行测数量关系常用公式和技巧
- 格式:doc
- 大小:6.44 MB
- 文档页数:19
(完整版)⾏测数量关系的常⽤公式讲解⾏测常⽤数学公式⼯作效率=⼯作量÷⼯作时间;⼯作时间=⼯作量÷⼯作效率;总⼯作量=各分⼯作量之和;设总⼯作量为1或最⼩公倍数(1)⽅阵问题:1.实⼼⽅阵:⽅阵总⼈数=(最外层每边⼈数)2=(外圈⼈数÷4+1)2=N 2最外层⼈数=(最外层每边⼈数-1)×42.空⼼⽅阵:⽅阵总⼈数=(最外层每边⼈数)2-(最外层每边⼈数-2×层数)2=(最外层每边⼈数-层数)×层数×4=中空⽅阵的⼈数。
★⽆论是⽅阵还是长⽅阵:相邻两圈的⼈数都满⾜:外圈⽐内圈多8⼈。
3.N 边⾏每边有a ⼈,则⼀共有N(a-1)⼈。
4.实⼼长⽅阵:总⼈数=M ×N 外圈⼈数=2M+2N-45.⽅阵:总⼈数=N 2N 排N 列外圈⼈数=4N-4例:有⼀个3层的中空⽅阵,最外层有10⼈,问全阵有多少⼈?解:(10-3)×3×4=84(⼈) (2)排队型:假设队伍有N ⼈,A 排在第M 位;则其前⾯有(M-1)⼈,后⾯有(N-M )⼈ (3)爬楼型:从地⾯爬到第N 层楼要爬(N-1)楼,从第N 层爬到第M 层要爬N M -层。
线型棵数=总长/间隔+1 环型棵数=总长/间隔楼间棵数=总长/间隔-1 (1)单边线形植树:棵数=总长÷间隔+1;总长=(棵数-1)×间隔(2)单边环形植树:棵数=总长÷间隔;总长=棵数×间隔(3)单边楼间植树:棵数=总长÷间隔-1;总长=(棵数+1)×间隔(4)双边植树:相应单边植树问题所需棵数的2倍。
(5)剪绳问题:对折N 次,从中剪M ⼑,则被剪成了(2N×M +1)段⑴路程=速度×时间;平均速度=总路程÷总时间平均速度型:平均速度=21212v v v v +(2)相遇追及型:相遇问题:相遇距离=(⼤速度+⼩速度)×相遇时间追及问题:追击距离=(⼤速度—⼩速度)×追及时间背离问题:背离距离=(⼤速度+⼩速度)×背离时间(3)流⽔⾏船型:顺⽔速度=船速+⽔速;逆⽔速度=船速-⽔速。
行测常用数学公式工作效率=工作量÷工作时间; 工作时间=工作量÷工作效率; 总工作量=各分工作量之和; 设总工作量为1或最小公倍数(1)方阵问题:1.实心方阵:方阵总人数=(最外层每边人数)2=(外圈人数÷4+1)2=N 2最外层人数=(最外层每边人数-1)×42.空心方阵:方阵总人数=(最外层每边人数)2-(最外层每边人数-2×层数)2=(最外层每边人数-层数)×层数×4=中空方阵的人数。
★无论是方阵还是长方阵:相邻两圈的人数都满足:外圈比内圈多8人。
3.N 边行每边有a 人,则一共有N(a-1)人。
4.实心长方阵:总人数=M ×N 外圈人数=2M+2N-45.方阵:总人数=N 2N 排N 列外圈人数=4N-4例:有一个3层的中空方阵,最外层有10人,问全阵有多少人? 解:(10-3)×3×4=84(人) (2)排队型:假设队伍有N 人,A 排在第M 位;则其前面有(M-1)人,后面有(N-M )人 (3)爬楼型:从地面爬到第N 层楼要爬(N-1)楼,从第N 层爬到第M 层要爬N M -层。
线型棵数=总长/间隔+1 环型棵数=总长/间隔 楼间棵数=总长/间隔-1 (1)单边线形植树:棵数=总长÷间隔+1;总长=(棵数-1)×间隔 (2)单边环形植树:棵数=总长÷间隔; 总长=棵数×间隔(3)单边楼间植树:棵数=总长÷间隔-1;总长=(棵数+1)×间隔 (4)双边植树:相应单边植树问题所需棵数的2倍。
(5)剪绳问题:对折N 次,从中剪M 刀,则被剪成了(2N×M +1)段⑴ 路程=速度×时间; 平均速度=总路程÷总时间 平均速度型:平均速度=21212v v v v +(2)相遇追及型:相遇问题:相遇距离=(大速度+小速度)×相遇时间 追及问题:追击距离=(大速度—小速度)×追及时间 背离问题:背离距离=(大速度+小速度)×背离时间 (3)流水行船型:顺水速度=船速+水速; 逆水速度=船速-水速。
公务员考试数量关系快速解题技巧(含公式)第一节代入排除法1.使用范围看题型。
典型题型有多位数(提到具体位数(3、4位数)或出现位数的变化(个位与十位数发生变化))、不定方程(未知数比方程多)、年龄、余数看选项。
选项为一组数(2个数,问法为:分别/各)、可转化为一组数(比例可看成一组数)剩两项。
通过其他条件排除2项时,代入一项获取答案。
2.使用方法优先排除:通过尾数、奇偶、倍数等特性来排除。
直接代入:最值、好算。
(出现最值的先代入最大值、最小值计算;未出现最值时,先代入最好算的)PS:多位数问题优先考虑代入排除法;多次操作的、倒来倒去的优先考虑代入排除。
第二节倍数特性法(从问题入手)题型:出现分数、百分数、比例、倍数且所求与比例有关优先考虑倍数特征1.基础知识法(整除法)——考核较少若A=B*C,则A能被B整除,又能被C整除(考试时B、C假设当成整数)题型:①平均分配物品、平均数;②存在三量关系(总价、单价、数量,路程、速度、时间)常见判定方法:①常见数:口诀法(3、9看各位数字之和,2、5看末位数,4、25看末两位数)②因式分解法:把一个数分成几个互质的数相乘的形式(互质是指除1以外没有其他的公约数,如12=3*4)③拆分法(常用于7、11、13):例如验证395/405/409/416中哪个数能被13整除,先确定数字390,再计算+5/+15/+19/+26对比2.余数法(结合代入排除)题型:平均分实物,最后有剩余/缺少解题核心:多退少补(总量+、总量-)Eg :解析:总量-6=9*部门数,总量+10=11*部门数;有1个部门只能分1包代表着缺10包,代入选项可得知:正确选项为B3.比例型若A/B=m/n (m,n 互质),则的倍数是n m B A ±±的倍数n 是B 的倍数,m 是ANM N A M N A N A N A ++占所有数总和的,则占其他数的占所有数总和的,则占其他数的补充:111 重要提示:若1个总量包含2个比例,单看问题比例无法解决时,用两个比例计算总量第三节 方程法思维:找等量关系、设未知数、列方程、解方程1.普通方程主要在于设未知数: 避免出现分数,设小不设大出现比例避免出现分数,设比例出现高频多个主体,并于列式,设中间量未出现前面三种情况,求谁设谁2.不定方程主要在于怎么解方程(本质在于代入排除):①奇偶性26/2543a.b ,=+=+y x m by ax 如:先考虑奇偶性恰好为一奇一偶时,优当 ②倍数的倍数是,可知如:性奇一偶时,优先倍数特考虑倍数特性恰好为一,有公因子(公因素)时与或当36037m b a ,x y x m by ax =+=+③尾数 271203750b a ,=+=+y x m by ax 如:时,考虑尾数或尾数是或当 ④无以上三种特征时,直接代入选项3.不定方程组①3个未知数、2个方程,且未知数一定为整数(人数、具体事物的个数、本、页、张)方法:先消元(消解系数小的未知数,方便计算)转化为不定方程,再按不定方程求解。
公务员、银行校招笔试行测技巧数量关系常见10大题型及快速解题公式题型一、和倍问题问题描述:已知两数之和及倍数关系,可快速得出这两数。
大+小=和;大=倍×小,则:小=和÷(倍+1);大=倍×小=和-小。
题型二、差倍问题问题描述:已知两数之差及倍数关系,可快速得出这两数大-小=差;大=倍×小,则:小=差÷(倍-1);大=倍×小=差+小。
题型三、和差问题问题描述:已知两数之和及两数之差,可快速得出这两数大+小=和;大-小=差;则:大=(和+差)÷2;小=(和-差)÷2题型四、日期问题问题描述:若2017年7月10日星期三,则2018年8月10日星期几?平年:365=52×7+1平过1;闰年:366=52×7+2闰过2。
题型五、植树问题问题描述:在一个路段上植树,植树方式不同,棵数和段数的关系不同。
①不封闭路段:两端植:棵数=段数+1;一端植:棵数=段数,②两端都不植:棵数=段数-1;③封闭路线:棵数=段数题型六:方阵问题问题描述:已知每一边上的数量,求方阵一圈的个数;已知每一圈的数量,求方阵一边上的个数。
若一圈个数m,一边个数为n。
则m=4n-4;n=(m+4)÷4题型七:火车过桥问题问题描述:在火车车长和桥长已知时,根据车速求时间。
在火车车长和桥长已知时,根据时间求车速完全过桥:车速=(桥长+车长)÷过桥时间完全在桥:车速=(桥长车长)÷过桥时间过大小桥:车速=(大桥小桥)÷时间差题型八:青蛙跳井问题问题描述:已知青蛙每次向上跳5米,向下滑4米,则10米深的井,需要跳几次才能跳出井口?次数=(总长-单长)÷(实际单长)+1解释:总长是指10米;单长是指青蛙的一次跳几米,也就是5米;实际单长是指青蛙实际向上滑了几米,指1米。
题型九:空瓶换水问题问题描述:已知4个空瓶可以换一瓶饮料,则若买36瓶饮料,最多喝多少瓶?N空瓶换1瓶水,相当于买(N-1)喝N瓶。
行测常用数学公式工作效率=工作量÷工作时间; 工作时间=工作量÷工作效率; 总工作量=各分工作量之和; 设总工作量为1或最小公倍数(1)方阵问题:1.实心方阵:方阵总人数=(最外层每边人数)2=(外圈人数÷4+1)2=N 2最外层人数=(最外层每边人数-1)×42.空心方阵:方阵总人数=(最外层每边人数)2-(最外层每边人数-2×层数)2=(最外层每边人数-层数)×层数×4=中空方阵的人数。
★无论是方阵还是长方阵:相邻两圈的人数都满足:外圈比内圈多8人。
3.N 边行每边有a 人,则一共有N(a-1)人。
4.实心长方阵:总人数=M ×N 外圈人数=2M+2N-45.方阵:总人数=N 2N 排N 列外圈人数=4N-4例:有一个3层的中空方阵,最外层有10人,问全阵有多少人? 解:(10-3)×3×4=84(人) (2)排队型:假设队伍有N 人,A 排在第M 位;则其前面有(M-1)人,后面有(N-M )人 (3)爬楼型:从地面爬到第N 层楼要爬(N-1)楼,从第N 层爬到第M 层要爬N M -层。
线型棵数=总长/间隔+1 环型棵数=总长/间隔 楼间棵数=总长/间隔-1 (1)单边线形植树:棵数=总长÷间隔+1;总长=(棵数-1)×间隔 (2)单边环形植树:棵数=总长÷间隔; 总长=棵数×间隔(3)单边楼间植树:棵数=总长÷间隔-1;总长=(棵数+1)×间隔 (4)双边植树:相应单边植树问题所需棵数的2倍。
(5)剪绳问题:对折N 次,从中剪M 刀,则被剪成了(2N×M +1)段⑴ 路程=速度×时间; 平均速度=总路程÷总时间 平均速度型:平均速度=21212v v v v +(2)相遇追及型:相遇问题:相遇距离=(大速度+小速度)×相遇时间 追及问题:追击距离=(大速度—小速度)×追及时间 背离问题:背离距离=(大速度+小速度)×背离时间 (3)流水行船型:顺水速度=船速+水速; 逆水速度=船速-水速。
行测数量关系知识点汇总2024一、数字推理。
1. 等差数列。
- 定义:如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。
- 通项公式:a_n=a_1+(n - 1)d,其中a_n是第n项的值,a_1是首项,n是项数。
- 求和公式:S_n=frac{n(a_1+a_n)}{2}=na_1+(n(n - 1))/(2)d。
- 示例:数列1,3,5,7,9·s是一个首项a_1=1,公差d = 2的等差数列。
2. 等比数列。
- 定义:如果一个数列从第二项起,每一项与它的前一项的比值等于同一个常数,这个数列就叫做等比数列,这个常数叫做等比数列的公比,通常用字母q表示(q≠0)。
- 通项公式:a_n=a_1q^n - 1。
- 求和公式:当q≠1时,S_n=frac{a_1(1 - q^n)}{1 - q};当q = 1时,S_n=na_1。
- 示例:数列2,4,8,16,32·s是一个首项a_1=2,公比q = 2的等比数列。
3. 和数列。
- 定义:通过相邻项相加得到下一项的数列。
- 类型:- 两项和数列:如1,2,3,5,8,13·s,其中a_n=a_n - 1+a_n - 2(n≥3)。
- 三项和数列:例如1,1,2,4,7,13,24·s,a_n=a_n - 1+a_n - 2+a_n - 3(n≥4)。
4. 积数列。
- 定义:通过相邻项相乘得到下一项的数列。
- 类型:- 两项积数列:如2,3,6,18,108·s,其中a_n=a_n - 1× a_n - 2(n≥3)。
- 三项积数列:例如1,2,3,6,36,648·s,a_n=a_n - 1× a_n - 2× a_n - 3(n≥4)。
5. 多次方数列。
- 类型:- 平方数列:1,4,9,16,25·s,通项公式为a_n=n^2。
数量关系一.解题方法1.代入排除法①多位数;②年龄;③不定方程;④“剩”、“余”、“多”出现;⑤比例2.数字特性奇偶运算法则:同奇异偶;①知和求差/知差求和;②有条件的不定方程。
整除判定法则:①能被2(或者5)整除,当且仅当末一位数字能被2(或者5)整除; ②能被4(或者25)整除,当且仅当末两位数字能被4(或者25)整除;③能被8(或者125)整除,当且仅当末三位数字能被8(或者125)整除;④能被3整除,当且仅当各位数字之和能被3整除;⑤能被9整除,当且仅当各位数字之和能被9整除;⑥一个数是11的倍数,当且仅当其奇数位与偶数位之和的差是11的倍数;当题目中出现百分数(浓度、利润率除外)、分数、小数的时候,将其化为最简分数:⑦如果a=m nb ,则a 是m 的倍数,b 是n 的倍数。
3.方程法基本方法原则:①设未知数:a.求的量;b.中间变量。
②找等量关系列方程;③解方程:加减消元法;代入消元法 。
不定方程:无条件,代入排除法;有条件,①奇偶;②尾数;③共同因子。
4.十字交叉法 适用于:溶液问题;A 部门,平均分a ,B 部门,平均分b 。
将质量为A 、浓度为a 的溶液,与质量为B 、浓度为b (a>b )的同种溶液混合,得到浓度为r 的溶液,根据混合前后溶质质量不变,得二.公式类型1.计算问题①尾数法;②公式法:平方差;完全平方;③提取公因子、整体代换最小公倍数:下次同时、下次相遇、再次回到;同期(循环):①先找循环节;②所求循环节,看余数 余同取余,和同加和,差同减差。
(最小公倍数)平方差公式:a ²-b ²=(a +b)(a -b); 立方差公式:a ³±b ³=(a ±b)(a ²∓ab +b ²); 完全平方公式:(a ±b)²=a ²±2ab +b ²;完全立方公式:(a ±b)³=a ³±3a ²b +3ab ²±b ³; 其他:a m ·a n =a m +n ;(a m )n =a mn ;(ab )m =a m b m 分母有理化:=;b m*(m+a) =b a (1m -1m+a );d n(n+d) =1n -1n+d ,当d =1时,1n(n+1) =1n -1n+1等差数列:a n =a 1+(n-1)d ,=na 1+n(n-1)d 2。
复习数量关系总结出的有用公式,希望对大家有帮助。
一、五大方法1.代入法:代入法时行测第一大法,优先考虑,即通过选项代入题干验证是否符合条件。
2.赋值法:对于有些问题,若能根据其具体情况,合理巧妙地对某些元素赋值,特别是赋予确定的特殊值,往往能使问题获得简捷有效的解决。
题干中有分数,比例,或者倍数关系时一般采用赋值法简化计算,赋值法经常应用在如工程问题,行程问题,费用问题等题目中。
3.倍数比例法:若a:b=m:n(m、n互质),则说明:a占m份,是m的倍数;b占n份,是n的倍数;a+b占m+n份,是m+n的倍数;a-b占m-n份,是m-n的倍数。
4.奇偶特性法:两个奇数之和/差为偶数,两个偶数之和/差为偶数,一奇一偶之和/差为奇数;两个数的和/差为奇数,则它们奇偶相反,两个数的和/差为偶数,则它们奇偶相同;两个数的和为奇数,则其差也为奇数,两个数的和为偶数,则其差也为偶数5.方程法:很多数学运算题目都可以采用列方程进行求解。
方程法注意事项:未知数要便于列方程;未知数可以用字母表示,也可以用“份数”,还可以用汉字进行替代。
二、六大题型1.工程问题:工作量=工作效率×工作时间工程问题一般采用赋值法解题。
赋值法有2种应用情况,第一种是题干中已知每个人完成工作的时间,这时我们假设工作量为工作时间的最小公倍数,进而得到每个人的工作效率,从而快速求解;第二种是题干中已知的是每个人工作效率的等量关系,这时我们通过直接赋效率为具体值进行快速求解。
2.行程问题:路程=速度×时间行程问题一般要通过数形结合进行快速求解,常见的解法包括列方程,比例法等。
常考的题型包括相遇问题和追及问题。
相遇问题:路程和=速度和×时间追及问题:路程差=速度差×时间3.溶液问题:浓度=溶质÷溶液溶液问题常见的有两种,一种是溶液的混合,这种问题用公式解决;另外一种是单一溶液的蒸发或稀释,这种题目一般用比例法解决,即利用溶质不变进行求解。
行测公式口诀大全一、数量关系。
(一)数字推理。
1. 等差数列。
- 通项公式:a_n=a_1+(n - 1)d(a_1为首项,d为公差,n为项数)- 口诀:数列等差有规律,首项公差要牢记。
n项数值轻松觅,通项公式来帮你。
2. 等比数列。
- 通项公式:a_n=a_1q^n-1(a_1为首项,q为公比,n为项数)- 口诀:等比数列看公比,首项乘上它幂次。
n项数值由此知,通项公式莫忽视。
(二)数学运算。
1. 工程问题。
- 基本公式:工作总量 = 工作效率×工作时间。
- 口诀:工程问题三要素,总量效率和时间。
已知两者求其一,公式变形来计算。
2. 行程问题。
- 基本公式:路程 = 速度×时间。
- 相遇问题公式:s=(v_1+v_2)t(s为路程,v_1、v_2为两者速度,t为相遇时间)- 追及问题公式:s=(v_1-v_2)t(s为路程,v_1为快者速度,v_2为慢者速度,t 为追及时间)- 口诀:行程问题路速时,相遇追及有公式。
相向速度来求和,同向速度做差之。
3. 利润问题。
- 基本公式:利润 = 售价 - 成本;利润率=(利润)/(成本)×100%;售价 = 成本×(1 + 利润率)- 口诀:利润问题要记清,售价成本和利润。
利润率也很重要,公式之间会变形。
二、资料分析。
(一)增长相关。
1. 增长量。
- 公式:增长量=现期量 - 基期量;增长量=(基期量×增长率)/(1 + 增长率)- 口诀:增长量,有两种,现减基期最普通。
还有基期乘率除一加率,计算准确就成功。
2. 增长率。
- 公式:增长率=(现期量 - 基期量)/(基期量)×100%=(增长量)/(基期量)×100%- 口诀:增长率,分式求,现减基期除以基。
增长量与基期比,概念理解不费力。
(二)比重相关。
1. 比重。
- 公式:比重=(部分量)/(整体量)- 口诀:比重部分比整体,公式简单要牢记。
公务员行测数量关系速算技巧与基础公式在公务员行测考试中,数量关系这一模块常常让考生感到头疼。
但只要掌握了一些速算技巧和基础公式,就能在考试中事半功倍,提高解题效率和准确率。
一、速算技巧1、估算法估算法是在精度要求不太高的情况下,进行粗略估值的速算方法。
通常适用于选项差距较大的题目。
例如,计算“12345÷125”,可以将125 近似看作 100,快速得出结果约为 1200 左右,然后根据选项进行选择。
2、直除法直除法是通过直接相除得到商的首位来确定答案的方法。
当选项的首位数字不同时,使用直除法最为有效。
比如,计算“4567÷5678”,直接用 4567 除以 5678,首位商 0。
3、截位法截位法是对数字进行截位简化计算。
可以分为截前两位、截前三位等。
例如,在计算“3456×2345”时,可以将 3456 截为 3500,2345 截为2300,快速计算 35×23 的结果。
4、化同法化同法是将分子或分母化为相同或相近的数,从而简化计算。
比如,比较“4/5 和7/9”,可以将 4/5 分子分母同时乘以 9,化为 36/45,7/9 分子分母同时乘以 5,化为 35/45,这样就很容易比较大小了。
5、差分法当两个分数比较大小时,如果一个分数的分子和分母都比另一个分数的分子和分母大一点,可以使用差分法。
例如,比较“4/7 和5/8”,5/8 是大分数,4/7 是小分数,差分数为(5 4)/(8 7)= 1。
如果差分数大于小分数,则大分数大于小分数;如果差分数小于小分数,则大分数小于小分数。
二、基础公式1、行程问题(1)基本公式:路程=速度×时间(2)相遇问题:相遇路程=速度和×相遇时间(3)追及问题:追及路程=速度差×追及时间2、工程问题(1)工作总量=工作效率×工作时间(2)合作工作效率=各部分工作效率之和3、利润问题(1)利润=售价成本(2)利润率=利润÷成本×100%(3)售价=成本×(1 +利润率)4、容斥问题(1)两集合容斥:总人数= A + B 既 A 又 B +既非 A 又非 B (2)三集合容斥:总人数= A + B + C (A 与 B 的交集)(A 与 C 的交集)(B 与 C 的交集)+(A、B、C 的交集)5、排列组合问题(1)排列:从 n 个不同元素中取出 m(m≤n)个元素的排列数,记作 A(n,m) = n! /(n m)!(2)组合:从 n 个不同元素中取出 m(m≤n)个元素的组合数,记作 C(n,m) = n! / m!×(n m)!6、植树问题(1)两端都植树:棵数=段数+ 1(2)一端植树:棵数=段数(3)两端都不植树:棵数=段数 17、鸡兔同笼问题(1)假设全是鸡:兔数=(总脚数鸡脚数×总头数)÷(兔脚数鸡脚数)(2)假设全是兔:鸡数=(兔脚数×总头数总脚数)÷(兔脚数鸡脚数)三、实战应用下面通过几个例题来看看如何运用这些速算技巧和基础公式。
行测常用数学公式工作效率=工作量÷工作时间; 工作时间=工作量÷工作效率; 总工作量=各分工作量之和; 设总工作量为1或最小公倍数(1)方阵问题:1.实心方阵:方阵总人数=(最外层每边人数)2=(外圈人数÷4+1)2=N 2最外层人数=(最外层每边人数-1)×42.空心方阵:方阵总人数=(最外层每边人数)2-(最外层每边人数-2×层数)2=(最外层每边人数-层数)×层数×4=中空方阵的人数。
★无论是方阵还是长方阵:相邻两圈的人数都满足:外圈比内圈多8人。
3.N 边行每边有a 人,则一共有N(a-1)人。
4.实心长方阵:总人数=M ×N 外圈人数=2M+2N-45.方阵:总人数=N 2N 排N 列外圈人数=4N-4例:有一个3层的中空方阵,最外层有10人,问全阵有多少人? 解:(10-3)×3×4=84(人) (2)排队型:假设队伍有N 人,A 排在第M 位;则其前面有(M-1)人,后面有(N-M )人 (3)爬楼型:从地面爬到第N 层楼要爬(N-1)楼,从第N 层爬到第M 层要爬N M -层。
线型棵数=总长/间隔+1 环型棵数=总长/间隔 楼间棵数=总长/间隔-1 (1)单边线形植树:棵数=总长÷间隔+1;总长=(棵数-1)×间隔 (2)单边环形植树:棵数=总长÷间隔; 总长=棵数×间隔(3)单边楼间植树:棵数=总长÷间隔-1;总长=(棵数+1)×间隔 (4)双边植树:相应单边植树问题所需棵数的2倍。
(5)剪绳问题:对折N 次,从中剪M 刀,则被剪成了(2N×M +1)段⑴ 路程=速度×时间; 平均速度=总路程÷总时间 平均速度型:平均速度=21212v v v v +(2)相遇追及型:相遇问题:相遇距离=(大速度+小速度)×相遇时间 追及问题:追击距离=(大速度—小速度)×追及时间 背离问题:背离距离=(大速度+小速度)×背离时间 (3)流水行船型:顺水速度=船速+水速; 逆水速度=船速-水速。
行测数量关系49个常用问题公式巧解以下是行测数量关系中常用的49个问题公式:1. 平均数 = 总和 / 数量2. 总和 = 平均数×数量3. 修改后平均数 = 原平均数 + (修改值 / 数量)4. 修改后总和 = 原总和 + 修改值5. 最大值 = (最大值 + 最小值)/ 2 + 差值 / 26. 最小值 = (最大值 + 最小值)/ 2 - 差值 / 27. 标准差 = (各项数据与平均数的离差平方和 / 数据数量)的平方根8. 倒数之和 = (倒数1 + 倒数2 + ... + 倒数n)= n / (1/倒数1 + 1/倒数2 + ... + 1/倒数n)9. 等比数列前n项和 = 首项(1-公比^n)/(1-公比)10. A:B:C = a:b:c时,A所占整体比例 = A / (A+B+C)11. 平均速度 = 总路程 / 时间12. 相对速度 = 两者速度之差13. 时间 = 路程 / 速度14. 追及问题:追及时间 = 初始距离 / (追及者速度 - 被追者速度)15. 折扣 = (原价 - 折扣后价格)/ 原价× 100%16. 单利 = 本金×年利率×时间17. 复利 = 本金×(1 + 年利率)^时间18. 利息 = 本金×年利率×时间19. 现值 = 未来值 / (1 + 折现率)^时间20. 容积 = 底面积×高21. 体积 = 面积×深度22. 超过百分之p的位置 = (n+1)× p /10023. 树形结构问题:总路径数 = 各层路径数相乘24. 几何概型问题:事件发生的总次数 = 该事件所有可能发生情况总数之和25. 组合问题:从n个元素中取出k个元素的组合数 = n! / [k! (n-k)!]26. 排列问题:从n个元素中取出k个元素的排列数 = n! /(n-k)!27. 奇偶性问题:奇数 + 偶数 = 奇数,奇数 + 奇数 = 偶数,偶数 + 偶数 = 偶数28. 奇偶性问题:奇数×奇数 = 奇数,奇数×偶数 = 偶数,偶数×偶数 = 偶数29. 余数问题:被除数 = 除数×商 + 余数30. 最大公约数 = gcd(a,b) = gcd(b, a mod b)31. 最小公倍数 = lcm(a,b) = a×b / gcd(a,b)32. 带分数 = 整数部分 + 真分数部分33. 分母为10的分数 = 分子 / 10^k34. 近似计算:(a±b)×(c±d)≈ac±ad±bc±bd35. 几何平均数 = (a1 × a2 × ... × an)^(1/n)36. 算术平均数≥几何平均数37. 加权平均数 = Σ(各项数据×对应权重)/ 总权重38. 平方和 = 各项数据的平方之和39. 平方根 = 平方和的算术平均根40. 等差数列前n项和 = (首项 + 尾项) ×项数 / 241. 下降百分之p = 原数× (1-p/100)42. 上升百分之p = 原数× (1+p/100)43. 三角形内角和 = 180°44. 直角三角形勾股定理:a^2 + b^2 = c^245. 正弦定理:a/sinA = b/sinB = c/sinC46. 余弦定理:a^2 = b^2 + c^2 - 2bc × cosA47. 正切定理:tanA = a/b48. 韦达定理:x1+x2 = -b/a,x1×x2=c/a49. 对称式:a+b+c = (a+b+c)^2 / 2(ab+bc+ca)。
公务员考试行测数量关系50个常见问题公式法巧解一、页码问题对多少页出现多少1或2的公式如果是X千里找几,公式是1000+X00*3 如果是X百里找几,就是100+X0*2,X有多少个0 就*多少。
依次类推!请注意,要找的数一定要小于X ,如果大于X就不要加1000或者100一类的了,比如,7000页中有多少3 就是1000+700*3=3100(个)20000页中有多少6就是2000*4=8000 (个)友情提示,如3000页中有多少3,就是300*3+1=901,请不要把3000的3忘了二、握手问题N个人彼此握手,则总握手数S=(n-1){a1+a(n-1)}/2=(n-1){1+1+(n-2)}/2=『n^2-n』/2 =N×(N-1)/2 例题:某个班的同学体育课上玩游戏,大家围成一个圈,每个人都不能跟相邻的2个人握手,整个游戏一共握手152次,请问这个班的同学有( )人A、16B、17C、18D、19【解析】此题看上去是一个排列组合题,但是却是使用的多边形对角线的原理在解决此题。
按照排列组合假设总数为X人则Cx取3=152 但是在计算X 时却是相当的麻烦。
我们仔细来分析该题目。
以某个人为研究对象。
则这个人需要握x-3次手。
每个人都是这样。
则总共握了x×(x-3)次手。
但是没2个人之间的握手都重复计算了1次。
则实际的握手次数是x×(x-3)÷2=152 计算的x=19人三,钟表重合公式钟表几分重合,公式为:x/5=(x+a)/60 a时钟前面的格数四,时钟成角度的问题设X时时,夹角为30X ,Y分时,分针追时针5.5,设夹角为A.(请大家掌握)钟面分12大格60小格每一大格为360除以12等于30度,每过一分钟分针走6度,时针走0.5度,能追5.5度。
1.【30X-5.5Y】或是360-【30X-5.5Y】【】表示绝对值的意义(求角度公式)变式与应用2.【30X-5.5Y】=A或360-【30X-5.5Y】=A (已知角度或时针或分针求其中一个角)五,往返平均速度公式及其应用(引用)某人以速度a从A地到达B地后,立即以速度b返回A地,那么他往返的平均速度v=2ab/(a+b )。
数量关系十大知识要点一、行程问题1.核心公式:S二V x T,路程二速度x时间2.平均速度二总路程一总时间3.若物体前一半时间以速度VI运动,后一半时间以速度V2V1+V2运动,则全程平均速度为一^4•若物体前一半路程以VI运动,后一半路程以V2运动,则全程平均速度为2V1V2V1+V25.相遇时间二相遇路程一速度和6.追及时间二追及路程一速度差7.直线多次相遇问题:从两地同时出发的直线多次相遇问题中,第n次相遇时,每个人走的路程等于他第一次所走的路程的(2n-l)倍8.环形相遇问题:环形相遇问题中每次相遇所走的路程之和是一圈。
如果最初从同一点出发,那么第n次相遇时,每个人所走的总路程等于第一次相遇时他所走路程的n倍9.流水问题:顺水速度=船速+水速;逆水速度=船速-水速船速二(顺水速度+逆水速度)一2;水速二(顺水速度-逆水速度)一210•火车过桥问题:火车速度X时间二车长+桥长完全在桥上时间二(桥长-车长)一火车速度二、几何问题札占扌absir<-yj:<ir9-l-EcMn上正方廉-1□-S-a5[C"2(i*£■!L翠行OHA需AZ7S"BH©知irF・+=(f番方体GI S=^(»*bc44c}V-a&cIE方体0V-a15»4IT P1ff]讯糧捧&5Jnf*2zrfti廿・Sh*r+(S列戛戟[£%?A(S炖卫独為1.极限理论平面图形:周长一定,趋近于圆,面积越大面积一定,趋近于圆,周长越小立体图形:表面积一定,越趋近于球,体积越大体积一定,越趋近于球,表面积越小2.三角形常见考点两边之和大于第三边,两边之差小于第三边较小的角对应的边也较小3.内角和:N边形的内角和为(N-2)180°4.几何图形的缩放:对于常见的几何图形,若将其边长变为原来的n倍,则其周长变为原来的n倍,面积变为原来的汩倍,体积变为原来的用倍三、十字交叉Aa+Bb={A+B)x匚整理变形后可得" (a>c>b)A c-i用图示可简单表示为其中c为平均值十字交叉法使用时要注意几点:1.用来解决两者之间的比例关系问题2.得出的比例关系是基数的比例关系3.总均值放中央,对角线上,大数减小数,结果放对角线上四、利润问题进价:商品进货的价格定价:商家根据进价定出的商品出售价格售价:商品实际的出售价格利润:售价与进价的差利润率:利润与进价的百分比折扣:售价与定价之比五、方阵问题1.方阵每层总人数=每边人数*4-42.方阵相邻两层人数相差8,实心方阵最外层每边人数为奇数时,从内到外每层人数依次是1,8,16,24……3.在方阵中,若去掉一行一列,去掉的人数=原来每行人数*2-1若去掉两行两列,去掉的人数=原来每行人数*4-2*24.实心方阵总人数二最外层每边人数N的平方5.空心方阵总人数=最外层每边人数的平方-(最内层每边人数-2)的平方或者利用等差数列求和公式,首项为最外层总人数,公差为-8的等差数列六、浓度问题溶液=溶质+溶剂浓度二溶质三溶液高浓度溶液A 与低浓度溶液B 混合,得到溶液C,那么C 的浓度介于 A 和B 之间。
行测数量关系公式大全
行测中的数量关系是指通过对事物数量的分析和计算来解决问题的方法。
在行测中,关于数量关系的问题非常常见,因此掌握相关的公式和解题方法非常重要。
下面是行测中常用的数量关系公式:
一、基本数量关系公式:
1.两个数的比例关系:两个数a和b的比例关系表示为a:b,可以用分数形式a/b或者百分数形式a%表示。
2.百分数与小数的关系:100%=1或者1%=0.01
3.百分数、小数和分数的转化关系:百分数转化为小数除以100,小数转化为百分数乘以100,分数转化为百分数分子除以分母再乘以100或者分子除以分母再乘以100%。
4. 两个数的倍数关系:如果一个数a是另一个数b的倍数,可以表示成a = nb,其中n是整数。
二、增长和减少关系公式:
1.增长率的公式:增长率=(增长的数量/原来的数量)*100%。
2.减少率的公式:减少率=(减少的数量/原来的数量)*100%。
3.点数和百分数的关系:点数表示的是增长或减少的比例,1个点
=1%。
三、综合数量关系公式:
1.一对一关系:两个集合A和B中的元素一一对应,集合A中的元素个数等于集合B中的元素个数。
即,集合A和集合B的元数相等。
2.多对一关系:集合A中的一个元素对应集合B中的多个元素,集合B中的元素个数小于集合A中的元素个数。
3.多对多关系:集合A中的一个元素对应集合B中的多个元素,而集合B中的一个元素又对应集合A中的多个元素。
集合A和集合B的元素个数都可以不相等。
公务员行政职业能力测试之数量关系数学公式汇总代入与排除法一、倍数特性法(1)2、4、8整除及余数判定基本法则:1.一个数能被2(或5)整除,当且仅当其末一位数能被2(或5)整除;2.一个数能被4(或25)整除,当且仅当其末两位数能被4(或25)整除;3.一个数能被8(或125)整除,当且仅当其末三位数能被8(或125)整除;4.一个数被2(或5)除得的余数,就是其末一位数被2(或5)除得的余数;5.一个数被4(或25)除得的余数,就是其末两位数被4(或25)除得的余数;6.一个数被8(或125)除得的余数,就是其末三位数被8(或125)除得的余数。
(2)3、9整除及余数判定基本法则:1.一个数能被3整除,当且仅当其各位数字和能被3整除;2.一个数能被3整除,当且仅当其各位数字和能被3整除;3.一个数被3除得的余数,就是其各位数字和被3除得的余数;4.一个数被9除得的余数,就是其各位数字和被9除得的余数。
(3)7整除判定基本法则:1.一个数是7的倍数,当且仅当其末一位的两倍,与剩下的数之差为7的倍数;2.一个数是7的倍数,当且仅当其末三位数,与剩下的数之差为7的倍数。
(4)11整除判定基本法则:1.一个数是11的倍数,当且仅当其奇数位之和与偶数位之和做的差为11的倍数;2.一个数是11的倍数,当且仅当其末三位,与剩下的数之差为11的倍数。
(5)13整除判定基本法则:一个数是13的倍数,当且仅当其末三位,与剩下的数之差为13的倍数。
二、比例倍数若a:b=m:n,则说明a占m份,是m的倍数;b占n份,是n的倍数;a+b占m+n份,是m+n的倍数;a-b占m-n份,是m-n的倍数。
三、十字交叉法“十字交叉法”实际上是一种简化方程的形式,凡是符合下图左边方程形式的,都可以用右边的“十字交叉”的形式来简化:Aa+Bb=(A+B)A/B=r-b/a-r→A:ar-br→A/B=r-b/a-rB:ba-r四、极端思维法当试题中出现了“至多”、“至少”、“最多”、“最少”、“最大”、“最小”、“最快”、“最慢”、“最高”、“最低”等字样时,我们通常需要考虑“极端思维法”,即分析题意,构造出满足题意要求的最极端的情形。
第一节 代入排除思想代入排除法:是指将题目的选项直接代入题干当中判断选项正误的方法。
这是处理“客观单选题”非常行之有效的方法,广泛应用到各种题型当中。
第三节 数字特性思想核心提示数字特性法是指不直接求得最终结果,而只需要考虑最终计算结果的某种“数字特性”,从而达到排除错误选项的方法。
掌握数字特性法的关键,是掌握一些最基本的数字特性规律。
(下列规律仅限自然数内讨论)奇偶运算基本法则【基础】奇数±奇数= _________;偶数±偶数= _________;偶数±奇数= _________;奇数±偶数= _________。
【推论】一、任意两个数的和如果是奇数,那么差也是奇数;如果和是偶数,那么差也是偶数。
二、任意两个数的和或差是奇数,则两数奇偶相反;和或差是偶数,则两数奇偶相同。
整除判定基本法则一、能被2、4、8、5、25、125 整除的数的数字特性能被2(或5)整除的数,末一位数字能被2(或5)整除;能被4(或25)整除的数,末两位数字能被4(或5)整除;能被8(或125)整除的数,末三位数字能被8(或125)整除;一个数被2(或5)除得的余数,就是其末一位数字被2(或5)除得的余数一个数被4(或25)除得的余数,就是其末两位数字被4(或25)除得的余数一个数被8(或125)除得的余数,就是其末三位数字被8(或125)除得的余数二、能被3、9 整除的数的数字特性能被3(或9)整除的数,各位数字和能被3(或9)整除。
一个数被3(或9)除得的余数,就是其各位相加后被3(或9)除得的余数。
倍数关系核心判定特征如果a:b = m:n (m,n 互质),则 a 是 m 的倍数;b 是 n 的倍数。
如果a = b nm (m ,n 互质),则 a 是 m 的倍数;b 是 n 的倍数。
如果a:b = m:n (m,n 互质),则a ± b 应该是 m ± n 的倍数。
第一节 代入排除思想代入排除法:是指将题目的选项直接代入题干当中判断选项正误的方法。
这是处理“客观单选题”非常行之有效的方法,广泛应用到各种题型当中。
第三节 数字特性思想核心提示数字特性法是指不直接求得最终结果,而只需要考虑最终计算结果的某种“数字特性”,从而达到排除错误选项的方法。
掌握数字特性法的关键,是掌握一些最基本的数字特性规律。
(下列规律仅限自然数内讨论)奇偶运算基本法则【基础】奇数±奇数= _________;偶数±偶数= _________;偶数±奇数= _________;奇数±偶数= _________。
【推论】一、任意两个数的和如果是奇数,那么差也是奇数;如果和是偶数,那么差也是偶数。
二、任意两个数的和或差是奇数,则两数奇偶相反;和或差是偶数,则两数奇偶相同。
整除判定基本法则一、能被2、4、8、5、25、125 整除的数的数字特性能被2(或5)整除的数,末一位数字能被2(或5)整除;能被4(或25)整除的数,末两位数字能被4(或5)整除;能被8(或125)整除的数,末三位数字能被8(或125)整除;一个数被2(或5)除得的余数,就是其末一位数字被2(或5)除得的余数一个数被4(或25)除得的余数,就是其末两位数字被4(或25)除得的余数一个数被8(或125)除得的余数,就是其末三位数字被8(或125)除得的余数二、能被3、9 整除的数的数字特性能被3(或9)整除的数,各位数字和能被3(或9)整除。
一个数被3(或9)除得的余数,就是其各位相加后被3(或9)除得的余数。
倍数关系核心判定特征如果a:b = m:n (m,n 互质),则 a 是 m 的倍数;b 是 n 的倍数。
如果a = b n m (m ,n 互质),则 a 是 m 的倍数;b 是 n 的倍数。
如果a:b = m :n (m ,n 互质),则a ± b应该是 m ± n 的倍数。
第四节 方程思想核心提示广泛适用于:经济利润类问题、和差倍比问题、行程问题、牛吃草问题、比例问题等。
一、设未知数原则 1.以便于理解为准,设出来的未知数要便于列方程;2.设题目所求的量为未知量。
二、消未知数原则 1.方程组消未知数时,应注意保留题目所求未知量,消去其它未知量;2.消未知数时注重整体代换三、在实际做题时,还可以用有意义的汉字来代替未知数,这样会使题目更加简单直观第二章 初等数学模块第一节 多位数问题核心提示多位数问题常用方法:1.直接代入法在解决多位数问题时显得非常重要。
2.对于数页码问题,解题思路是:把个位页码、十位页码、百位页码分开来数。
页码=数字÷3+36【例1】一个三位数,百位上的数比十位上的数大4,个位上的数比十位上的数大2,这个三位数恰好是后两个数字组成的两位数的21倍,那么,这个三位数是?A .532 B.476C.676 D.735【例3】编一本书的书页,用了270个数字(重复的也算,如页码115用了2个1和1个5共3个数字),问这本书一共有多少页?A. 117 B. 126C. 127D. 189同余问题核心口诀“余同加余,和同加和,差同减差,除数最小公倍数作周期”1、余同:用一个数除以几个不同的数,得到的余数相同,此时该数可以选这个相同的余数,余同取余。
例:“一个数除以4余1,除以5余1,除以6余1”,则取1,表示为60n+1。
例:“一个数除以4余3,除以5余2,除以6余1”,则取7,表示为60n+7。
3、差同:用一个数除以几个不同的数,得到的余数和除数的差相同,此时该数可以选除数的最小公倍数减去这个相同的差数,差同减差。
例:“一个数除以4余1,除以5余2,除以6余3”,则取-3,表示为60n-3。
“表示为60n +1”为一个数,n 可以去常数第三节 星期日期问题核心公式等差数列通项公式:d n a a n⨯-+=)1(1 等差数列求和公式:2)(1n a a s n n⨯+=第一节 平均速度问题等距离平均速度公式:21212v v v v v+=第二节 相遇追及问题相遇追及问题提示: 相遇基本公式:相遇时间=速度之和路程之和 相遇距离S=(大速度+小速度)X 相遇时间 追及基本公式:追及时间速度之差路程之差= 追及距离S=(大速度-小速度)X追及时间 追及距离是固定的,是两者间的距离,不是实际人走的距离。
第三节 流水行船问题核心提示:船速(静水速)+水速=顺水速、船速(静水速)-水速=逆水速船速(静水速)=2-2逆水速顺水速、水速逆水速顺水速=+ 第四节 环形运动问题环形运动问题中:逆向而行,则相邻两次相遇的路程和为周长。
同向而行,则相邻两次相遇的路程差为周长。
第一节 排列组合问题核心提示:排列组合问题是考生最头痛的问题之一,形式多样,对思维的要求相对比较高。
掌握排列组合问题的关键是明确基本概念、熟练基本题型、背诵常用数字。
加法原理:分类用加法 排列:与顺序有关乘法原理:分步用乘法 组合:与顺序无关核心公式: 排列公式:⨯-⨯-⨯=-=)2()1()(n n n m n n P m n !!…⨯)1(+-m n 组合公式:1)2()1()1()2()1(!)!(!⨯⨯-⨯-⨯+-⨯⨯-⨯-⨯=⨯-= m m m m n n n n m m n n C m n第二节 容斥原理 (有重叠问题应用到)容斥原理核心公式:1. 两个集合容斥:满足条件1 的个数+满足条件2 的个数-两个都满足的个数=总个数-两个都不满足的个数2. 三个集合容斥:如果是文字类的三个集合容斥题目,则用图示法解决;如果是图形类的三个集合容斥题目,则用公式解决:|A ∪B ∪C |=|A|+|B |+|C |-|A ∩B |-|B∩C|-|A ∩C |+|A ∩B ∩C|。
【例1】现有50 名学生都做物理、化学实验,如果物理实验做正确的有40人,化学实验做正确的有31人,两种实验都做错的有4人,则两种实验都做对的有多少人?A.27 人 B.25 人C.19 人 D.10 人【例11】三个图形共覆盖的面积为290,其中X、Y 、Z 的面积分别为64、180、160。
X 与Y 、Y 与Z、Z 与X 的重叠面积分别为24、70、36,求阴影部分面积为?A.12 B.16 C.18 D.20【例9】某专业有学生50 人,现开设有甲、乙、丙三门选修课。
有40人选修甲课程,36人选修乙课程,30 人选修丙课程,兼选甲、乙两门课程的有28人,兼选甲、丙两门课程的有26人,兼选乙、丙两门课程的有24人,甲、乙、丙三门课程均选的有20人,问三门课程均未选的有多少人?A.1人B.2人C .3人 D.4人第四节 抽屉原理问题核心提示:处理数学运算当中抽屉原理问题最常用方法:运用“最不利原则”。
12个球放到10个抽屉里满足需要的条件“最不利的”情形,最后+1即可至少数=物体数÷抽屉数的商+1 (这个1如果整除可以不加)第六节 方阵问题核心提示:假设方阵最外层一边人数为N,则:一、最外层人数=(N-1)×4二、实心方阵人数=N×N 边长X 边长=面积第七节 过河青蛙爬井问题“过河”问题提示:一、 需要有一人将船划回;二、 最后一次过河“只去不回”;三、 计算时间的时候多注意是“过一次××分钟”还是“往返一次××分钟”M个人过河,船载N个人,一人划船,共需过河11--N M 次,如果需要三个人划船就-3【例1】有37名红军战士渡河,现仅有一只小船,每次只能载5人,需要几次才能渡完?A.7 次 B.8 次C.9 次 D.10 次第六章 几何问题模块第一节 周长相关问题核心提示:常用周长公式: 正方形周长 C = 4a;长方形周长 C = 2(a+b ) 圆形周长 C = 2πR第二节 面积相关问题常用面积公式:正方形面积2a S = 长方形面积ab S=;圆形面积2R S π= 三角形面积ah S 21=; 平行四边形面积ah S =; 梯形面积h b a S )(21+=; 扇形面积2360R n S π︒=第三节 表面积问题核心提示: 正方形的表面积26a =长方形的表面积ac bc ab 222++=球的表面积224D R ππ== 圆柱的表面积222R rh ππ+=侧面积Rh π2= 第四节 体积问题 核心提示:正方形的体积3a =长方形的体积abc = 球的体积336134D R ππ==圆柱的体积h R 2π= 圆锥的体积h R 231π= 第七章 杂题模块第一节 年龄问题“年龄”问题核心公式:一、每过N 年,每个人都长N 岁。
(适用于简单列方程解答的年龄问题)。
二、两个人的年龄差在任何时候都是固定不变的。
三、直接代入法。
四、两个年龄之间的倍数关系是随着年份的递增而递减的。
五、等差数列解法。
【例1】今年小芳父亲的年龄是小芳的3倍,去年小芳的父亲比小芳大26岁,那么小芳明年多大?A. 16 岁 B. 15 岁C. 14 岁D. 13 岁第二节 经济利润相关问题经济利润相关问题核心公式:一、总价=单价×销售量;总利润=单件利润×销售量二、利润额=售价-成本;利润率=利润/成本=(售价-成本)/成本三、“二折”,即现价为原价的20%,“九折”,即现价为原价的90%【注释】现价为原价的85%,可叫做“八五折”或“八点五折”第三节 牛吃草问题 (比例工程、追及型行程)牛吃草问题核心公式:草场原有草量Y=(N-X)xT =(牛数-每天长草量)×天数追及距离 S =(V 大-V小)xT1. 因为我们不知道牛吃草的速度,不妨假设每头牛每单位时间吃草的量是“1”,牛数也就是牛数每单位时间吃草的量;2. 草场上原有的草量是固定不变的,长草量即每单位时间草的生长速度,一般假设是X,天数泛指时间,小时、天、年等; 3. 这里存在一个重要的识别特征,当考生看到“若用12个注水管注水,9小时可注满水池,若用9 个注水管,24小时可注=(牛数-变量)×时间,且注意牛吃草速度“1”及变量X 的变化形式。
【例1】有一块牧场,可供10头牛吃20天,15头牛吃10天,则它可供多少头牛吃4天?A.20B.25C.30D.35【例3】有一池泉水,泉底均匀不断的涌出泉水,如果用8台抽水机10小时能把全池的水抽干,或者用12台抽水机6小时能把全池的水抽干。
如果用14 台抽水机把全池水抽干则需要的时间是?A.5 小时 B.4小时C.3 小时 D.5.5 小时混合稀释型工程问题发车间隔前后过车(类似等距离平均公式、加权平均)第N次相遇等距离平均公式和等发车间隔,前后过车植树装路灯型《做数列1、先观察5秒有没有各种规律;2、没有发现就做差,而且要做两次差以上才能放弃或另想;50%做差;其他变式、倍比、修正数列,奇偶》偶叫葵花宝典,把偶贴在床头吧,每天入睡之前大声朗诵一遍,你就可以睡觉了,且专治各种健忘、失眠症。