考研数学常用图形求面积
- 格式:pdf
- 大小:204.31 KB
- 文档页数:5
2021年考研数学高数考点解析高等数学作为硕士研究生招生考试的内容之一,主要考查考生对高等数学的基本概念、基本理论、基本方法的理解和掌握以及考生的抽象思维能力、逻辑推理能力、综合运用能力和解决实际问题的能力。
依据数学考试大纲中的考试要求,包新卓老师在下面的表格中简要罗列了高等数学在数学(一)、数学(二)和数学(三)这三个卷种中所涵盖的考试内容。
接下来,包新卓老师就从数学(一)、数学(二)、数学(三)的公共部分开始。
一、函数、极限、连续高等数学在考研中,也被称为微积分学。
微积分学的研究对象是函数,许多重要的概念都需要用极限理论精确定义,因此极限是微积分学的重要基础,这部分内容对后续内容的学习影响深远,故应重点掌握。
在这一部分,由于数学(一)、数学(二)、数学(三)的考试要求完全一样,故这里不做分类。
考纲内容:1、函数的概念及表示法、函数关系的建立;2、函数的有界性、单调性、周期性和奇偶性;3、复合函数、反函数、分段函数和隐函数;4、基本初等函数的性质及其图形,初等函数;5、数列极限与函数极限的定义及其性质;6、函数的左极限和右极限;7、无穷小量和无穷大量的概念及其关系,无穷小量的性质及无穷大量的比较;8、极限的四则运算:掌握极限的四则运算法则;9、极限存在的两个准则(单调有界准则和夹逼准则),两个重要极限;10、函数连续的概念,函数间断点的类型;11、初等函数的连续性,闭区间上连续函数的性质;根据往年改卷反馈回来的数据可知,大部分考生对函数、极限、连续这一部分的内容普遍掌握得比较好,但由于这部分内容与后续内容多有交叉,因此考生要注意前后知识的融会贯通。
二、一元函数微分学一元函数微分学不仅在微积分的学习中占有着极其重要的地位,而且它也是考研数学考查的重点。
在这里,对于数学(一)和数学(二)单独考点,包新卓老师会在相应的内容后面予以标出,未做任何标出的内容则为数学(一)、数学(二)、数学(三)的公共考点。
几何图形的面积计算几何图形的面积计算是数学中非常重要的一部分,它涉及到了诸多的几何知识和计算方法。
在几何学中,面积是用来描述平面图形所占的空间大小的一个指标。
不同的几何图形有不同的面积计算公式,下面将会一一介绍各个常见几何图形的面积计算方法。
一、矩形的面积计算矩形是最简单的几何图形之一,它的面积计算公式是:面积 = 长 ×宽。
例如,一个矩形的长为5cm,宽为3cm,那么它的面积 = 5cm ×3cm = 15cm²。
二、三角形的面积计算三角形也是常见的几何图形,它的面积计算公式是:面积 = 1/2 ×底边长 ×高。
例如,一个三角形的底边长为4m,高为6m,那么它的面积 = 1/2 ×4m × 6m = 12m²。
三、圆形的面积计算圆形是一种特殊的几何图形,其面积计算公式是:面积= π × 半径²。
其中,π是一个无理数,约等于3.14159。
半径是圆的半径长度。
例如,一个圆的半径为5cm,那么它的面积 = 3.14159 × 5cm × 5cm= 78.54cm²。
四、正方形的面积计算正方形是边长相等的矩形,因此它的面积计算公式与矩形相同,即:面积 = 边长 ×边长。
例如,一个正方形的边长为7cm,那么它的面积 = 7cm × 7cm =49cm²。
五、梯形的面积计算梯形也是一种常见的几何图形,它的面积计算公式是:面积 = 1/2 ×(上底 + 下底) ×高。
例如,一个梯形的上底为4cm,下底为8cm,高为5cm,那么它的面积 = 1/2 × (4cm + 8cm) × 5cm = 30cm²。
六、圆环的面积计算圆环是由两个同心圆围成的区域,它的面积计算公式是:面积= π× (外圆半径² - 内圆半径²)。
图形求解面积技巧图形求解面积是几何学中的基本内容,根据不同的图形形状,求解面积的方法也不同。
在解题过程中,我们可以利用一些技巧来更快地求解面积。
以下是一些常见的图形求解面积的技巧。
一、矩形和正方形的面积求解技巧矩形和正方形是最简单的图形,其面积求解公式是直接应用的,即面积等于长度乘以宽度。
如果给定的是边长,可以根据给定的边长求解面积。
二、三角形的面积求解技巧三角形的面积求解有多种方法。
常见的方法有:1. 正直角三角形的面积求解:对于直角三角形,可以利用两条直角边的长度来求解面积,公式为面积等于直角边乘以直角边除以2。
2. 任意三角形的面积求解:根据三角形的海伦公式,可以利用三条边长来求解面积,公式为面积等于根号下(p * (p - a) * (p - b) * (p - c)),其中 p 为半周长,p = (a +b + c) / 2。
三、圆的面积求解技巧圆的面积求解需要用到圆周率π。
常见的圆的面积求解方法有:1. 根据半径求解圆的面积:对于给定半径的圆,可以直接用公式面积等于π乘以半径的平方来求解。
2. 根据直径求解圆的面积:如果给定的是圆的直径,可以先将直径除以2得到半径的长度,然后利用公式面积等于π乘以半径的平方来求解面积。
四、梯形的面积求解技巧梯形的面积求解需要利用梯形的上底、下底和高。
常见的梯形的面积求解方法有:1. 根据上底和下底求解梯形的面积:对于给定上底、下底和高的梯形,可以利用公式面积等于上底加下底乘以高除以2来求解面积。
2. 根据对角线和高求解梯形的面积:如果给定的是梯形的对角线和高的长度,可以利用公式面积等于对角线之和乘以高除以2来求解面积。
五、平行四边形的面积求解技巧平行四边形的面积求解需要利用平行四边形的底和高。
常见的平行四边形的面积求解方法有:1. 根据底和高求解平行四边形的面积:对于给定底和高的平行四边形,可以利用公式面积等于底乘以高来求解面积。
2. 根据对角线和夹角求解平行四边形的面积:如果给定的是平行四边形的对角线和夹角,可以利用公式面积等于对角线之积乘以夹角的正弦值来求解面积。
高数部分:(配同济六版教材)第一章函数与极限(考研必考章节,其中求极限是本章最重要的内容,要掌握求极限的集中方法)第一节映射与函数(一般章节)一、集合(不用看)二、映射(不用看)三、函数(了解)注:P1--5 集合部分只需简单了解P5--7不用看P7--17 重点看一下函数的四大性态:单调、奇偶、周期、有界P17--20 不用看P21 习题1.11、2、3大题均不用做4大题只需做(3)(5)(7)(8)5--9 均做10大题只需做(4)(5)(6)11大题只需做(3)(4)(5)12大题只需做(2)(4)(6)13做14不用做 15、16重点做17--20应用题均不用做第二节数列的极限(一般章节本章用极限定义证的题目考纲不作要求,可不看) 一、数列极限的定义(了解)二、收敛极限的性质(了解)P26--28 例1、2、3均不用证p28--29 定理1、2、3的证明不用自己证但要会理解P30 定理4不用看P30--31 习题1-21大题只需做(4)(6)(8)2--6均不用做第三节(一般章节)(标题不再写了对应同济六版教材标题一、(了解)二、(了解)P33--34 例1、2、3、4、5只需大概了解即可P35 例6 要会做例7 不用做P36--37 定理2、3证明不用看定理3?4”完全不用看p37习题1--31--4 均做5--12 均不用做第四节(重要)一、无穷小(重要)二、无穷大(了解)p40 例2不用做p41 定理2不用证p42习题1--41做2--5 不全做6 做7--8 不用做第五节(注意运算法则的前提条件是各自存在)p43 定理1、2的证明要理解p44推论1、2、3的证明不用看p48 定理6的证明不用看p49 习题1--51题只需做(3)(6)(7)(8)(10)(11)(13)(14)2、3要做4、5重点做6不做第六节极限存在准则(重要) 两个重要极限(重要两个重要极限要会证明p50 准则1的证明要理解p51 重要极限一定要会独立证明(经典重要极限)p53另一个重要极限的证明可以不用看p55--56柯西极限存在准则不用看p56习题1--71大题只做(1)(4)(6)2全做3不用做4全做,其中(2)(3)(5)重点做第七节(重要)p58--59 定理1、2的证明要理解p59 习题1--7 全做第八节(基本必考小题)p60--64 要重点看第八节基本必出考题p64 习题1--81、2、3、4、5要做其中4、5要重点做6--8不用做第九节(了解)p66--67 定理3、4的证明均不用看p69 习题1--91、2要做3大题只做(3)——(6)4大题只做(4)——(6)5、6均要重点做第十节(重要,不单独考大题,但考大题会用到)一、(重要)二、(重要)p72三、一致连续性(不用看)p74习题1--101、2、3、5要做,要会用5的结论。
图形的面积计算方法面积是图形的一个重要属性,它描述了图形所占有的平面区域的大小。
计算图形的面积是数学中一个基本的问题,而不同类型的图形有不同的面积计算方法。
本文将为您介绍几种常见图形的面积计算方法。
一、长方形的面积计算方法长方形是一种矩形,它的两边长度不同,但相邻两边分别相等。
长方形的面积计算方法非常简单,只需要将长方形的长度与宽度相乘即可计算得出。
设长方形的长度为l,宽度为w,则其面积S可以表示为:S = l × w。
二、正方形的面积计算方法正方形是一种特殊的长方形,它的四条边长度都相等。
正方形的面积计算方法与长方形类似,也是将正方形的边长平方即可。
设正方形的边长为a,则其面积S可以表示为:S = a × a = a²。
三、三角形的面积计算方法三角形是由三条边所围成的图形,它没有平行边。
计算三角形的面积需要使用三角形的底和高的长度。
设三角形的底为b,高为h,则其面积S可以表示为:S = 1/2 × b × h。
四、圆形的面积计算方法圆形是一个完全由曲线所围成的图形,其特点是任意两点到圆心的距离都相等。
计算圆形的面积需要使用圆的半径。
设圆的半径为r,则其面积S可以表示为:S = π × r²,其中π是一个常数,近似取值为3.14159。
五、梯形的面积计算方法梯形是一个由两条平行边和两条非平行边所围成的图形。
计算梯形的面积需要使用梯形的上底、下底及高的长度。
设梯形的上底为a,下底为b,高为h,则其面积S可以表示为:S = 1/2 × (a + b) × h。
六、其他图形的面积计算方法除了上述几种常见图形外,还有许多其他类型的图形,如圆环、扇形、多边形等。
这些图形的面积计算方法不在本文的讨论范围内,但是它们的面积计算方法一般都可以通过将图形划分为若干个已知面积的基本图形来计算。
综上所述,计算图形的面积需要根据图形的类型选择相应的面积计算方法。
数学图形面积的知识点总结一、基本概念1.1 面积面积是指平面图形所围成的区域大小,用于描述图形的大小和形状。
在数学中,面积通常用于描述二维图形的大小,比如矩形、三角形、圆等。
面积通常用单位平方来表示,例如平方米、平方厘米等。
1.2 单位面积单位面积是指用于计量面积的标准单位,通常用平方米(m²)作为国际标准单位。
其他常用的单位面积包括平方厘米(cm²)、平方分米(dm²)、平方千米(km²)等。
1.3 图形在数学中,图形是指可以用线段和曲线相互连接的点组成的集合。
常见的图形包括直线、圆、多边形等。
二、常见图形的面积计算方法2.1 矩形的面积计算矩形的面积计算公式为:面积 = 长 × 宽。
其中,长和宽分别表示矩形的两条边的长度。
2.2 正方形的面积计算正方形是一种特殊的矩形,它的四条边相等。
正方形的面积计算公式为:面积 = 边长 × 边长。
2.3 三角形的面积计算三角形的面积计算公式为:面积 = 底边长 × 高 ÷ 2。
其中,底边长表示三角形的底边的长度,高表示从顶点到底边的垂直距离。
2.4 梯形的面积计算梯形的面积计算公式为:面积 = 上底长 + 下底长 × 高 ÷ 2。
其中,上底长和下底长分别表示梯形的上底和下底的长度,高表示梯形的高度。
2.5 圆的面积计算圆的面积计算公式为:面积= π × 半径的平方。
其中,π表示圆周率,半径表示圆的半径长度。
2.6 正多边形的面积计算正多边形是一种边数相等、边长相等的多边形。
正多边形的面积计算公式为:面积 = 1/4× n × 边长的平方× cot(π/n)。
其中,n表示正多边形的边数,边长表示正多边形的边长。
三、特殊图形的面积计算3.1 梯形的面积计算不规则图形的面积计算通常通过分解成规则图形来解决。
将不规则图形分成若干个三角形、矩形或者其他规则图形,并分别计算他们的面积,再将这些面积相加,就得到了整个图形的面积。
常见几何图形的面积计算在我们的日常生活和学习中,几何图形无处不在,而计算它们的面积是一项重要的技能。
无论是在装修房屋时计算地板的面积,还是在农业中计算田地的面积,又或者是在数学考试中解答相关题目,都需要我们掌握常见几何图形面积的计算方法。
下面,让我们一起来了解一下几种常见几何图形的面积计算吧。
首先,我们来看看矩形(包括正方形)。
矩形的面积计算非常简单,只需要用长乘以宽就可以了。
假设一个矩形的长是 5 米,宽是 3 米,那么它的面积就是 5×3 = 15 平方米。
正方形是一种特殊的矩形,它的四条边长度相等。
如果正方形的边长是 4 米,那么它的面积就是 4×4= 16 平方米。
接下来是三角形。
三角形的面积计算稍微复杂一点,需要用底乘以高再除以 2。
比如一个三角形的底是 6 米,高是 4 米,那么它的面积就是 6×4÷2 = 12 平方米。
这里要注意,底和高必须是相互垂直的。
再说说平行四边形。
平行四边形的面积计算方法和矩形类似,用底乘以高。
假设有一个平行四边形,底是 7 米,高是 3 米,它的面积就是 7×3 = 21 平方米。
梯形也是常见的几何图形之一。
梯形的面积计算公式是(上底+下底)×高÷2。
例如一个梯形的上底是 2 米,下底是 6 米,高是 4 米,那么它的面积就是(2 + 6)×4÷2 = 16 平方米。
圆形在生活中的应用也很广泛,比如计算圆形花坛的面积。
圆的面积计算公式是π×半径的平方。
π通常取 314 左右。
如果一个圆的半径是 3 米,那么它的面积就是 314×3×3 = 2826 平方米。
在实际应用中,我们可能会遇到一些组合图形,需要把它们分割成我们熟悉的基本几何图形,分别计算面积后再相加或相减。
比如,有一个图形是由一个矩形和一个三角形组成的。
矩形的长是5 米,宽是 4 米;三角形的底是 3 米,高是 2 米。
各种形的面积计算面积计算是数学中的一个重要概念,广泛应用于几何学、物理学、工程学等领域。
不同形状的物体,其面积计算方法也各不相同。
本文将介绍一些常见形状的面积计算方法,包括矩形、三角形、圆形、梯形和正多边形。
一、矩形的面积计算矩形是最常见的形状之一,其面积计算方法非常简单。
给定矩形的长为L,宽为W,其面积S可以通过公式S = L * W来计算。
例如,一个长为5米,宽为3米的矩形的面积为15平方米。
二、三角形的面积计算三角形是另一种常见的形状,它有多种计算方法。
其中最常用的方法是通过底边长和高来计算。
给定三角形的底边长为b,高为h,其面积可以通过公式S = (1/2) * b * h来计算。
例如,一个底边长为6米,高为4米的三角形的面积为12平方米。
三、圆形的面积计算圆形是一种特殊的形状,其面积计算方法与其他形状有所不同。
给定圆的半径为r,其面积可以通过公式S = π * r^2来计算,其中π是一个常数,约等于3.14159。
例如,一个半径为2米的圆的面积约为12.57平方米。
四、梯形的面积计算梯形是一个有两个平行底边和两个不平行的侧边的四边形。
给定梯形的上底长为a,下底长为b,高为h,其面积可以通过公式S = (a + b) * h / 2来计算。
例如,一个上底长为6米,下底长为4米,高为3米的梯形的面积为15平方米。
五、正多边形的面积计算正多边形是一个有n个等边等角的边的多边形。
给定正多边形的边长为s,其面积可以通过公式S = (n * s^2) / (4 * tan(π/n))来计算,其中n为边的个数,tan是一个三角函数。
例如,一个边长为3米的六边形的面积约为23.38平方米。
通过上述例子,我们可以了解到不同形状的面积计算方法。
需要注意的是,在实际计算中,单位要保持一致,并且准确测量相关参数。
此外,对于更复杂的形状,可以将其分解为基本形状的组合来计算其面积。
综上所述,各种形状的面积计算方法不尽相同,需要根据具体形状的特点选择合适的计算方法。
考研数学一分类真题一元函数积分学(总分:65.00,做题时间:90分钟)一、{{B}}填空题{{/B}}(总题数:14,分数:26.00)1.由曲线y=lnx与两直线y=(e+1)-x及y=0所围成的平面图形的面积是______.(分数:2.00)填空项1:__________________ (正确答案:[*].)解析:这种求面积问题一般先画草图(见下图),然后确定积分表达式.[*] 解1 令lnx=0,得x=1;令e+1-x=0,得x=e+1;令lnx=e+1-x,得x=e.则所求面积为 [*] 解2 对y积分,则所求面积为 [*] 本题主要考查利用定积分求面积,显然解2较解1方便.2.设f(x)f(7)=______.(分数:2.00)填空项1:__________________ (正确答案:[*].)解析:解等式[*]f(t)dt=x两边对x求导,得3x2f(x3-1)=1.令x=2,得12f(7)=1,f(7)=[*]本题主要考查变上限积分求导.3.设f(x)是连续函数,且f(x)=______.(分数:2.00)填空项1:__________________ (正确答案:x-1.)解析:解1 令[*],则f(x)=x+2a.将f(x)=x+2a代入[*],得[*],即[*]+2a=a,由此可得a=[*] 则f(x)=x-1 解2 等式f(x)=x+[*]两端从0到1对x积分得 [*] 即 [*],由此可知从而可知 f(x)=x-1.本题主要考查定积分的计算.本题的关键是要注意[*]是个常数,只要定出这个常数,f(x)便可求得.4.>0)的单调减少区间为______.(分数:2.00)填空项1:__________________ (正确答案:[*].)解析:解F'(x)=[*](x>0) 令[*],解得[*].则F(x)单调减少区间为[*] 本题主要考查变上限求导和函数单调性的判定..(分数:2.00)填空项1:__________________ (正确答案:[*].)解析:解由于[*] 所以 [*] 本题主要考查变上限积分求导..(分数:2.00)填空项1:__________________ (正确答案:sinx2.)解析:解令x-t=u,则 [*] 本题主要考查定积分变量代换和变上限积分求导..(分数:2.00)填空项1:__________________ (正确答案:[*].)解析:解1 [*]△解2 由定积分的几何意义知,积分[*]应等于圆x2+y2=2x围成面积的[*],此圆半径为1,其面积为[*],故[*].本题主要考查定积分换元法(解1),但显然解2最好..(分数:2.00)填空项1:__________________ (正确答案:1)解析:解 [*] 本题主要考查广义积分计算.9.已知f'(e x)-xe-x,且f(1)=0,则f(x)=______.(分数:2.00)填空项1:__________________ (正确答案:[*])解析:解令e x=t,则x=Int,代入f'(e x)=xe-x得[*]由f(1)=0知,C=0,故f(x)=[*]本题主要考查对f'(e x)的理解和不定积分.解决此类问题的方法是先作变量代换求出f'(t),然后积分便可求得f(t)..(分数:1.00)填空项1:__________________ (正确答案:[*].)解析:解1 [*] 解2 令[*],则 [*] 本题主要考查计算定积分的分部积分法..(分数:2.00)填空项1:__________________ (正确答案:-4π)解析:解令[*],则x=t2,dx=2tdt原式=[*]=-4π本题主要考查定积分的计算方法.重点是两种方法,即换元积分法和分部积分法.12.s=______.(分数:2.00)填空项1:__________________ (正确答案:[*].)解析:解[*] 则 [*] 本题主要考查平面曲线弧长计算和变上限积分求导.(分数:2.00)填空项1:__________________ (正确答案:[*])解析:解1 由于[*]令x-1=sint, 则dt=costdt[*]解2 由于[*]令x-1=t, 则dx=dt[*]本题是一道定积分计算的基本题,用到定积分计算中很多常用方法和结论、换元法(x-1=sint, x-1=t), 其中结论[*][*]定积分几何意义:[*](单位圆x2+y2≤1面积的[*])..(分数:1.00)填空项1:__________________ (正确答案:(ln2).)解析:[*] 本题主要考查反常积分的计算.二、{{B}}选择题{{/B}}(总题数:19,分数:19.00)15.设f(x)s>0,t>0,则I的值 ______∙ A.依赖于s和t.∙ B.依赖于s.t,x.∙ C.依赖于t和x,不依赖于s.∙ D.依赖于s,不依赖于t.(分数:1.00)A.B.C.D. √解析:解 [*] 由此可见,I的值只与S有关,所以应选D.本题主要考查定积分的概念和变量代换.16.设f(x)是连续函数,且F'(x)等于 ______∙ A.-e-x f(e-x)-f(x)∙ B.-e-x f(e-x)+f(x)∙ C.e-x f(e-x)-f(x)∙ D.e-x f(e-x)+f(x)(分数:1.00)A. √B.C.D.解析:解由[*]可知F'(x)=-e-x f(e-x)-f(x)故应选A.本题主要考查变上限积分求导.17.x→0时,f(x)是g(x)的 ______∙ A.等价无穷小.∙ B.同阶但非等价的无穷小.∙ C.高阶无穷小.∙ D.低阶无穷小.(分数:1.00)A.B. √C.D.解析:解因为[*] 所以,当x→0时,f(x)与g(x)是同阶但非等价的无穷小.本题主要考查无穷小量阶的比较和变上限积分求导.18.双纽线(x2+y2)2=x2-y2所围成的区域面积可用定积分表示为______A.. B..C.. D.(分数:1.00)A. √B.C.D.解析:双纽线(x2+y2)2=x2-y2所围成的图形关于y轴和x轴都对称.因此,所求面积应为第一象限的4倍.而在计算双纽线围成的面积时应用极坐标方程r2=cos2θ,并且应特别注意在第一象限θ的取值范围应是0≤θ≤[*],而不是0≤θ≤[*].解设双纽线在第一象限围成的面积为S1,则[*]所求面积为 [*]所以应选A.本题主要考查平面图形的面积计算.19. ______∙ A.N<P<M.∙ B.M<P<N.∙ C.N<M<P.∙ D.P<M<N.(分数:1.00)A.B.C.D. √解析:注意本题中所给三个定积分的积分区间都是关于原点对称,因此首先应考虑被积函数的奇偶性.解由被积函数的奇偶性可知 M=0 N=[*] P=[*] 因此P<M<N,故应选D.本题主要考查关于原点对称区间上奇偶函数积分的性质.20.设f(x)有连续导数,f(0)=0,f'(0)≠0,x→0时,F'(x)与x k是同阶无穷小,则k 等于 ______∙ A.1.∙ B.2.∙ C.3.∙ D.4.(分数:1.00)A.B.C. √D.解析:解1 F(x)=[*]F'(x)=[*][*]由于[*]=f'(0)≠0,而上式右端极限存在且为非零常数,则k=3,所以应选C.解2 由原题知当x→0时,F'(x)与x k为同阶无穷小,换句话说,当x→0时,F'(x)是x的k阶无穷小,本题要决定k,即要决定当x→0时,F'(x)是x的几阶无穷小,如果能决定F(x)是x的几阶无穷小,降一阶就应是F'(x)的阶数.下面来决定F(x)是x的几阶无穷小.由于f(t)=f(0)+f'(0)t+o(t)=f(0)t+o(t)由于上式中第二项o(t)是高阶无穷小,略去它不影响F(x)的阶数,则x→0时,[*]与F(x)的阶数相同,而[*]显然它是x的四阶无穷小。