊥EF,即可判断出正误.B.当AF⊥PC时,无法得出△AEF﹣定为直角三角形,即可判断出正误;C.当EF∥平面ABC时,可得EF∥BC,利用线面垂直的判定与性质定理可得:BC⊥AE,EF⊥AE,即可判断出正误;D.当PC⊥平面AEF时,可得PC⊥AE,由C可知:BC⊥AE利用线面垂直的判定与性质定理即可判断出正误.【解答】解:A.当AE⊥PB时,又PA⊥底面ABC,AB⊥BC,∴AE⊥BC,可得:AE⊥平面PBC,∴AE⊥EF,∴△AEF﹣定为直角三角形,正确.B.当AF⊥PC时,无法得出△AEF﹣定为直角三角形,因此不正确;C.当EF∥平面ABC时,平面PBC∩ABC=BC,可得EF∥BC,∵PA⊥底面ABC,AB⊥BC,∴BC⊥平面PAB,∴BC⊥AE,因此EF⊥AE,则△AEF﹣定为直角三角形,正确;D.当PC⊥平面AEF时,可得PC⊥AE,由C可知:BC⊥AE,∴AE⊥平面PBC,∴AE ⊥EF,因此△AEF﹣定为直角三角形,正确.故选:B.9.已知函数f(x)=,则不等式f(f(x))<4f(x)+1的解集是()A.(﹣3,0)B.(﹣,1)C.(0,2)D.(﹣,log32)【考点】分段函数的应用.【分析】根据分段函数的表达式,讨论f(x)的符号,将不等式进行转化求解即可.【解答】解:由3x+1=0得x=﹣,当x<﹣时,3x+1<0,则由f(f(x))<4f(x)+1得f(3x+1))<4(3x+1)+1,即3(3x+1)+1<12x+4+1,即9x+4<12x+5,得x>﹣,此时不等式无解,当x≥﹣时,当x≥0时,f(x)=3x≥1,则由f(f(x))<4f(x)+1得<4•3x+1,设t=3x,则不等式等价为3t<4t+1,设g(t)=3t﹣4t﹣1,则g(0)=0,g(2)=9﹣8﹣1=0,即g(t)<0的解为0<t<2,即0<3x<2,得0≤x<log32,当﹣≤x<0时,f(x)=3x+1≥0,则f(f(x))=33x+1,则由f(f(x))<4f(x)+1得33x+1<4(3x+1)+1,设t=3x+1,则不等式等价为3t<4t+1,设g(t)=3t﹣4t﹣1,则g(0)=0,g(2)=9﹣8﹣1=0,即g(t)<0的解为0<t<2,即0<3x+1<2,即﹣1<3x<1,得﹣<x<,此时﹣<x<0,综上所述,﹣<x<log32.即不等式的解集为(﹣,log32),故选:D10.已知抛物线y=x2的焦点为F,经过y轴正半轴上一点N作直线l与抛物线交于A,B两点,且=2(O为坐标原点),点F关于直线OA的对称点为C,则四边形OCAB面积的最小值为()A.3 B.C.2D.【考点】抛物线的简单性质.【分析】先设直线AB方程为y=kx+b(b>0),联立y=x2求解利用=2,求出b,可得直线AB方程为y=kx+2,设d1、d2分别为F到OA、O到AB的距离,利用四边形OCAB的面积S=S△OAC+S△OAB=(OA•d1+AB•d2),可得S关于k的函数,利用导数知识即可求解.【解答】解:不妨设位于第一象限的交点为A(x1,y1)、第二象限的交点为B(x2,y2),则x1>0,x2<0.OA的直线方程为y=x=x1x,F点的坐标为(0,).设直线AB方程为y=kx+b(b>0),联立y=x2求解,有x2﹣kx﹣b=0∴x1+x2=k,x1x2=﹣b,∴y1y2=b2,∵=2,∴x1x2+y1y2=﹣b+b2=2∵b>0,∴b=2∴△=k2+8,x1=(k+)①;线段AB=②.设d1、d2分别为F到OA、O到AB的距离.∵C是F关于OA的对称点,∴C到OA的距离=d1.∴四边形OCAB的面积S=S△OAC+S△OAB=(OA•d1+AB•d2).根据点到直线距离公式,d1=③,d2=④.又线段OA=⑤,∴将①~⑤代入S,有S=(k+17).由S对k求导,令导函数=0,可得1+=0,解得k=﹣时,S最小,其值为3.故选:A.二、填空题:本大题共5小题,每小题5分,共25分.11.已知双曲线=1的右焦点为(3,0),则该双曲线的离心率等于.【考点】双曲线的简单性质.【分析】利用双曲线=1的右焦点为(3,0),求出|a|,再利用双曲线的定义,即可求出双曲线的离心率.【解答】解:∵双曲线=1的右焦点为(3,0),∴a2+5=9,∴|a|=2,∵c=3,∴双曲线的离心率等于.故答案为:.12.的展开式中,x2项的系数为﹣20.(用数字作答)【考点】二项式定理的应用.【分析】先求出二项式展开式的通项公式,再令x的幂指数等于2,求得r的值,即可求得展开式中的x2项的系数.【解答】解:在的展开式中,它的通项公式为T r+1=•x5﹣r•(﹣1)r,令5﹣r=2,求得r=3,可得x2项的系数为﹣=﹣20,故答案为:﹣20.13.已知实数x,y满足,则x2+y2﹣2x的取值范围是[﹣1,19] .【考点】简单线性规划.【分析】画出满足条件的平面区域,求出角点的坐标,而(x﹣1)2+y2的几何意义表示平面区域内的点与(1,0)的点距离的平方,求出(x﹣1)2+y2的范围,从而求出x2+y2﹣2x的范围即可.【解答】解:画出满足条件的平面区域,如图示:由,解得A(3,4),x2+y2﹣2x=(x﹣1)2+y2﹣1,而(x﹣1)2+y2的几何意义表示平面区域内的点与(1,0)的点距离的平方,0≤(x﹣1)2+y2≤20,∴﹣1≤(x﹣1)2+y2≤19,故答案为:[﹣1,19].14.执行如图所示的程序框图,输出的S的值为【考点】程序框图.【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.【解答】解:模拟执行程序,可得该程序的功能是利用循环结构计算并输出变量S=•tan•tan…tan的值.由于:S=•tan•tan…tan tan=•tan•tan…cot•cot=tan=.故答案为:.15.已知函数f(x)=x+sin2x.给出以下四个命题:①∀x>0,不等式f(x)<2x恒成立;②∃k∈R,使方程f(x)=k有四个不相等的实数根;③函数f(x)的图象存在无数个对称中心;④若数列{a n}为等差数列,且f(a l)+f(a2)+f(a3)=3π,则a2=π.其中的正确命题有③④.(写出所有正确命题的序号)【考点】函数的图象.【分析】①用特殊值的方法即可;②③根据函数图象判断;④可用反代的方法判断成立.【解答】解:①当x=时,显然f(x)>2x,故错误;②根据函的图象易知,方程f(x)=k最多有三个不相等的实数根,故错误;③根据函数的图象易知函数f(x)的图象存在无数个对称中心,故正确;④f(a l)+f(a2)+f(a3)=3π,∴a l+a2+a3=3π,sina l+sina2+sina3=0,解得a2=π,故正确.故答案为:③④.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.在△ABC中,内角A,B,C所对的边分别为a,b,c.已知a=,且b2+c2=3+bc.(I)求角A的大小;(Ⅱ)求bsinC的最大值.【考点】余弦定理;正弦定理.【分析】(I)由余弦定理可得:cosA===,即可得出.(II)由正弦定理可得:可得b=,可得bsinC=2sinBsin=+,根据B∈即可得出.【解答】解:(I)由余弦定理可得:cosA===,∵A∈(0,π),∴A=.(II)由正弦定理可得:,可得b=,bsinC=•sinC=2sinBsin=2sinB=sin2B+=+,∵B∈,∴∈.∴∈.∴bsinC∈.17.已知数列{a n}满足a1=1,(n+1)a n=(n﹣1)a n,(n≥2,n∈N*).﹣1(I)求数列{a n}的通项公式a n;(Ⅱ)设数列{a n}的前n项和为S n.证明:S n<2.【考点】数列的求和;数列递推式.【分析】(Ⅰ)依题意,可得a n=••…×××a1=,再验证n=1时是否符合该式即可得到答案,(Ⅱ)先裂项求和,再放缩法证明即可.【解答】解:(Ⅰ)∵a1=1,(n+1)a n=(n﹣1)a n,﹣1∴=,∴=,…,==,==,∴a n=••…×××a1=,又n=1时a1=1,满足上式,∴数列{a n}的通项公式a n=,(Ⅱ)∵a n==2(﹣),∴S n=a1+a2+…+a n=2(1﹣+﹣+…+﹣)=2(1﹣)<2,问题得以证明.18.某商场举行购物抽奖活动,抽奖箱中放有除编号不同外,其余均相同的20个小球,这20个小球编号的茎叶图如图所示,活动规则如下:从抽奖箱中随机抽取一球,若抽取的小球编号是十位数字为l的奇数,则为一等奖,奖金100元;若抽取的小球编号是十位数字为2的奇数,则为二等奖,奖金50元;若抽取的小球是其余编号则不中奖.现某顾客有放回的抽奖两次,两次抽奖相互独立.(I)求该顾客在两次抽奖中恰有一次中奖的概率;(Ⅱ)记该顾客两次抽奖后的奖金之和为随机变量X,求X的分布列和数学期望.【考点】离散型随机变量的期望与方差;茎叶图;列举法计算基本事件数及事件发生的概率;离散型随机变量及其分布列.【分析】(Ⅰ)设一次抽奖抽中i等奖的概率为P i(i=1,2),没有中奖的概率为P0,由此能求出该顾客两次抽奖中恰有一次中奖的概率.(Ⅱ)X的可能取值为0,50,100,150,200,分别求出相应的概率,由此能求出X的分布列和EX.【解答】解:(Ⅰ)设一次抽奖抽中i等奖的概率为P i(i=1,2),没有中奖的概率为P0,则P1+P2==,即中奖的概率为,∴该顾客两次抽奖中恰有一次中奖的概率为:P==.(Ⅱ)X的可能取值为0,50,100,150,200,P(X=0)=,P(X=50)==,P(X=100)==,P(X=150)==,P(X=200)==,X∴EX==55(元).19.如图.在三棱柱ABC﹣A1B1C1中,已知侧棱与底面垂直,∠CAB=90°,且AC=1,AB=2,E为BB1的中点,M为AC上一点,=.(I)证明:CB1∥平面A1EM;(Ⅱ)若二面角C1﹣A1E﹣M的余弦值为,求AA1的长度.【考点】二面角的平面角及求法;直线与平面平行的判定.【分析】(I)建立空间直角坐标系,利用向量关系求出F的坐标,根据线面平行的判定定理即可证明证明:CB1∥平面A1EM;(Ⅱ)建立空间直角坐标系,求出平面的法向量,利用向量法进行求解即可.【解答】(I)如图,连接AB1,交A1E于F,连接MF,∵E为BB1的中点,∴建立以A为坐标原点,AB,AC,AA1分别为x,y,z轴的空间直角坐标系如图:设AA1=h,则A(0,0,0),C1(0,1,h),A1(0,0,h),E(2,0,),M(0,,0),B1(2,0,h),设F(x,0,z),则∥,∥,∵=(x,0,z),=(2,0,h),∴①∵=(x,0,z﹣h),=(2,0,﹣),∴=②,由①②得z=h,x=,或F作FT⊥AB,则==,则∴AF=AB1,∵=.∴MF∥CB1,∵MF⊂平面平面A1EM,CB1⊄平面A1EM,∴CB1∥平面A1EM;(Ⅱ)设平面C1A1E的法向量为=(x,y,z),平面MA1E的法向量为=(x,y,z),则,则,令z=1,则x=,y=0,则=(,0,1),由得,令z=1,则x=,y=,即=(,,1)|cos<,>|==,得h2=2,即h=,则AA1的长度为.20.已知椭圆C:=1(a>b>0)的左右焦点分别为F1,F2,抛物线y2=4x与椭圆C有相同的焦点,点P为抛物线与椭圆C在第一象限的交点,且|PF1|=.(I)求椭圆C的方程;(Ⅱ)与抛物线相切于第一象限的直线l,与椭圆交于A,B两点,与x轴交于M点,线段AB的垂直平分线与y轴交于N点,求直线MN斜率的最小值.【考点】椭圆的简单性质.【分析】(I)求得抛物线的焦点,可得c=1,设P为(,m),由椭圆的焦半径公式可得,|PF1|=a+•=,由椭圆和抛物线的定义可得,2a=++1,解方程可得a=2,由a,b,c的关系,可得b,进而得到椭圆方程;(Ⅱ)设直线l的方程为y=kx+b(k>0),代入抛物线的方程,由判别式为0,可得kb=1,再由椭圆方程联立,运用韦达定理和判别式大于0,结合中点坐标公式和直线的斜率公式,以及基本不等式即可得到所求最小值.【解答】解:(I)抛物线y2=4x的焦点为(1,0),可得椭圆的c=1,设P为(,m),由椭圆的焦半径公式可得,|PF1|=a+•=,由椭圆和抛物线的定义可得,2a=++1,解得a=2,b==,即有椭圆的方程为+=1;(Ⅱ)设直线l的方程为y=kx+b(k>0),代入抛物线的方程,可得k2x2+(2kb﹣4)x+b2=0,由相切的条件可得,△=(2kb﹣4)2﹣4k2b2=0,化简可得kb=1,由y=kx+和椭圆方程3x2+4y2=12,可得(3+4k2)x2+8x+﹣12=0,由64﹣4(3+4k2)(﹣12)>0,可得k>,设A(x1,y1),B(x2,y2),可得x1+x2=﹣,即有中点坐标为(﹣,),设N(0,n),由=﹣,可得n=﹣,由y=kx+,设y=0,则x=﹣,M(﹣,0),可得直线MN的斜率为k MN==﹣=﹣≥﹣=﹣.当且仅当k=>时,取得最小值﹣.21.设函数f(x)=lnx.(I)求函数g(x)=x﹣1﹣f(x)的极小值;(Ⅱ)若关于x的不等式mf(x)≥在[1,+∞)上恒成立,求实数m的取值范围;(Ⅲ)已知a∈(0,),试比较f(tana)与﹣cos2a的大小,并说明理由.【考点】利用导数求闭区间上函数的最值;利用导数研究函数的单调性.【分析】(I)求导数,确定函数的单调性,即可求函数g(x)=x﹣1﹣f(x)的极小值;(Ⅱ)mf(x)≥可化为mlnx﹣≥0,构造函数,得出m(x+1)2﹣2x≥0在[1,x0]上恒成立,即可求实数m的取值范围;(Ⅲ)已知a∈(0,),证明<,分类讨论,即可比较f(tana)与﹣cos2a的大小.【解答】解:(I)函数g(x)=x﹣1﹣f(x)=x﹣1﹣lnx,g′(x)=(x>0),∴g(x)在(0,1)上单调递减,(1,+∞)上单调递增,∴x=1时,g(x)的极小值为0;(Ⅱ)mf(x)≥可化为mlnx﹣≥0,令h(x)=mlnx﹣(x≥1),则h′(x)=,∵h(1)=0,∴∃x0>1,h(x)在[1,x0]上单调递增,∴m(x+1)2﹣2x≥0在[1,x0]上恒成立,∴m≥;(Ⅲ)由(Ⅱ)可知x>1,>.∵0<x<1,∴>1∴>,∴<,令x=t2,可得t>1,lnt>,0<t<1,lnt<,∵f(tana)=lntana,﹣cos2a=,∴0<a<,0<tana<1,f(tana)<﹣cos2aa=,tana﹣1,f(tana)=﹣cos2a,<a<,tana>1,f(tana)>﹣cos2a.2018年9月20日。
锦江区二中2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.如图,已知平面=,.是直线上的两点,是平面内的两点,且,,,.是平面上的一动点,且有,则四棱锥体积的最大值是()A. B. C. D.2.如右图,在长方体中,=11,=7,=12,一质点从顶点A射向点,遇长方体的面反射(反射服从光的反射原理),将次到第次反射点之间的线段记为,,将线段竖直放置在同一水平线上,则大致的图形是()ABCD3.冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如下表所示.杂质高杂质低旧设备37 121新设备22 202根据以上数据,则()A .含杂质的高低与设备改造有关B .含杂质的高低与设备改造无关C .设备是否改造决定含杂质的高低D .以上答案都不对4. 函数2-21y x x =-,[0,3]x ∈的值域为( ) A. B. C. D.5. 集合A={x|﹣1≤x ≤2},B={x|x <1},则A ∩B=( ) A .{x|x <1} B .{x|﹣1≤x ≤2} C .{x|﹣1≤x ≤1} D .{x|﹣1≤x <1}6. 如果(m ∈R ,i 表示虚数单位),那么m=( )A .1B .﹣1C .2D .07. 己知y=f (x )是定义在R 上的奇函数,当x <0时,f (x )=x+2,那么不等式2f (x )﹣1<0的解集是( )A .B .或C .D .或8. 等差数列{a n }中,已知前15项的和S 15=45,则a 8等于( )A .B .6C .D .39. 设a ,b ∈R ,i 为虚数单位,若2+a i 1+i =3+b i ,则a -b 为( )A .3B .2C .1D .010.直线l 将圆x 2+y 2﹣2x+4y=0平分,且在两坐标轴上的截距相等,则直线l 的方程是( )A .x ﹣y+1=0,2x ﹣y=0B .x ﹣y ﹣1=0,x ﹣2y=0C .x+y+1=0,2x+y=0D .x ﹣y+1=0,x+2y=011.459和357的最大公约数( ) A .3 B .9 C .17D .5112.设函数y=的定义域为M ,集合N={y|y=x 2,x ∈R},则M ∩N=( ) A .∅B .NC .[1,+∞)D .M二、填空题13.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()ln 4f x x x =+-的零点在区间()1k k +,内,则正整数k 的值为________.14.已知集合{}|03,A x x x R =<∈≤,{}|12,B x x x R =-∈≤≤,则A ∪B = ▲ .15.在复平面内,记复数+i 对应的向量为,若向量饶坐标原点逆时针旋转60°得到向量所对应16______.17.在(2x+)6的二项式中,常数项等于 (结果用数值表示).18.设α为锐角,若sin (α﹣)=,则cos2α= .三、解答题19.如图,在底面是矩形的四棱锥P ﹣ABCD 中,PA ⊥平面ABCD ,PA=AB=2,BC=2,E 是PD 的中点. (1)求证:平面PDC ⊥平面PAD ;(2)求二面角E ﹣AC ﹣D 所成平面角的余弦值.20.(本小题满分12分)已知椭圆1C :14822=+y x 的左、右焦点分别为21F F 、,过点1F 作垂直 于轴的直线,直线2l 垂直于点P ,线段2PF 的垂直平分线交2l 于点M . (1)求点M 的轨迹2C 的方程;(2)过点2F 作两条互相垂直的直线BD AC 、,且分别交椭圆于D C B A 、、、,求四边形ABCD 面积 的最小值.21.已知向量=(,1),=(cos,),记f(x)=.(1)求函数f(x)的最小正周期和单调递增区间;(2)将函数y=f(x)的图象向右平移个单位得到y=g(x)的图象,讨论函数y=g(x)﹣k在的零点个数.22.如图,在△ABC中,BC边上的中线AD长为3,且sinB=,cos∠ADC=﹣.(Ⅰ)求sin∠BAD的值;(Ⅱ)求AC边的长.23.2015年9月3日,抗战胜利70周年纪念活动在北京隆重举行,受到全国人民的瞩目.纪念活动包括举行纪念大会、阅兵式、招待会和文艺晚会等,据统计,抗战老兵由于身体原因,参加纪念大会、阅兵式、招待会(Ⅰ)若从抗战老兵中随机抽取2人进行座谈,求这2人参加纪念活动的环节数不同的概率;(Ⅱ)某医疗部门决定从这些抗战老兵中(其中参加纪念活动的环节数为3的抗战老兵数大于等于3)随机抽取3名进行体检,设随机抽取的这3名抗战老兵中参加三个环节的有ξ名,求ξ的分布列和数学期望.24.已知等比数列中,。
成都市锦江区2018-2019学年九年级下二诊数学试卷A 卷(100分)一、选择题(每小题3分,共30分)1.-3的绝对值等于( )A .-3B .3C .±3D .小于3 2.如图,该立体图形的俯视图是( )A .B .C .D .3.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338600000亿次,数字338600000用科学记数法可表示为( )A .3.386×109B .0.3386×109C .33.86×107D .3.386×1084.已知点A (a ,2)与点B (3,b )关于x 轴对称,则实数a ,b 的值是( )A .a=3,b=2B .a=-3,b=2C .a=3,b=-2D .a=-3,b=-25.下列运算正确的是( )A .ab b a 532=+B .326a a a =÷C .222)(b a b a +=+D .(6332)b a ab = 6.在2019年成都市初中体育中考中,随机抽取该校5位男同学立定跳远(单位:cm )分别为:248,250,245,248,234,则由这组数据得到的结论错误的是( )A .平均数为245cmB .中位数为248cmC .众数为248cmD .方差为41cm 27.如图,延长矩形ABCD 的边BC 至点E ,使CE=CA ,连接AE ,如果∠ACB=40°,则∠E 的值是( )A .18°B .19°C .20°D .40°8.两个相似三角形的最短边分别为4cm 和2cm 它们的周长之差为12cm ,那么大三角形的周长为( )A .18cmB .24cmC .28cmD .30cm9.如图,以AB 为直径,点O 为圆心的半圆经过点C ,若AC=BC=2,则图中阴影部分的面积是( ) A .4π B .+214π C .2π D .+212π 10.如图,二次函数c bx ax y ++=2的图象与x 轴交于点A (-1,0)和B (m ,0),且3<m <4,则下列说法:①b <0;②a+c=b ;③b 2 >4ac ;④2b >3c ;⑤11=+mc b ,正确的是( ) A .①②④ B .①③⑤C .②③④D .②③⑤二、填空题(每小题4分,共16分)11.分解因式:=-224a ax .12.关于x 的一元二次方程022=--k x x 的一个根为1,则k 的值是13.如图,在△ABC 中,AB=4,AC=3,D 是AB 边上的一点.若△ABC ∽△ACD ,则AD 的长为14.如图,在平行四边形ABCD 中,连接AC ,按以下步骤作图,分别以A 、C 为圆心,以大于21AC 的长为半径画弧,两弧分别相交于点M 、N ,作直线MN 交CD 于点E ,交AB 于点F .若AB=6,BC=4,则△ADE 的周长为第13题图 第14题图三、解答题(共54分)15.(1)计算:︒-⎪⎭⎫ ⎝⎛+---45sin 421)13(82(2)解不等式组⎪⎩⎪⎨⎧+≤+<-)2(34321x x x x ,并在数轴上表示其解集.16.化简求值:2444222-÷⎪⎭⎫⎝⎛+-+-+x x x x x x ,其中21-=x .17.北京时间3月30日18时许,凉山州木里县雅春江镇立尔村发生森林火灾,导致30名救火队员牺牲,多地民众走上街头送别英雄,同时,许多社区在清明节前夕开展了“致敬英雄·文明祭奠”倡导活动.据调查,人们最喜爱的文明祭奠方式有四类(A 植树祭祀,B 鮮花祭祀,C 公墓祭祀,D 社区公祭),并绘制了如下两个不完整的统计图,请根据图中的信息解答下列问题:(1)本次一共调查了社区群众200名;(2)补全条形统计图;并计算扇形统计图中“C 公墓祭祀所对应的圆心角大小为90°;(3)现有最喜爱A ,B ,C ,D 祭奠方式的群众各一人,居委会要从这四人中随机选取两人共同策划祭奠活动方案,请用列表或画树状图的方法求出恰好选取最喜爱C 和D 祭奠方式的两位群众的概率.18.成都市第十三次党代会提出实施“东进”战略,推动了城市发展格局“千年之变”成都龙泉山城市森林公园借“东进”之风,聚全市之力,着力打造一个令世界向往的城市中心,如图为成都市龙泉山城市豪林公园三个景点A ,B ,C 的平面示意图,景点C 在B 的正北方向5千米处,景点A 在B 的东北方向,在C 的北偏东75°方向上.(1)∠BAC 的大小(2)求景点A ,C 的距离(2=1.414,3=1.732,sin75°≈0.966,cos75°≈0.259,tan75°≈3.732,结果精确到0.1)19.如图,直线y=ax+b 与x 轴交于点A (4,0),与y 轴交于点B (0,-2),与反比例函数x k y =(x >0)的图象交于点C (6,m ).(1)求直线和反比例函数的表达式;(2)连接OC ,在x 轴上找一点P ,使△OPC 是以OC 为腰的等腰三角形,请求出点P 的坐标;(3)结合图象,请直接写出不等式b ax xk +≥的解集.20.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,点P 是AB 延长线上一点,连接PC 交DB 的延长线于点F ,且∠PFB=3∠CAB .(1)求证:PC 是⊙O 的切线;(2)延长AC ,DF 相交于点G ,连接PG ,请探究∠CPG 和∠CAB 的数量关系,并说明理由;(3)若tan ∠CAB=31,CF=5,求⊙O 的半径.B 卷(50分)一、填空题(每小题4分,共20分)21.设a 、b 是一元二次方程x 2 +x-2014=0的两个根,则a 2+2a+b =22.如图,在Rt △ABC 中,∠BAC=90°,AB=3,BC=5,点D 是线段BC 上一动点,连接AD ,以AD 为边作△ADE ,使△ADE ∽△ABC ,则△ADE 的最小面积与最大面积之比等于23.已知a 是正整数,且关于x 的一元二次方程014)2(2=++-x x a 有实数解.则a 使关于y 的分式方程31431-=+--y y ay 有正整数解的概率为第22题图 第24题图24.如图,在△AOC 中,∠OAC=90°,AO=AC ,OC=2,将△AOC 放置于平面直角坐标系中,点O 与坐标原点重合,斜边OC 在x 轴上.反比例函数x k y =(x >0)的图象经过点A .将△AOC 沿x 轴向右平移2个单位长度,记平移后三角形的边与反比例函数图象的交点为A 1,A 2.重复平移操作,依次记交点为A 3,A 4,A 5,A 6…分别过点A ,A 1,A 2,A 3,A 4,A 5…作x 轴的垂线,垂足依次记为P ,P 1,P 2,P 3,P 4,P 5 …若四边形APP 1A 1 的面积记为S 1 ,四边形A 2P 2P 3A 3的面积记为S 2…,则S n =(用含n 的代数式表示,n 为正整数)25.如图,四边形ABCD 内接于以AC 为直径的⊙O ,AD=2,CD=22,BC=BA ,AC 与BD 相交于点F ,将△ABF 沿AB 翻折,得到△ABG ,连接CG交AB 于E ,则BE 长为二、解答题(共30分)26.十三五”以来,党中央,国务院不断加大脱贫攻坚的支持决策力度,并出台配套文件,国家机关各部门也出台多项政策文件或实施方案.某单位认真分析被帮扶人各种情况后,建议被帮扶人大力推进特色产业,大量栽种甜橙;同时搭建电商运营服务平台,开设网店销售农产品橙.丰收后,将一批甜橙采取现场销售和网络销售相结合进行试销,统计后发现:同样多的甜橙,现场销售可获利800元,网络销售则可获利1000元,网络销售比现场销售每件多获利5元(1)现场销售和网络销售每件分别多少元?(2)根据甜橙试销情况分析,现场销售量a (件)和网络销售量b (件)满足如下关系式:200122512-+-=a a b .求a 为何值时,农户销售甜橙获得的总利润最大?最大利润是多少?27.在四边形ABCD 中,点E ,F 分别是边AB ,AD 上的点,连接CE ,CF 并延长,分别交DA ,BA 的廷长线于点H ,G .(1)如图1,若四边形ABCD 是菱形,∠ECF=21∠BCD ,求证:AC 2 =AH ·AG ; (2)如图2,若四边形ABCD 是正方形,∠ECF=45°,BC=4,设AE=x ,AG=y ,求y 与x 的函数关系式;(3)如图3,若四边形ABCD 是矩形,AB :AD=1:2,CG=CH ,∠GCH=45°,请求tan ∠AHG 的值.28.如图1,抛物线c bx x y ++=2151经过原点,交x 轴于另一点A (4,0),顶点为P . (1)求抛物线1y 的解析式和点P 的坐标;(2)如图2,点Q (0,a )为y 轴正半轴上一点,过点Q 作x 轴的平行线交抛物线c bx x y ++=2151于点M ,N ,将抛物线c bx x y ++=2151沿直线MN 翻折得到新的抛物线2y ,点P 落在点B 处,若四边形BMPN 的面积等于7514,求a 的值及点B 的坐标; (3)如图3,在(2)的条件下,在第一象限的抛物线c bx x y ++=2151上取一点C ,连接OC ,作CD ⊥OB 于D ,BE ⊥OC 交x 轴于E ,连接DE ,若∠BEO=∠DEA ,求点C 的坐标.。
锦江区第二中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 某程序框图如图所示,该程序运行后输出的S 的值是( )A .﹣3B .﹣C .D .22. 函数f (x )的图象向右平移1个单位长度,所得图象与曲线y=e x 关于y 轴对称,则f (x )=( ) A .e x+1 B .e x ﹣1 C .e ﹣x+1 D .e ﹣x ﹣13. 在函数y=中,若f (x )=1,则x 的值是( )A .1B .1或C .±1D .4. 将函数)63sin(2)(π+=x x f 的图象向左平移4π个单位,再向上平移3个单位,得到函数)(x g 的图象, 则)(x g 的解析式为( )A .3)43sin(2)(--=πx x g B .3)43sin(2)(++=πx x g C .3)123sin(2)(+-=πx x g D .3)123sin(2)(--=πx x g【命题意图】本题考查三角函数的图象及其平移变换理论,突出了对函数图象变换思想的理解,属于中等难度. 5. 已知f (x )为偶函数,且f (x+2)=﹣f (x ),当﹣2≤x ≤0时,f (x )=2x ;若n ∈N *,a n =f (n ),则a 2017等于( )A .2017B .﹣8C .D .6. 1F ,2F 分别为双曲线22221x y a b-=(a ,0b >)的左、右焦点,点P 在双曲线上,满足120PF PF ⋅=,若12PF F ∆ )C. 1D. 1【命题意图】本题考查双曲线的几何性质,直角三角形内切圆半径与外接圆半径的计算等基础知识,意在考查基本运算能力及推理能力. 7. 设命题p :,则p 为( )A .B .C .D .8. 已知A={﹣4,2a ﹣1,a 2},B={a ﹣5,1﹣a ,9},且A ∩B={9},则a 的值是( )A .a=3B .a=﹣3C .a=±3D .a=5或a=±39. 如图,在正方体1111ABCD A B C D -中,P 是侧面11BB C C 内一动点,若P 到直线BC 与直线11C D 的距离相等,则动点P 的轨迹所在的曲线是( )A 1CA B A.直线 B.圆C.双曲线D.抛物线【命题意图】本题考查立体几何中的动态问题等基础知识知识,意在考查空间想象能力. 10.已知集合{}|5A x N x =∈<,则下列关系式错误的是( )A .5A ∈B .1.5A ∉C .1A -∉D .0A ∈ 11.若命题“p 或q ”为真,“非p ”为真,则( )A .p 真q 真B .p 假q 真C .p 真q 假D .p 假q 假12.对“a ,b ,c 是不全相等的正数”,给出两个判断:①(a ﹣b )2+(b ﹣c )2+(c ﹣a )2≠0;②a ≠b ,b ≠c ,c ≠a 不能同时成立,下列说法正确的是( )A .①对②错B .①错②对C .①对②对D .①错②错二、填空题13.【徐州市第三中学2017~2018学年度高三第一学期月考】函数()3f x x x =-+的单调增区间是__________.14.如果直线3ax+y ﹣1=0与直线(1﹣2a )x+ay+1=0平行.那么a 等于 .15.空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.①若AC=BD ,则四边形EFGH 是 ;②若AC ⊥BD ,则四边形EFGH 是 .16.函数y=a x+1(a >0且a ≠1)的图象必经过点 (填点的坐标)17.当a >0,a ≠1时,函数f (x )=log a (x ﹣1)+1的图象恒过定点A ,若点A 在直线mx ﹣y+n=0上,则4m +2n 的最小值是 .18.定义在R 上的偶函数f (x )在[0,+∞)上是增函数,且f (2)=0,则不等式f (log 8x )>0的解集是 .三、解答题19.某志愿者到某山区小学支教,为了解留守儿童的幸福感,该志愿者对某班40名学生进行了一 次幸福指数的调查问卷,并用茎叶图表示如图(注:图中幸福指数低于70,说明孩子幸福感弱;幸福指 数不低于70,说明孩子幸福感强).(1)根据茎叶图中的数据完成22⨯列联表,并判断能否有95%的把握认为孩子的幸福感强与是否是留幸福感强 幸福感弱 总计 留守儿童 非留守儿童 总计1111](2)从5人中随机抽取2人进行家访, 求这2个学生中恰有一人幸福感强的概率.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++附表:20.如图,在直三棱柱ABC ﹣A 1B 1C 1中,AC=3,BC=4,AA 1=4,AB=5,点D 是AB 的中点.(1)求证:AC ⊥BC 1; ( 2)求证:AC 1∥平面CDB 1.21.(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C 的极坐标方程是2cos ρθ=,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立 平面直角坐标系,直线的参数方程是243x ty t=-+⎧⎨=⎩(为参数).(1)写出曲线C 的参数方程,直线的普通方程; (2)求曲线C 上任意一点到直线的距离的最大值.22.为了了解湖南各景点在大众中的熟知度,随机对15~65岁的人群抽样了n人,回答问题“湖南省有哪几个(Ⅱ)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?(Ⅲ)在(Ⅱ)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.23.已知函数f(x)=2cosx(sinx+cosx)﹣1(Ⅰ)求f(x)在区间[0,]上的最大值;(Ⅱ)在△ABC中,内角A,B,C的对边分别为a,b,c,且f(B)=1,a+c=2,求b的取值范围.24.命题p:关于x的不等式x2+2ax+4>0对一切x∈R恒成立,q:函数f(x)=(3﹣2a)x是增函数.若p ∨q为真,p∧q为假.求实数a的取值范围.锦江区第二中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】B【解析】解:由程序框图得:第一次运行S==﹣3,i=2;第二次运行S==﹣,i=3;第三次运行S==,i=4;第四次运行S==2,i=5;第五次运行S==﹣3,i=6,…S的值是成周期变化的,且周期为4,当i=2015时,程序运行了2014次,2014=4×503+2,∴输出S=﹣.故选:B.【点评】本题考查了循环结构的程序框图,根据程序的运行功能判断输出S值的周期性变化规律是关键.2.【答案】D【解析】解:函数y=e x的图象关于y轴对称的图象的函数解析式为y=e﹣x,而函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=e x的图象关于y轴对称,所以函数f(x)的解析式为y=e﹣(x+1)=e﹣x﹣1.即f(x)=e﹣x﹣1.故选D.3.【答案】C【解析】解:∵函数y=中,f(x)=1,∴当x≤﹣1时,x+2=1,解得x=﹣1;当﹣1<x<2时,x2=1,解得x=1或x=﹣1(舍);当x ≥2时,2x=1,解得x=(舍). 综上得x=±1 故选:C .4. 【答案】B【解析】根据三角函数图象的平移变换理论可得,将)(x f 的图象向左平移4π个单位得到函数)4(π+x f 的图象,再将)4(π+x f 的图象向上平移3个单位得到函数3)4(++πx f 的图象,因此=)(x g 3)4(++πx f3)43sin(23]6)4(31sin[2++=+++=πππx x .5. 【答案】D【解析】解:∵f (x+2)=﹣f (x ), ∴f (x+4)=﹣f (x+2)=f (x ), 即f (x+4)=f (x ), 即函数的周期是4.∴a 2017=f (2017)=f (504×4+1)=f (1), ∵f (x )为偶函数,当﹣2≤x ≤0时,f (x )=2x , ∴f (1)=f (﹣1)=, ∴a 2017=f (1)=, 故选:D .【点评】本题主要考查函数值的计算,利用函数奇偶性和周期性之间的关系是解决本题的关键.6. 【答案】D【解析】∵120PF PF ⋅=,∴12PFPF ⊥,即12PF F ∆为直角三角形,∴222212124PF PF F F c +==,12||2PF PF a -=,则222221212122()4()PF PF PF PF PF PF c a ⋅=+--=-, 2222121212()()484PF PF PF PF PF PF c a +=-+⋅=-.所以12PF F ∆内切圆半径12122PF PF F F r c +-==,外接圆半径R c =.12c c =,整理,得2()4ca=+1e =,故选D. 7. 【答案】A【解析】【知识点】全称量词与存在性量词 【试题解析】因为特称命题的否定是全称命题,p 为:。
成都2018届二诊模拟考试数学试卷二(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则( )A .B .C .D . 2.若复数(),,且为纯虚数,则在复平面内所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 3.在等比数列中,已知,,则( ) A .12 B .18 C .24 D .364.已知平面向量,夹角为,且,,则与的夹角是( )A .B .C .D .5.若曲线(为常数)不存在斜率为负数的切线,则实数的取值范围是( ) A .B .C .D .6.若实数满足不等式,且的最大值为5,则实数的值为( )A .0B .-1C .-2D .-57.已知是空间中两条不同的直线,是两个不同的平面,且,有下列命题:①若,则;②若,则;③若,且,,则;④若,且,,则,其中真命题的个数是( ) A .0 B .1 C .2 D .3[1,2]A =-2{,}B y x x A =∈A B = [1,4][1,2][1,0]-[0,2]1z a i =+a R ∈21z i =-12z z 1z {}n a 36a =35778a a a ++=5a =a b 3π1a = 12b = 2a b + b 6π56π4π34π2ln y x ax =+a a 1(,)2-+∞1[,)2-+∞(0,)+∞[0,)+∞,x y 22010x y x y y m ++≥⎧⎪+-≤⎨⎪≥⎩x y -m ,m n ,αβ,m n αβ⊂⊂//αβ//m n //αβ//m βl αβ= m l ⊥n l ⊥αβ⊥l αβ= m l ⊥m n ⊥αβ⊥8.已知函数()的反函数的图象经过点,若函数的定义域为,当时,有,且函数为偶函数,则下列结论正确的是( )A .B .C .D .9.执行如图所示的程序框图,若输入的分别为1,2,0.3,则输出的结果为( )A .1.125B .1.25C .1.3125D .1.37510.已知函数()在上单调递减,则的取值范围是( ) A .B .C .D .()x f x a =0,1a a >≠1)2()g x R [2,2]x ∈-()()g x f x =(2)g x+()(3)g g g π<<()(3)g g g π<<(3)()g g g π<<()(3)g g g π<<,,a bc ()sin(2)2sin cos()f x x x ωϕϕωϕ=+-+0,R ωϕ>∈3(,)2ππω(0,2]1(0,]21[,1]215[,]2411.设双曲线()的左右焦点分别为,以为直径的圆与双曲线左支的一个交点为,若以(为坐标原点)为直径的圆与相切,则双曲线的离心率为( ) ABC12.把平面图形上的所有点在一个平面上的射影构成的图形叫做图形在这个平面上的射影,如图,在三棱锥中,,,,,,将围成三棱锥的四个三角形的面积从小到大依次记为,设面积为的三角形所在的平面为,则面积为的三角形在平面上的射影的面积是( )A .B .C .10D .30二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 在边长为1的正三角形中,设,则. 14.设实数满足,则的最小值为.15. 已知一个多面体的三视图如图所示:其中正视图与侧视图都是边长为1的等腰直角三角形,俯视图是边长为1的正方形,若该多面体的顶点都在同一个球面上,则该球的表面积为.2222:1x y C a b-=0,0a b >>12,F F 12,F F P 1OF O 2PF C M 'M M A BCD -BD CD ⊥AB DB ⊥AC DC ⊥5AB DB ==4CD =1234,,,S S S S 2S α4S α252ABC 2 3BC BD CA CE == ,AD BE ⋅=x y ,70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩2z x y =-16. 设是函数的导数,是函数的导数,若方程有实数解,则称点为函数的拐点,某同学经过探究发现:任何一个三次函数都有拐点,任何一个三次函数都有对称中心,且拐点就是对称中心,设函数,利用上述探究结果 计算:.三.解答题(17-21每小题12分, 22或23题10分,共70分.在答题卷上解答,解答应写出文字说明,证明过程或演算步骤.)17.(12分)设各项均为正数的数列{a n }和{b n }满足:对任意n ∈N *,a n ,b n ,a n +1成等差数列,b n ,a n +1,b n +1成等比数列,且a 1=1,b 1=2,a 2=3. (Ⅰ)证明数列{}是等差数列; (Ⅱ)求数列{}前n 项的和.18.(12分)某校的学生记者团由理科组和文科组构成,具体数据如下表所示:()'f x ()f x ()''f x ()'f x ()''0f x =0x ()()00 x f x ,()f x ()()320f x ax bx cx d a =+++≠()32342g x x x x =-++1231910101010g g g g ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭…学校准备从中选出4人到社区举行的大型公益活动进行采访,每选出一名男生,给其所在小组记1分,每选出一名女生则给其所在小组记2分,若要求被选出的4人中理科组、文科组的学生都有. (Ⅰ)求理科组恰好记4分的概率?(Ⅱ)设文科男生被选出的人数为ξ,求随机变量ξ的分布列和数学期望Eξ.19.已知等边△//AB CBCD中,1,BD CD BC ==1所示),现将B 与/B ,C 与/C 重合,将△//AB C向上折起,使得AD =2所示). (1)若BC 的中点O ,求证:⊥平面BCD 平面AOD ; (2)在线段AC 上是否存在一点E ,使E D B C D 与面成30 角,若存在,求出CE 的长度,若不存在,请说明理由;(3)求三棱锥A BCD -的外接球的表面积.20.已知圆222:2,E x y +=将圆2E按伸缩变换://2x x y y ⎧=⎪⎨=⎪⎩后得到曲线1E , (1)求1E 的方程;(2)过直线2x =上的点M 作圆的两条切线,设切点分别是A ,B ,若直线AB 与交于2E 1E BACDC ,D两点,求的取值范围.21.已知函数()sin ln sin g x x x θθ=--在[1,)+∞单调递增,其中(0,)θπ∈ (1)求θ的值; (2)若221()()x f x g x x-=+,当[1,2]x ∈时,试比较()f x 与/1()2f x +的大小关系(其中/()f x 是()f x 的导函数),请写出详细的推理过程;(3)当0x ≥时,1(1)x e x kg x --≥+恒成立,求k 的取值范围.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分. 22.选修4-4:坐标系与参数方程在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C :2sin 2cos (0)a a ρθθ=>,又过点(2,4)P --的直线l 的参数方程为224x y ⎧=-+⎪⎪⎨⎪=-⎪⎩(t 为参数),l 与曲线C 分别交于M ,N.(1)写出曲线C 的平面直角坐标系方程和l 的普通方程; (2)若,,PM MN PN 成等比数列,求a 的值.23.选修4-5:不等式选讲CDAB设函数()f x =1(0)x x a a a++->(1)证明:()2f x ≥;(2)若()35f <,求a 的取值范围.成都2018届二诊模拟考试数学试卷(理科参考答案)一、选择题1-5:DABAD 6-10:CBCDC 11、12:DA13. 在边长为1的正三角形中,设,则.【答案】考点:向量线性运算与数量积的几何运算.14. 设实数满足,则的最小值为.【答案】 【解析】ABC 2 3BC BD CA CE == ,AD BE ⋅=14-x y ,70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩2z x y =-8试题分析:作出不等式组表示的平面区域如图:根据图形得:当直线经过点时取得最大值, 由解得:,∴.考点:线性规划.15. 已知一个多面体的三视图如图所示:其中正视图与侧视图都是边长为1的等腰直角三角形,俯视图是边长为1的正方形,若该多面体的顶点都在同一个球面上,则该球的表面积为.【答案】考点:三视图.【名师点睛】本题考查三视图,属基础题;解三视图相减问题的关键在于根据三视图还原几何体,要掌握常见几何体的三视图,比如三棱柱、三棱锥、圆锥、四棱柱、四棱锥、圆锥、球、圆台以及其组合体,并且要弄明白几何体的尺寸跟三视图尺寸的关系;有时候还可以利70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩2z x y =-B z 70310x y x y +-=⎧⎨-+=⎩()5 2B ,max 5228z =⨯-=3π用外部补形法,将几何体补成长方体或者正方体等常见几何体16. 设是函数的导数,是函数的导数,若方程有实数解,则称点为函数的拐点,某同学经过探究发现:任何一个三次函数都有拐点,任何一个三次函数都有对称中心,且拐点就是对称中心,设函数,利用上述探究结果 计算:.【答案】考点:1.新定义问题;2.导数的运算;3.函数的对称性.【名师点睛】本题考查新定义问题、导数的运算、函数的对称性,属难题;解决新定义问题首先要对新概念迅速理解,并学以致用,本题注意经过两次求导得到的零点为函数的拐点,也是函数的对称中心,再就是对函数中心对称的性质在掌握,即若函数关于点成中心对称,则三、解答题17.(12分)设各项均为正数的数列{a n }和{b n }满足:对任意n ∈N *,a n ,b n ,a n +1成等差数列,b n ,a n +1,b n +1成等比数列,且a 1=1,b 1=2,a 2=3. (Ⅰ)证明数列{}是等差数列; (Ⅱ)求数列{}前n 项的和.【考点】数列的求和.【分析】(I )对任意n ∈N *,a n ,b n ,a n +1成等差数列,b n ,a n +1,b n +1成等比数()'f x ()f x ()''f x ()'f x ()''0f x =0x ()()00 x f x ,()f x ()()320f x ax bx cx d a =+++≠()32342g x x x x =-++1231910101010g g g g ⎛⎫⎛⎫⎛⎫⎛⎫++++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭…76()f x (,)a b (2)()2f a x f x b -+=列,可得2b n=a n+a n+1,=b n•b n+1,a n>0,a n+1=,代入即可证明.(II)a1=1,b1=2,a2=3.由(I)可得:32=2b2,解得:b2.公差=.可得=×.b n代入=b n•b n+1,a n+1>0.可得a n+1=,可得=.即可得出.【解答】(I)证明:∵对任意n∈N*,a n,b n,a n+1成等差数列,b n,a n+1,b n+1成等比数列,∴2b n=a n+a n+1,=b n•b n+1,a n>0,∴a n+1=,∴2b n=+,∴=+.∴数列{}是等差数列.(II)解:a1=1,b1=2,a2=3.由(I)可得:32=2b2,解得:b2=.∴公差d===.=+(n﹣1)=×.∴b n=.∴=b n•b n+1=,a n+1>0.∴a n+1=,∴n≥2时,a n=.n=1时也成立.∴a n=.n∈N*.∴=.∴数列{}前n项的和=+…+=2=.【点评】本题考查了数列递推关系、等差数列与等比数列的定义通项公式、“裂项求和”方法,考查了推理能力与计算能力,属于中档题.18.(12分)某校的学生记者团由理科组和文科组构成,具体数据如下表所示:学校准备从中选出4人到社区举行的大型公益活动进行采访,每选出一名男生,给其所在小组记1分,每选出一名女生则给其所在小组记2分,若要求被选出的4人中理科组、文科组的学生都有.(Ⅰ)求理科组恰好记4分的概率?(Ⅱ)设文科男生被选出的人数为ξ,求随机变量ξ的分布列和数学期望Eξ.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(I)要求被选出的4人中理科组、文科组的学生都有共有:.其中“理科组恰好记4分”的选法有两种情况:从理科组中选取2男1女,再从文科组中任选1人,可有方法;另一种是从理科组中选取2女,再从文科组中任选2人,可有方法.根据互斥事件的概率计算公式与古典概型的概率计算公式即可得出.(II)由题意可得ξ=0,1,2,3.P(ξ=0)==,P(ξ=1)==,P(ξ=2)==,P(ξ=4)==,即可得出分布列与数学期望.【解答】解:(I)要求被选出的4人中理科组、文科组的学生都有共有:=424.其中“理科组恰好记4分”的选法有两种情况:从理科组中选取2男1女,再从文科组中任选1人,可有方法;另一种是从理科组中选取2女,再从文科组中任选2人,可有方法.∴P==.(II )由题意可得ξ=0,1,2,3.P (ξ=0)==,P (ξ=1)==,P (ξ=2)==,P (ξ=4)==,由题意可得ξ=0,1,2,3.其分布列为:)ξ的数学期望Eξ=++=.【点评】本题考查了互斥事件的概率计算公式与古典概型的概率计算公式、随机变量的分布列与数学期望,考查了推理能力与计算能力,属于中档题.19. 解:(1)∵△ABC 为等边三角形,△BCD 为等腰三角形,且O 为中点 ∴,BC AO BC DO ⊥⊥,AO DO O ⋂= ,BC AOD ∴⊥平面,又BC ABC ⊂面∴⊥平面BCD 平面AOD ………………3分(2)(法1)作,AH DO ⊥交DO 的延长线于H ,则平面BCD ⋂平面,AOD HD =则AH BCD ⊥平面,在Rt BCD ∆中,12OD BC ==, 在Rt ACO ∆中,AO AC ==AOD ∆中, 222cos 23AD OD AO ADO AD OD +-∠==⋅, DABCOEF Hsin 3ADO ∴∠=,在Rt ADH ∆中sin 1AH AD ADO =∠=,设(0CE x x =≤≤,作EF CH F ⊥于,平面AHC ⊥平面B C D ,,EF BCD EDF ∴⊥∠平面就是E D B C D与面所成的角。
四川成都2018届二诊模拟考试数学(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合,,则( )A .B .C .D . 2.若复数(),,且为纯虚数,则在复平面内所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 3.在等比数列中,已知,,则( ) A .12 B .18 C .24 D .364.已知平面向量,夹角为,且,,则与的夹角是( )A .B .C .D .5.若曲线(为常数)不存在斜率为负数的切线,则实数的取值范围是( ) A .B .C .D .6.若实数满足不等式,且的最大值为5,则实数的值为( )A .0B .-1C .-2D .-57.已知是空间中两条不同的直线,是两个不同的平面,且,有下列命题:①若,则;②若,则;③若,且,,则;④若,且,,则,其中真命题的个数是( ) A .0 B .1 C .2 D .3[1,2]A =-2{,}B y x x A =∈A B = [1,4][1,2][1,0]-[0,2]1z a i =+a R ∈21z i =-12z z 1z {}n a 36a =35778a a a ++=5a =a b 3π1a = 12b = 2a b + b 6π56π4π34π2ln y x ax =+a a 1(,)2-+∞1[,)2-+∞(0,)+∞[0,)+∞,x y 22010x y x y y m ++≥⎧⎪+-≤⎨⎪≥⎩x y -m ,m n ,αβ,m n αβ⊂⊂//αβ//m n //αβ//m βl αβ= m l ⊥n l ⊥αβ⊥l αβ= m l ⊥m n ⊥αβ⊥8.已知函数()的反函数的图象经过点,若函数的定义域为,当时,有,且函数为偶函数,则下列结论正确的是( )A .B .C .D .9.执行如图所示的程序框图,若输入的分别为1,2,0.3,则输出的结果为( )A .1.125B .1.25C .1.3125D .1.37510.已知函数()在上单调递减,则的取值范围是( ) A .B .C .D .()x f x a =0,1a a >≠1)2()g x R [2,2]x ∈-()()g x f x =(2)g x+()(3)g g g π<<()(3)g g g π<<(3)()g g g π<<()(3)g g g π<<,,a bc ()sin(2)2sin cos()f x x x ωϕϕωϕ=+-+0,R ωϕ>∈3(,)2ππω(0,2]1(0,]21[,1]215[,]2411.设双曲线()的左右焦点分别为,以为直径的圆与双曲线左支的一个交点为,若以(为坐标原点)为直径的圆与相切,则双曲线的离心率为( ) ABC12.把平面图形上的所有点在一个平面上的射影构成的图形叫做图形在这个平面上的射影,如图,在三棱锥中,,,,,,将围成三棱锥的四个三角形的面积从小到大依次记为,设面积为的三角形所在的平面为,则面积为的三角形在平面上的射影的面积是( )A .B .C .10D .30二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.由直线,,曲线及轴所围成的封闭图形的面积是. 14.已知角的始边是轴非负半轴.其终边经过点,则的值为.15.在直角坐标系中,点,直线,设圆的半径为1,圆心在上,若圆上存在唯一一点,使,则圆心的非零横坐标是.16.数列满足,,且,则的最大值为.2222:1x y C a b-=0,0a b >>12,F F 12,F F P 1OF O 2PF C M 'M M A BCD -BD CD ⊥AB DB ⊥AC DC ⊥5AB DB ==4CD =1234,,,S S S S 2S α4S α2521x =2x =1y x=y 3πα+x 34(,)55P --sin αxOy (0,3)A :24l y x =-C l C M ||2||MA MO =C {}n a 132a >211n n n a a a +=-+2017112i ia ==∑201814a a -三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.中央政府为了对应因人口老龄化而造成的劳动力短缺等问题,拟定出台“延迟退休年龄政策”,为了了解人们对“延迟退休年龄政策”的态度,责成人社部进行调研,人社部从网上年龄在15~65的人群中随机调查50人,调查数据的频率分布直方图和支持“延迟退休”的人数与年龄的统计结果如下:(1)由以上统计数据填下面2×2列联表,并问是否有90%的把握认为以45岁为分界点对“延迟退休年龄政策”的支持度有差异:(2)若从年龄在,的被调查人中各随机选取两人进行调查,记选中的4人中支持“延迟退休”人数为,求随机变量的分布列及数学期望. 参考数据:.18.已知函数在区间上单调递增,在区间上单调递减.如图,四边形中,为的内角的对边,且满足.[45,55)[55,65]ξξ22()()()()()n ad bc k a b c d a c b d -=++++()sin (0)f x x ωω=>[0,]3π2[,]33ππOACB ,,a b c ABC ∆,,A B C 4cos cos sin sin 3sin cos B CB CA Aω--+=(1)证明:;(2)若,设,,,求四边形面积的最大值.19.在斜三棱柱中,侧面平面,,,,是的中点.(1)求证:平面;(2)在侧棱上确定一点,使得二面角的大小为. 20. 已知两点,,动点与两点连线的斜率满足.(1)求动点的轨迹的方程;(2)是曲线与轴正半轴的交点,曲线上是否存在两点,使得是以为直角顶点的等腰直角三角形?若存在,请说明有几个;若不存在,请说明理由.21.已知函数,(,为自然对数的底数).(1)求函数的单调区间;(2)若对任意在上总存在两个不同的,使成立,2b c a +=b c =AOB θ∠=(0)θπ<<22OA OB ==OACB 111ABC A B C -1AC ⊥ABC 1AA =1AC CA AB a ===AB AC ⊥D 1AA CD ⊥1AB 1BB E 11E AC A --3π(2,0)A -(2,0)B P ,A B PA PB k k ,14PA PB k k =-•P E H E y E ,M N HMN ∆H ()(2)(1)2ln f x a x x =---1()xg x xe -=R a ∈e ()f x 0(0,]x e ∈(0,]e (1,2)i x i =0()()i f x g x =求的取值范围.22.直角坐标系中曲线的参数方程为(为参数).(1)求曲线的直角坐标方程;(2)经过点作直线交曲线于两点(在上方),且满足,求直线的方程.a C 4cos 3sin x y θθ=⎧⎨=⎩θC (0,1)M l C ,A B A B ||2||BM AM =l二诊模拟理科答案 一、选择题1-5:DABAD 6-10:CBCDC 11、12:DA二、填空题13.15. 16.三、解答题17.解:(1)由频率分布直方图知,被调查的50人中年龄在45岁以上的人数为,年龄在45岁以下的人数为50-10=40,其中45岁以上支持“延迟退休”的人数为3,45岁以下支持“延迟退休”人数为25,则2×2列联表如下:.所以有90%的把握认为以45岁为分界点对“延迟退休年龄政策”的支持度有差异. (2)由频率分布直方图知,被调查的50人中年龄在和年龄在的人数都为,其中年龄在和年龄在支持: “延迟退休”的人数分布为2,1,故的所有可能取值为0,1,2,3.,,,.所以的分布列是ln 212532-(0.010.01)10500+⨯⨯=2250(257153) 3.429 2.70640102822K ⨯⨯-⨯=≈>⨯⨯⨯[45,55)[55,65]0.0110505⨯⨯=[45,55)[55,65]ξ223422559(0)50C C P C C ξ===1122123434225512(1)25C C C C C P C C ξ+===221112423422553(2)10C C C C C P C C ξ+===1422551(3)25C P C C ξ===ξ所以的期望值是. 18.解:(1)由题意知:,解得:, ∵,∴, ∴, ∴. ∴.(2)因为,,所以,所以为等边三角形,, ∵,∴,当且仅当,即时取最大值,的最大值为.19.(1)证:∵面面,,∴面,即有; 又,为中点,则. ∴面.(2)如图所示以点为坐标系原点,为轴,为轴,建立空间直角坐标系,则有,,,,ξ912015025E ξ=⨯+⨯3162310255+⨯+⨯=243ππω=32ω=sin sin 2cos cos sin cos B C B CA A+--=sin cos sin cos B A C A +=2sin cos sin cos sin A B A C A --sin cos cos sin sin cos B A B A C A ++cos sin 2sin C A A +=sin()sin()2sin A B A C A +++=sin sin 2sin 2C B A b c a +=⇒∴+=2b c a +=b c =a b c ==ABC ∆OACB OAB ABC S S S ∆∆=+=21sin 24OA OB AB θ+•sin θ=+22(2cos )OA OB OA OB θ+-•sin θθ=2sin()3πθ=-(0,)θπ∈2(,)333πππθ-∈-32ππθ-=56πθ=OACBS 24+11ACC A ⊥ABC AB AC ⊥AB ⊥11ACC A AB CD ⊥1AC AC =D 1AA 1CD AA ⊥CD ⊥11ABB A C CA x 1CA z C xyz -(,0,0)A a (,,0)B a a 1(0,0,)A a 1(0,,)B a a,设,且,即有,所以点坐标为.由条件易得面的一个法向量为. 设平面的一个法向量为, 由可得,令,则有, 则,得.所以,当时,二面角的大小为. 20.解:(1)设点的坐标为,则, , 依题意,所以,化简得,所以动点的轨迹的方程为. (2)设能构成等腰直角,其中为,由题意可知,直角边,不可能垂直或平行于轴,故可设所在直线的方程为,(不妨设),则所在直线的方程为. 联立方程,消去整理得,解得. 1(,0,)C a a -(,,)E x y z 1BE BB λ=(,,)(,0,)x a y a z a a λ--=-E ((1),,)a a a λλ-11AC A 1(0,1,0)n =11EAC 2(,,)n x y z =2111n AC n A E⎧⊥⎪⎨⊥⎪⎩ 0(1)(1)0ax ax ay az λλ-=⎧⎨-++-=⎩1y =21(0,1,)1n λ=- 1212cos ||3||||n n n n π==•12=13λ=-1||13||BE BB =-11E AC A --3πP (,)(2)x y x ≠±02PA y k x -=+02PB y k x -=-14PA PBk k =-•1224y y x x =-+-•2214x y +=P E 221(2)4x y x +=≠±HMN ∆H (0,1)HM HN x HM 1y kx =+0k >HN 11y x k=-+22144y kx x y =+⎧⎨+=⎩y 22(14)80k x kx ++=2814M k x k =-+将代入可得,故点的坐标为. 所以. 同理可得,由,得, 所以,整理得,解得或当斜率时,斜率-1;当斜率; 当斜率.综上所述,符合条件的三角形有3个. 21.解:(1),. 1)当,; 2)当,令,; 综上:当时,的单调递减区间是; 当时,的单调递减区间是,单调递增区间是. (2)∵,∴,∴在内递增,在内递减.又∵,,,∴函数在内的值域为.由,得.2814M kx k =-+1y kx =+228114M k y k -=++M 22288(,1)1414k k M k k--+++||HM ==H =||||HM HN =22(4)14k k k +=+324410k k k -+-=2(1)(31)0k k k --+=1k =32k =HM 1k =HN HM k =HN HM k =HN 2(2)2'()2a f x a x x--=--=0x >2a ≥'()0f x <2a <'()0f x =22x a=-2a ≥()f x (0,)+∞2a <()f x 2(0,)2a -2(,)2a+∞-1()xg x xe -=1'()(1)xg x x e-=-()g x (0,1)(1,)e (0)0g =(1)1g =2()0eg e e -=>()g x (0,)e (0,1]()(2)(1)2ln f x a x x =---(2)2'()a x f x x--=①当时,,在上单调递减,不合题意;②当时,令,则;令,则. i )当,即时,在上单调递减,不合题意; ii )当,即时,在上单调递减,在上单调递增.令,,则, ∴在上单调递增,在上单调递减;∴,即在上恒成立. 令,则,设,,则, ∴在内单调递减,在上单调递增,∴,即,∴,∴,即.∴当时,,且在上连续.欲使对任意的在上总存在两个不同的,使成立,则需满足,即. 又∵,∴, ∴.综上所述,. 2a ≥'()0f x <()f x (0,]e 2a <'()0f x >22x a >-'()0f x <202x a<<-22e a ≥-222a e-≤<()f x (0,]e 22e a <-22a e <-()f x 2(0,]2a -2(,]2e a -22()()2ln 22m a f a a a ==---22a e<-'()2a m a a -=-()m a (,0)-∞(0,2]2e-()(0)0m a m ≤=22ln 02a a-≤-(,2)2e -∞-22t a =-0t >1()ln k t t t =+0t >21'()t k t t-=()k t (0,1)(1,)+∞()(1)10k t k ≥=>1ln 0t t +>1ln t t >-1t t e ->232222a a e e a -->>-32(0,)a x e -∈()(2)(1)2ln f x a x x =--->22ln 2(3)1a x a a -->---=()f x (0,]e 0(0,]x e ∈(0,]e (1,2)i x i =0()()i f x g x =()1f e ≥321a e ≤--2322(2)01(1)e e e e e +---=>--23221e e ->--321a e ≤--3(,2]1a e ∈-∞--22.解:(1)由题意:曲线的直角坐标方程为:. (2)设直线的参数方程为(为参数)代入曲线的方程有: ,设点对应的参数分别为,则, 则,, ∴,∴直线的方程为:.C 221169x y +=l cos 1sin x t y =∂⎧⎨=+∂⎩∂C 22(7sin 9)32sin 1280t t ∂++∂-=,A B 12,t t 212t t =-121232sin 97sin t t t ∂+=-=-+∂21212128297sin t t t =-=-+∂•2sin 1∂=l 0x =。
锦江区第三中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1. 设a ,b 为实数,若复数,则a ﹣b=( )A .﹣2B .﹣1C .1D .22. 单位正方体(棱长为1)被切去一部分,剩下部分几何体的三视图如图所示,则( )A .该几何体体积为B .该几何体体积可能为C .该几何体表面积应为+D .该几何体唯一3. 某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天. 甲说:我在1日和3日都有值班; 乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等.据此可判断丙必定值班的日期是( )A .2日和5日B .5日和6日C .6日和11日D .2日和11日4. 高三(1)班从4名男生和3名女生中推荐4人参加学校组织社会公益活动,若选出的4人中既有男生又有女生,则不同的选法共有( )A .34种B .35种C .120种D .140种5. 若f (x )=sin (2x+θ),则“f (x )的图象关于x=对称”是“θ=﹣”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件6. 已知等差数列{a n }中,a 6+a 8=16,a 4=1,则a 10的值是( ) A .15B .30C .31D .647. 函数sin()y A x ωϕ=+在一个周期内的图象如图所示,此函数的解析式为( ) A .2sin(2)3y x π=+B .22sin(2)3y x π=+C .2sin()23x y π=-D .2sin(2)3y x π=-8.过点(﹣1,3)且平行于直线x﹣2y+3=0的直线方程为()A.x﹣2y+7=0 B.2x+y﹣1=0 C.x﹣2y﹣5=0 D.2x+y﹣5=09.四棱锥的八条棱代表8种不同的化工产品,由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为()A.96 B.48 C.24 D.010.复数Z=(i为虚数单位)在复平面内对应点的坐标是()A.(1,3) B.(﹣1,3)C.(3,﹣1)D.(2,4)11.已知x>1,则函数的最小值为()A.4 B.3 C.2 D.112.已知a=,b=20.5,c=0.50.2,则a,b,c三者的大小关系是()A.b>c>a B.b>a>c C.a>b>c D.c>b>a二、填空题13.对于集合M,定义函数对于两个集合A,B,定义集合A△B={x|f A(x)f B(x)=﹣1}.已知A={2,4,6,8,10},B={1,2,4,8,12},则用列举法写出集合A△B的结果为.14.函数f(x)=2a x+1﹣3(a>0,且a≠1)的图象经过的定点坐标是.15.定义:[x](x∈R)表示不超过x的最大整数.例如[1.5]=1,[﹣0.5]=﹣1.给出下列结论:①函数y=[sinx]是奇函数;②函数y=[sinx]是周期为2π的周期函数;③函数y=[sinx]﹣cosx不存在零点;④函数y=[sinx]+[cosx]的值域是{﹣2,﹣1,0,1}.其中正确的是.(填上所有正确命题的编号)x-=垂直的直线的倾斜角为___________.16.(文科)与直线1017.在等差数列{a n}中,a1=7,公差为d,前n项和为S n,当且仅当n=8时S n取得最大值,则d的取值范围为.18.已知命题p:实数m满足m2+12a2<7am(a>0),命题q:实数m满足方程+=1表示的焦点在y轴上的椭圆,且p是q的充分不必要条件,a的取值范围为.三、解答题19.如图,已知椭圆C:+y2=1,点B坐标为(0,﹣1),过点B的直线与椭圆C另外一个交点为A,且线段AB的中点E在直线y=x上(Ⅰ)求直线AB的方程(Ⅱ)若点P为椭圆C上异于A,B的任意一点,直线AP,BP分别交直线y=x于点M,N,证明:OM•ON 为定值.20.坐标系与参数方程线l:3x+4y﹣12=0与圆C:(θ为参数)试判断他们的公共点个数.21.【常熟中学2018届高三10月阶段性抽测(一)】如图,某公司的LOGO图案是多边形ABEFMN,其设计创意如下:在长4cm、宽1c m的长方形ABCD中,将四边形DFEC沿直线EF翻折到MFEN(点F是线段AD上异于D的一点、点E是线段BC上的一点),使得点N落在线段AD上.∆面积;(1)当点N与点A重合时,求NMF-最小时,LOGO最美观,试求此时LOGO图案的面积.(2)经观察测量,发现当2NF MF22.如图,已知AC,BD为圆O的任意两条直径,直线AE,CF是圆O所在平面的两条垂线,且线段AE=CF=,AC=2.(Ⅰ)证明AD⊥BE;(Ⅱ)求多面体EF﹣ABCD体积的最大值.23.(本小题满分12分)已知数列{}n a 的各项均为正数,12a =,114n n n na a a a ++-=+.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n 项和n S .24.(本小题满分10分)选修4-4:坐标系与参数方程 已知曲线C 的参数方程为⎩⎨⎧==ααsin cos 2y x (α为参数),过点)0,1(P 的直线交曲线C 于B A 、两点.(1)将曲线C 的参数方程化为普通方程; (2)求||||PB PA ⋅的最值.锦江区第三中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:,因此.a﹣b=1.故选:C.2.【答案】C【解析】解:由已知中三视图可得该几何体是由一个边长为1的正方体,截掉一个角(三棱锥)得到且该三棱锥有条过同一顶点且互相垂直的棱长均为1该几何体的表面积由三个正方形,有三个两直角边为1的等腰直角三角形和一个边长为的正三角形组成故其表面积S=3•(1×1)+3•(×1×1)+•()2=.故选:C.【点评】本题考查的知识点是由三视图求表面积,其中根据三视图分析出该几何的形状及各边边长是解答本题的关键.3.【答案】C【解析】解:由题意,1至12的和为78,因为三人各自值班的日期之和相等,所以三人各自值班的日期之和为26,根据甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班,可得甲在1、3、10、12日值班,乙在8、9、2、7或8、9、4、5,据此可判断丙必定值班的日期是6日和11日,故选:C.【点评】本题考查分析法,考查学生分析解决问题的能力,比较基础.4.【答案】A【解析】解:从7个人中选4人共种选法,只有男生的选法有种,所以既有男生又有女生的选法有﹣=34种.故选:A.【点评】本题考查了排列组合题,间接法是常用的一种方法,属于基础题5.【答案】B【解析】解:若f(x)的图象关于x=对称,则2×+θ=+kπ,解得θ=﹣+kπ,k∈Z,此时θ=﹣不一定成立,反之成立,即“f(x)的图象关于x=对称”是“θ=﹣”的必要不充分条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,结合三角函数的对称性是解决本题的关键.6.【答案】A【解析】解:∵等差数列{a n},∴a6+a8=a4+a10,即16=1+a10,∴a10=15,故选:A.7.【答案】B【解析】考点:三角函数()sin()f x A xωϕ=+的图象与性质.8.【答案】A【解析】解:由题意可设所求的直线方程为x﹣2y+c=0∵过点(﹣1,3)代入可得﹣1﹣6+c=0 则c=7∴x﹣2y+7=0故选A.【点评】本题主要考查了直线方程的求解,解决本题的关键根据直线平行的条件设出所求的直线方程x﹣2y+c=0.9.【答案】B【解析】排列、组合的实际应用;空间中直线与直线之间的位置关系.【专题】计算题;压轴题.【分析】首先分析题目已知由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,求安全存放的不同方法的种数.首先需要把四棱锥个顶点设出来,然后分析到四棱锥没有公共点的8条棱分4组,只有2种情况.然后求出即可得到答案.【解答】解:8种化工产品分4组,设四棱锥的顶点是P,底面四边形的个顶点为A、B、C、D.分析得到四棱锥没有公共点的8条棱分4组,只有2种情况,(PA、DC;PB、AD;PC、AB;PD、BC)或(PA、BC;PD、AB;PC、AD;PB、DC)那么安全存放的不同方法种数为2A44=48.故选B.【点评】此题主要考查排列组合在实际中的应用,其中涉及到空间直线与直线之间的位置关系的判断,把空间几何与概率问题联系在一起有一定的综合性且非常新颖.10.【答案】A【解析】解:复数Z===(1+2i)(1﹣i)=3+i在复平面内对应点的坐标是(3,1).故选:A.【点评】本题考查了复数的运算法则、几何意义,属于基础题.11.【答案】B【解析】解:∵x>1∴x﹣1>0由基本不等式可得,当且仅当即x﹣1=1时,x=2时取等号“=”故选B12.【答案】A【解析】解:∵a=0.50.5,c=0.50.2,∴0<a<c<1,b=20.5>1,∴b>c>a,故选:A.二、填空题13.【答案】 {1,6,10,12} .【解析】解:要使f A (x )f B (x )=﹣1, 必有x ∈{x|x ∈A 且x ∉B}∪{x|x ∈B 且x ∉A} ={6,10}∪{1,12}={1,6,10,12,}, 所以A △B={1,6,10,12}. 故答案为{1,6,10,12}.【点评】本题是新定义题,考查了交、并、补集的混合运算,解答的关键是对新定义的理解,是基础题. 14.【答案】 (﹣1,﹣1) .【解析】解:由指数幂的性质可知,令x+1=0得x=﹣1,此时f (﹣1)=2﹣3=﹣1, 即函数f (x )的图象经过的定点坐标是(﹣1,﹣1), 故答案为:(﹣1,﹣1).15.【答案】 ②③④【解析】解:①函数y=[sinx]是非奇非偶函数;②函数y=[sinx]的周期与y=sinx 的周期相同,故是周期为2π的周期函数; ③函数y=[sinx]的取值是﹣1,0,1,故y=[sinx]﹣cosx 不存在零点;④函数数y=[sinx]、y=[cosx]的取值是﹣1,0,1,故y=[sinx]+[cosx]的值域是{﹣2,﹣1,0,1}. 故答案为:②③④.【点评】本题考查命题的真假判断,考查新定义,正确理解新定义是关键.16.【答案】3π 【解析】3π. 考点:直线方程与倾斜角.17.【答案】 (﹣1,﹣) .【解析】解:∵S n =7n+,当且仅当n=8时S n取得最大值,∴,即,解得:,综上:d的取值范围为(﹣1,﹣).【点评】本题主要考查等差数列的前n项和公式,解不等式方程组,属于中档题.18.【答案】[,].【解析】解:由m2﹣7am+12a2<0(a>0),则3a<m<4a即命题p:3a<m<4a,实数m满足方程+=1表示的焦点在y轴上的椭圆,则,,解得1<m<2,若p是q的充分不必要条件,则,解得,故答案为[,].【点评】本题考查充分条件、必要条件,一元二次不等式的解法,根据不等式的性质和椭圆的性质求出p,q 的等价条件是解决本题的关键.三、解答题19.【答案】【解析】(Ⅰ)解:设点E(t,t),∵B(0,﹣1),∴A(2t,2t+1),∵点A在椭圆C上,∴,整理得:6t2+4t=0,解得t=﹣或t=0(舍去),∴E(﹣,﹣),A(﹣,﹣),∴直线AB的方程为:x+2y+2=0;(Ⅱ)证明:设P(x0,y0),则,直线AP方程为:y+=(x+),联立直线AP与直线y=x的方程,解得:x M=,直线BP的方程为:y+1=,联立直线BP与直线y=x的方程,解得:x N=,∴OM•ON=|x M||x N|=2•||•||=||=||=||=.【点评】本题是一道直线与圆锥曲线的综合题,考查求直线的方程、线段乘积为定值等问题,考查运算求解能力,注意解题方法的积累,属于中档题.20.【答案】【解析】解:圆C:的标准方程为(x+1)2+(y﹣2)2=4由于圆心C(﹣1,2)到直线l:3x+4y﹣12=0的距离d==<2故直线与圆相交故他们的公共点有两个.【点评】本题考查的知识点是直线与圆的位置关系,圆的参数方程,其中将圆的参数方程化为标准方程,进而求出圆心坐标和半径长是解答本题的关键.21.【答案】(1)215cm 16;(2)24. 【解析】试题分析:(1)设MF x =4x =,则158x =, 据此可得NMF ∆的面积是2115151cm 2816⨯⨯=;试题解析:(1)设MF x =,则FD MF x ==,NF =∵4NF MF +=,4x =,解之得158x =, ∴NMF ∆的面积是2115151cm 2816⨯⨯=; (2)设NEC θ∠=,则2NEF θ∠=,NEB FNE πθ∠=∠=-,∴()22MNF πππθθ∠=--=-,∴112MNNF cos MNFsin cos πθθ===∠⎛⎫- ⎪⎝⎭, MF FD MN tan MNF ==⋅∠=2cos tan sin πθθθ⎛⎫-=- ⎪⎝⎭,∴22cos NF MF sin θθ+-=.∵14NF FD <+≤,∴114cos sin θθ-<≤,即142tan θ<≤, ∴42πθα<≤(4tan α=且,32ππα⎛⎫∈ ⎪⎝⎭), ∴22πθα<≤(4tan α=且,32ππα⎛⎫∈ ⎪⎝⎭),设()2cos f sin θθθ+=,则()212cos f sin θθθ--=',令()0f θ'=得23πθ=, 列表得∴当23πθ=时,2NF MF -取到最小值, 此时,NEF CEF NEB ∠=∠=∠3FNE NFE NFM π=∠=∠=∠=,6MNF π∠=,在Rt MNF ∆中,1MN =,MF =,NF =,在正NFE ∆中,NF EF NE ===,在梯形ANEB 中,1AB =,4AN =43BE =-,∴MNF EFN ABEFMN ABEN S S S S ∆∆=++=六边形梯形1441463233⎛⎫++⨯-⨯=- ⎪ ⎪⎝⎭.答:当2NF MF -最小时,LOGO 图案面积为24. 点睛:求实际问题中的最大值或最小值时,一般是先设自变量、因变量,建立函数关系式,并确定其定义域,利用求函数的最值的方法求解,注意结果应与实际情况相结合.用导数求解实际问题中的最大(小)值时,如果函数在开区间内只有一个极值点,那么依据实际意义,该极值点也就是最值点. 22.【答案】【解析】(Ⅰ)证明:∵BD 为圆O 的直径,∴AB ⊥AD , ∵直线AE 是圆O 所在平面的垂线, ∴AD ⊥AE , ∵AB ∩AE=A , ∴AD ⊥平面ABE , ∴AD ⊥BE ;(Ⅱ)解:多面体EF ﹣ABCD 体积V=V B ﹣AEFC +V D ﹣AEFC =2V B ﹣AEFC . ∵直线AE ,CF 是圆O 所在平面的两条垂线, ∴AE ∥CF ,∥AE ⊥AC ,AF ⊥AC .∵AE=CF=,∴AEFC 为矩形, ∵AC=2, ∴S AEFC=2,作BM ⊥AC 交AC 于点M ,则BM ⊥平面AEFC , ∴V=2V B ﹣AEFC =2×≤=.∴多面体EF ﹣ABCD体积的最大值为.【点评】本题考查线面垂直,线线垂直,考查体积的计算,考查学生分析解决问题的能力,难度中等.23.【答案】(本小题满分12分) 解: (Ⅰ)由114n n n na a a a ++-=+得2214n n a a +-=,∴{}2n a 是等差数列,公差为4,首项为4, (3分)∴244(1)4n a n n =+-=,由0n a >得n a =. (6分)(Ⅱ)∵1112n n a a +==+, (9分)∴数列11n n a a +⎧⎫⎨⎬+⎩⎭的前n 项和为11111)(1)2222n +++=. (12分) 24.【答案】(1)1222=+y x .(2)||||PB PA ⋅的最大值为,最小值为21.【解析】试题解析:解:(1)曲线C 的参数方程为⎩⎨⎧==ααsin cos 2y x (α为参数),消去参数α得曲线C 的普通方程为1222=+y x (3分) (2)由题意知,直线的参数方程为⎩⎨⎧=+=θθsin cos 1t y t x (为参数),将⎩⎨⎧=+=θθsin cos 1t y t x 代入1222=+y x 得01cos 2)sin 2(cos 222=-++θθθt t (6分)设B A ,对应的参数分别为21,t t ,则]1,21[sin 11sin 2cos 1||||||22221∈+=+==⋅θθθt t PB PA . ∴||||PB PA ⋅的最大值为,最小值为21. (10分)考点:参数方程化成普通方程.。
锦江区三中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 下列说法正确的是( )A.圆锥的侧面展开图是一个等腰三角形;B.棱柱即是两个底面全等且其余各面都是矩形的多面体;C.任何一个棱台都可以补一个棱锥使他们组成一个新的棱锥;D.通过圆台侧面上的一点,有无数条母线.2. 在ABC ∆中,内角A ,B ,C 所对的边分别是,,,已知85b c =,2C B =,则cos C =( )A .725B .725- C. 725± D .24253. 已知数列{}n a 是各项为正数的等比数列,点22(2,log )M a 、25(5,log )N a 都在直线1y x =-上,则数列{}n a 的前n 项和为( )A .22n- B .122n +- C .21n - D .121n +-4. 已知集合M={0,1,2},则下列关系式正确的是( ) A .{0}∈M B .{0}∉M C .0∈MD .0⊆M5. 已知A ,B 是以O 为圆心的单位圆上的动点,且||=,则•=( )A .﹣1B .1C .﹣D .6. 下列命题中错误的是( )A .圆柱的轴截面是过母线的截面中面积最大的一个B .圆锥的轴截面是所在过顶点的截面中面积最大的一个C .圆台的所有平行于底面的截面都是圆面D .圆锥所有的轴截面是全等的等腰三角形7. 已知点P (x ,y )的坐标满足条件,(k 为常数),若z=3x+y 的最大值为8,则k 的值为( )A .B .C .﹣6D .68. 设△ABC 的三边长分别为a 、b 、c ,△ABC 的面积为S ,内切圆半径为r ,则,类比这个结论可知:四面体S ﹣ABC 的四个面的面积分别为S 1、S 2、S 3、S 4,内切球半径为r ,四面体S ﹣ABC 的体积为V ,则r=( )A .B .C .D .9. 已知集合A={x|a ﹣1≤x ≤a+2},B={x|3<x <5},则A ∩B=B 成立的实数a 的取值范围是( ) A .{a|3≤a ≤4} B .{a|3<a ≤4} C .{a|3<a <4} D .∅ 10.已知等差数列{a n }中,a 6+a 8=16,a 4=1,则a 10的值是( ) A .15B .30C .31D .6411.某几何体的三视图如下(其中三视图中两条虚线互相垂直)则该几何体的体积为( )A.83 B .4 C.163D .20312.设集合{}|22A x R x =∈-≤≤,{}|10B x x =-≥,则()R AB =ð( )A.{}|12x x <≤B.{}|21x x -≤<C. {}|21x x -≤≤D.{}|22x x -≤≤【命题意图】本题主要考查集合的概念与运算,属容易题.二、填空题13.抛物线y 2=8x 上一点P 到焦点的距离为10,则P 点的横坐标为 .14.设抛物线24y x =的焦点为F ,,A B 两点在抛物线上,且A ,B ,F 三点共线,过AB 的中点M 作y 轴的垂线与抛物线在第一象限内交于点P ,若32PF =,则M 点的横坐标为 . 15.不等式的解为 .16.如图所示,在三棱锥C﹣ABD中,E、F分别是AC和BD的中点,若CD=2AB=4,EF⊥AB,则EF与CD所成的角是.17.给出下列命题:①把函数y=sin(x﹣)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin(2x﹣);②若α,β是第一象限角且α<β,则cosα>cosβ;③x=﹣是函数y=cos(2x+π)的一条对称轴;④函数y=4sin(2x+)与函数y=4cos(2x﹣)相同;⑤y=2sin(2x﹣)在是增函数;则正确命题的序号.18.已知条件p:{x||x﹣a|<3},条件q:{x|x2﹣2x﹣3<0},且q是p的充分不必要条件,则a的取值范围是.三、解答题19.如图,已知五面体ABCDE,其中△ABC内接于圆O,AB是圆O的直径,四边形DCBE为平行四边形,且DC⊥平面ABC.(Ⅰ)证明:AD⊥BC(Ⅱ)若AB=4,BC=2,且二面角A﹣BD﹣C所成角θ的正切值是2,试求该几何体ABCDE的体积.20.如图,四边形ABEF 是等腰梯形,,2,AB EF AF BE EF AB ====ABCD 是矩形,AD ⊥平面ABEF ,其中,Q M 分别是,AC EF 的中点,P 是BM 的中点.(1)求证:PQ 平面BCE ; (2)AM ⊥平面BCM .21.已知向量=(,1),=(cos ,),记f (x )=.(1)求函数f (x )的最小正周期和单调递增区间;(2)将函数y=f (x )的图象向右平移个单位得到y=g (x )的图象,讨论函数y=g (x )﹣k 在的零点个数.22.(本小题满分12分)在△ABC 中,∠A ,∠B ,∠C 所对的边分别是a 、b 、c ,不等式x 2cos C +4x sin C +6≥0对一切实数x 恒 成立.(1)求cos C 的取值范围;(2)当∠C 取最大值,且△ABC 的周长为6时,求△ABC 面积的最大值,并指出面积取最大值时△ABC 的 形状.【命题意图】考查三角不等式的求解以及运用基本不等式、余弦定理求三角形面积的最大值等.23.如图,在四棱锥P ﹣ABCD 中,AD ∥BC ,AB ⊥AD ,AB ⊥PA ,BC=2AB=2AD=4BE ,平面PAB ⊥平面ABCD ,(Ⅰ)求证:平面PED ⊥平面PAC ;(Ⅱ)若直线PE 与平面PAC 所成的角的正弦值为,求二面角A ﹣PC ﹣D 的平面角的余弦值.24.【常熟中学2018届高三10月阶段性抽测(一)】已知函数()()2ln R f x x ax x a =-+-∈.(1)若函数()f x 是单调递减函数,求实数a 的取值范围;(2)若函数()f x 在区间()0,3上既有极大值又有极小值,求实数a 的取值范围.锦江区三中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】C 【解析】考点:几何体的结构特征. 2. 【答案】A 【解析】考点:正弦定理及二倍角公式.【思路点晴】本题中用到了正弦定理实现三角形中边与角的互化,同角三角函数间的基本关系及二倍角公式,如θθθθθ2222sin cos 2cos ,1cos sin -==+,这要求学生对基本公式要熟练掌握解三角形时常借助于正弦定理R CcB b A 2sin sin sin a ===,余弦定理A bc c b a cos 2222-+=, 实现边与角的互相转化. 3. 【答案】C【解析】解析:本题考查等比数列的通项公式与前n 项和公式.22log 1a =,25log 4a =,∴22a =,516a =,∴11a =,2q =,数列{}n a 的前n 项和为21n-,选C .4. 【答案】C【解析】解:对于A 、B ,是两个集合的关系,不能用元素与集合的关系表示,所以不正确; 对于C ,0是集合中的一个元素,表述正确.对于D ,是元素与集合的关系,错用集合的关系,所以不正确. 故选C【点评】本题考查运算与集合的关系,集合与集合的关系,考查基本知识的应用5. 【答案】B【解析】解:由A,B是以O为圆心的单位圆上的动点,且||=,即有||2+||2=||2,可得△OAB为等腰直角三角形,则,的夹角为45°,即有•=||•||•cos45°=1××=1.故选:B.【点评】本题考查向量的数量积的定义,运用勾股定理的逆定理得到向量的夹角是解题的关键.6.【答案】B【解析】解:对于A,设圆柱的底面半径为r,高为h,设圆柱的过母线的截面四边形在圆柱底面的边长为a,则截面面积S=ah≤2rh.∴当a=2r时截面面积最大,即轴截面面积最大,故A正确.对于B,设圆锥SO的底面半径为r,高为h,过圆锥定点的截面在底面的边长为AB=a,则O到AB的距离为,∴截面三角形SAB的高为,∴截面面积S==≤=.故截面的最大面积为.故B错误.对于C,由圆台的结构特征可知平行于底面的截面截圆台,所得几何体仍是圆台,故截面为圆面,故C正确.对于D,由于圆锥的所有母线长都相等,轴截面的底面边长为圆锥底面的直径,故圆锥所有的轴截面是全等的等腰三角形,故D正确.故选:B.【点评】本题考查了旋转体的结构特征,属于中档题.7.【答案】B【解析】解:画出x,y满足的可行域如下图:z=3x+y的最大值为8,由,解得y=0,x=,(,0)代入2x+y+k=0,∴k=﹣,故选B.【点评】如果约束条件中含有参数,可以先画出不含参数的几个不等式对应的平面区域,分析取得最优解是哪两条直线的交点,然后得到一个含有参数的方程(组),代入另一条直线方程,消去x,y后,即可求出参数的值.8.【答案】C【解析】解:设四面体的内切球的球心为O,则球心O到四个面的距离都是R,所以四面体的体积等于以O为顶点,分别以四个面为底面的4个三棱锥体积的和.则四面体的体积为∴R=故选C.【点评】类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.一般步骤:①找出两类事物之间的相似性或者一致性.②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(或猜想).9. 【答案】A【解析】解:∵A={x|a ﹣1≤x ≤a+2}B={x|3<x <5} ∵A ∩B=B ∴A ⊇B∴解得:3≤a ≤4 故选A【点评】本题考查集合的包含关系判断及应用,通过对集合间的关系转化为元素的关系,属于基础题.10.【答案】A【解析】解:∵等差数列{a n }, ∴a 6+a 8=a 4+a 10,即16=1+a 10, ∴a 10=15, 故选:A .11.【答案】【解析】选D.根据三视图可知,该几何体是一个棱长为2的正方体挖去一个以正方体的中心为顶点,上底面为底面的正四棱锥后剩下的几何体如图,其体积V =23-13×2×2×1=203,故选D.12.【答案】B【解析】易知{}{}|10|1B x x x x =-≥=≥,所以()R AB =ð{}|21x x -≤<,故选B.二、填空题13.【答案】 8 .【解析】解:∵抛物线y 2=8x=2px ,∴p=4,由抛物线定义可知,抛物线上任一点到焦点的距离与到准线的距离是相等的,∴|MF|=x+=x+2=10, ∴x=8, 故答案为:8.【点评】活用抛物线的定义是解决抛物线问题最基本的方法.抛物线上的点到焦点的距离,叫焦半径.到焦点的距离常转化为到准线的距离求解.14.【答案】2【解析】由题意,得2p =,(1,0)F ,准线为1x =-,设11(,)A x y 、22(,)B x y ,直线AB 的方程为(1)y k x =-,代入抛物线方程消去y ,得2222(24)0k x k x k -++=,所以212224k x x k ++=,121x x =.又设00(,)P x y ,则01212112()[(1)(1)]22y y y k x k x k =+=-+-=,所以021x k =,所以212(,)P k k.因为0213||112PF x k =+=+=,解得22k =,所以M 点的横坐标为2.15.【答案】 {x|x >1或x <0} .【解析】解:即即x (x ﹣1)>0 解得x >1或x <0故答案为{x|x >1或x <0}【点评】本题考查将分式不等式通过移项、通分转化为整式不等式、考查二次不等式的解法.注意不等式的解以解集形式写出16.【答案】 30° .【解析】解:取AD 的中点G ,连接EG ,GF 则EG DC=2,GFAB=1,故∠GEF 即为EF 与CD 所成的角. 又∵FE ⊥AB ∴FE ⊥GF ∴在Rt △EFG 中EG=2,GF=1故∠GEF=30°.故答案为:30°【点评】此题的关键是作出AD 的中点然后利用题中的条件在特殊三角形中求解,如果一味的想利用余弦定理求解就出力不讨好了.17.【答案】【解析】解:对于①,把函数y=sin (x ﹣)图象上所有点的横坐标缩短到原来的倍,纵坐标不变,得到函数y=sin (2x ﹣),故①正确.对于②,当α,β是第一象限角且α<β,如α=30°,β=390°,则此时有cos α=cos β=,故②错误.对于③,当x=﹣时,2x+π=π,函数y=cos (2x+π)=﹣1,为函数的最小值,故x=﹣是函数y=cos (2x+π)的一条对称轴,故③正确.对于④,函数y=4sin (2x+)=4cos[﹣(2x+)]=4cos (﹣2)=4cos (2x ﹣),故函数y=4sin (2x+)与函数y=4cos (2x ﹣)相同,故④正确.对于⑤,在上,2x ﹣∈,函数y=2sin (2x ﹣)在上没有单调性,故⑤错误,故答案为:①③④.18.【答案】 [0,2] .【解析】解:命题p :||x ﹣a|<3,解得a ﹣3<x <a+3,即p=(a ﹣3,a+3);命题q :x 2﹣2x ﹣3<0,解得﹣1<x <3,即q=(﹣1,3).∵q 是p 的充分不必要条件,∴q ⊊p ,∴,解得0≤a ≤2,则实数a 的取值范围是[0,2].故答案为:[0,2].【点评】本题考查了绝对值不等式的解法、一元二次不等式的解法、充分必要条件的判定与应用,考查了推理能力与计算能力,属于中档题三、解答题19.【答案】【解析】(Ⅰ)证明:∵AB是圆O的直径,∴AC⊥BC,又∵DC⊥平面ABC∴DC⊥BC,又AC∩CD=C,∴BC⊥平面ACD,又AD⊂平面ACD,∴AD⊥BC.(Ⅱ)解:设CD=a,以CB,CA,CD所在直线分别为x轴,y轴,z轴,建立空间直角坐标系,如图所示.则C(0,0,0),B(2,0,0),,D(0,0,a).由(Ⅰ)可得,AC⊥平面BCD,∴平面BCD的一个法向量是=,设=(x,y,z)为平面ABD的一个法向量,由条件得,=,=(﹣2,0,a).∴即,不妨令x=1,则y=,z=,∴=.又二面角A﹣BD﹣C所成角θ的正切值是2,∴.∴=cosθ=,∴==,解得a=2.∴V ABCDE=V E﹣ADC+V E﹣ABC=+=+==8.∴该几何体ABCDE的体积是8.【点评】本题考查了向量相互垂直与数量积的关系证明线面垂直、利用法向量的夹角求出二面角的方法、三棱锥的体积计算公式,考查了空间想象能力,考查了推理能力与计算能力,属于难题.20.【答案】(1)证明见解析;(2)证明见解析.【解析】考点:直线与平面平行的判定;直线与平面垂直的判定.21.【答案】【解析】解:(1)∵向量=(,1),=(cos,),记f(x)=.∴f(x)=cos+=sin+cos+=sin(+)+,∴最小正周期T==4π,2kπ﹣≤+≤2kπ+,则4kπ﹣≤x≤4kπ+,k∈Z.故函数f(x)的单调递增区间是[4kπ﹣,4kπ+],k∈Z;(2))∵将函数y=f(x)=sin(+)+的图象向右平移个单位得到函数解析式为:y=g (x )=sin[(x ﹣+)]+ =sin (﹣)+,∴则y=g (x )﹣k=sin (x ﹣)+﹣k ,∵x ∈[0,],可得:﹣≤x ﹣≤π,∴﹣≤sin (x ﹣)≤1,∴0≤sin (x ﹣)+≤,∴若函数y=g (x )﹣k 在[0,]上有零点,则函数y=g (x )的图象与直线y=k 在[0,]上有交点,∴实数k 的取值范围是[0,].∴当k <0或k >时,函数y=g (x )﹣k 在的零点个数是0;当0≤k <1时,函数y=g (x )﹣k 在的零点个数是2;当k=0或k=时,函数y=g (x )﹣k 在的零点个数是1.【点评】本题是中档题,考查向量的数量积的应用,三角函数的化简求值,函数的单调增区间的求法,函数零点的判断方法,考查计算能力.22.【答案】 【解析】23.【答案】【解析】解:(Ⅰ)∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,AB⊥PA ∴PA⊥平面ABCD结合AB⊥AD,可得分别以AB、AD、AP为x轴、y轴、z轴,建立空间直角坐标系o﹣xyz,如图所示…可得A(0,0,0)D(0,2,0),E(2,1,0),C(2,4,0),P(0,0,λ)(λ>0)∴,,得,,∴DE⊥AC且DE⊥AP,∵AC、AP是平面PAC内的相交直线,∴ED⊥平面PAC.∵ED⊂平面PED∴平面PED⊥平面PAC(Ⅱ)由(Ⅰ)得平面PAC 的一个法向量是,设直线PE 与平面PAC 所成的角为θ,则,解之得λ=±2∵λ>0,∴λ=2,可得P 的坐标为(0,0,2)设平面PCD 的一个法向量为=(x0,y 0,z 0),,由,,得到,令x 0=1,可得y 0=z 0=﹣1,得=(1,﹣1,﹣1)∴cos <,由图形可得二面角A ﹣PC ﹣D 的平面角是锐角,∴二面角A ﹣PC ﹣D 的平面角的余弦值为.【点评】本题在四棱锥中证明面面垂直,并且在线面所成角的正弦情况下求二面角A ﹣PC ﹣D 的余弦值.着重考查了线面垂直、面面垂直的判定定理和利用空间向量研究直线与平面所成角和二面角大小的方法,属于中档题.24.【答案】(1)a ≤2)193a <<. 【解析】试题分析:(1)原问题等价于()0f x '≤对()0,+∞恒成立,即12a x x≤+对()0,+∞恒成立,结合均值不等式的结论可得a ≤(2)由题意可知()2210x ax f x x-+-'==在()0,3上有两个相异实根,结合二次函数根的分布可得实数a 的取值范围是193a <<. 试题解析:(2)∵函数()f x 在()0,3上既有极大值又有极小值,∴()2210x ax f x x-+-'==在()0,3上有两个相异实根, 即2210x ax -+=在()0,3上有两个相异实根,记()221g x x ax =-+,则()()003{ 40030ag g ∆><<>>,得{012 193a a a a -<<<,即193a <<.。