可变气门正时系统(VECT)
- 格式:ppt
- 大小:570.50 KB
- 文档页数:8
可变气门正时技术详解上一页 1 23下一页引擎配气机构图为什么要“可变气门行程”?活塞式四冲程引擎都由进气、压缩、做功、排气4个冲程完成,相信这一章的内容不需废话,我们关注的是气门开启程度对引擎进气的问题。
气缸进气的基本原理是“负压”,也就是气缸内外的气体压强差。
在引擎低速运转时,气门的开启程度切不可过大,这样容易造成气缸内外压力均衡,负压减小,从而进气不够充分,对于气门的工作而言,这个“小程度开启”需要短行程的方式加以控制;而高速恰恰相反,转速动辄5000rpm,倘若气门依然羞羞答答不肯打开,引擎的进气必然受阻,所以,我们需要长行程的气门升程。
往往,工程师们既要兼顾引擎在低速区的扭矩特性,有想榨取高速区的功率特性,只能采取一条“折中”的思路,到头来引擎高速没功率,低速缺扭矩……所以在这样的情况下,就需要一种对气门升程进行调节的装置,也就是我们今天要说的“可变气门正时技术”。
该技术既能保证低速高扭矩,又能获得高速高功率,对引擎而言是一个极大的突破。
80年代,诸多企业开始投入了可变气门正时的研究,1989年本田首次发布了“可变气门配气相位和气门升程电子控制系统”,英文全称“Variable Valve Timing and Valve Life Electronic Control System,也就是我们常见的VTEC。
此后,各家企业不断发展该技术,到今天已经非常成熟,丰田也开发了VVT-i,保时捷开发了Variocam,现代开发了DVVT……几乎每家企业都有了自己的可变气门正时技术。
一系列可变气门技术虽然商品名各异,但其设计思想却极为相似。
可变气门正时技术之一:保时捷Variocam保时捷911跑车引擎采用的可变气门正时技术Variocam通过气门我们可以发现其两个位置,图中每个进气门分别有2种最大行程,绿色位置显然是高速时气门能够达到的最大行程。
控制气门行程变化的,是两组凸轮控制,一组是高速凸轮,既红色部分的凸轮;另一组是低速凸轮,既高速凸轮之间的凸轮。
可变气门正时工作原理引言:可变气门正时技术是现代发动机技术的重要组成部分,它通过调整气门的开启和关闭时间,使发动机在不同工况下达到最佳的燃烧效率和动力输出。
本文将介绍可变气门正时的工作原理及其优势。
一、可变气门正时的概念可变气门正时(Variable Valve Timing,简称VVT)是一种通过控制气门开启和关闭时间来调整气门正时的技术。
传统发动机的气门正时是固定的,无法根据不同工况的要求进行调整。
而VVT技术则可以根据发动机负荷、转速等参数实时调整气门正时,使发动机能够在不同工况下实现最佳性能。
二、可变气门正时的工作原理VVT技术主要通过改变凸轮轴的相对位置或改变气门的开启时间来实现可变气门正时。
常见的可变气门正时系统有可变凸轮轴正时系统和可变气门升程系统。
1. 可变凸轮轴正时系统可变凸轮轴正时系统通过改变凸轮轴的相对位置来调整气门正时。
它通常由一个可变凸轮轴齿轮和一个控制机构组成。
控制机构通过控制凸轮轴齿轮的相对位置,来改变气门的开启和关闭时间。
当发动机负荷较低时,控制机构会将凸轮轴齿轮向提前方向移动,使气门提前关闭,提高压缩比,提高燃烧效率。
当发动机负荷较高时,控制机构会将凸轮轴齿轮向滞后方向移动,使气门滞后关闭,延长进气时间,提高动力输出。
2. 可变气门升程系统可变气门升程系统通过改变气门的开启时间来调整气门正时。
它通常由一个可变气门升程机构和一个控制单元组成。
控制单元通过控制气门升程机构的工作状态,来改变气门的开启时间。
当发动机负荷较低时,控制单元会使气门升程机构工作在低升程状态,减小气门的开启量,提高压缩比,提高燃烧效率。
当发动机负荷较高时,控制单元会使气门升程机构工作在高升程状态,增大气门的开启量,提高动力输出。
三、可变气门正时的优势可变气门正时技术具有以下优势:1. 提高燃烧效率:可变气门正时技术可以根据不同工况的要求,调整气门正时,使发动机在不同转速和负荷下实现最佳燃烧效率,减少燃料消耗。
汽车发动机液压驱动式可变气门正时(vvt)系统技术要求及试验方法嘿,咱今儿个就来唠唠汽车发动机液压驱动式可变气门正时(VVT)系统!这玩意儿可真是汽车的一个大宝贝呀!你想想看,发动机就好比汽车的心脏,而这 VVT 系统呢,那就是让心脏跳动得更有力、更高效的神奇魔法。
它能够根据不同的工况,灵活地调整气门的开闭时间,就像一个聪明的指挥家,让发动机的工作状态达到最佳。
要说这技术要求,那可真是不简单。
首先呢,它得足够精准,不能有丝毫的马虎。
就像射箭一样,瞄得准才能射中靶心嘛!它要能精确地控制液压驱动的力度和时机,确保气门开闭恰到好处。
这可不是随便说说就能做到的,需要极高的工艺水平和技术实力。
然后呢,它还得稳定可靠。
汽车在路上跑,啥情况都可能遇到,这VVT 系统可不能关键时刻掉链子呀!要是它不稳定,一会儿灵一会儿不灵的,那还不得把人急死。
再来说说试验方法。
这就好比是给这个神奇的系统做一次严格的考试。
要在各种不同的条件下,对它进行全面的检测。
看看它是不是真的能像说的那么厉害,是不是真的能适应各种复杂的情况。
咱可以模拟不同的车速、负载,甚至是不同的环境温度,就像给它出各种难题。
如果它都能轻松应对,那才算是真正的合格。
这就跟咱人一样,平时学习再好,也得经过考试的检验才能知道是不是真有本事呀!你说这 VVT 系统是不是很神奇?它让汽车变得更节能、更环保,动力也更强劲。
就好像给汽车装上了一双翅膀,能让它飞得更高、更远。
而且啊,随着技术的不断进步,这 VVT 系统也在不断升级呢!以后说不定会变得更加厉害,让我们的汽车开起来更爽。
所以啊,咱可不能小瞧了这汽车发动机液压驱动式可变气门正时(VVT)系统。
它可是汽车技术中的一颗璀璨明珠呢!咱得好好了解它,才能更好地享受汽车带给我们的便利和乐趣呀!你说是不是这个理儿?。
可变气门正时技术第一篇:可变气门正时技术概述可变气门正时技术是一种在发动机运行过程中,通过调整气门开启和关闭的时机,以达到更好的燃烧效果,提高燃油效率并减少尾气排放的技术。
该技术的应用范围广泛,可以用于汽车、摩托车等各种类型的发动机中。
传统的气门正时是通过固定的凸轮轴来控制气门的开启和关闭时机,而可变气门正时解决了传统气门正时的制约,实现了更加灵活、精确的气门控制。
目前主流的可变气门正时技术主要有:可变气门升程技术、可变气门正时角技术、可变气门开闭技术、可变气门升程与正时角同时调节技术等。
可变气门正时的工作原理非常简单,通过电子控制系统控制气门抬升高度、气门开启时刻以及总时间,让气门的开启时机根据发动机不同运行状态进行相应的调整。
比如,在高速行驶时,气门的开启时间可以适当提前,以提高发动机输出功率;在低速行驶时,气门的开启时间可以适当延后,以提高燃油经济性和降低噪音。
值得一提的是,可变气门正时技术具有一些非常显著的优势。
首先,它可以避免气门的过度开启或关闭,从而降低燃油消耗和排放污染。
其次,与传统气门正时相比,可变气门正时可以使发动机产生更多的动力和扭矩,从而提高加速性。
最后,该技术具有一定的智能性,可以根据驾驶员的需求和路况实时调整气门的开启时机,提供更加舒适的驾驶体验。
总之,可变气门正时技术是一种非常有前途的技术,已经在各大汽车品牌的发动机中广泛应用。
未来,随着科技的不断发展,它将会不断创新,为汽车行业带来更加精彩的未来。
第二篇:可变气门正时技术的应用可变气门正时技术在现代汽车工业中的应用已经非常广泛。
下面我们来看一下目前主流汽车品牌中的可变气门正时技术应用情况:1.奥迪奥迪一直以来都是汽车技术的领先者,其采用了一种称为"可变气门升程和气门正时系统"的技术,可以根据发动机转速和负载要求实时调整气门升程以及开启时机,进一步提高燃油经济性和输出性能。
2.丰田丰田近年来也在推进可变气门正时技术的应用,旗下多款车型都采用了这一技术。
CVVT发动机是什么意思CVVT(Continuous Variable Valve Timing)发动机,又称连续可变气门正时发动机,是一种在汽车发动机领域经常被使用的技术。
CVVT发动机可以实现发动机气门的连续调整,以便更好地匹配发动机运行状态。
本文将介绍CVVT发动机的工作原理、优势和应用,并讨论其在汽车行业中的重要性。
1. CVVT发动机的工作原理CVVT发动机通过调整气门正时,即气门的开启和关闭时间,来控制空燃比和燃烧混合物进入和排出气缸的时间。
这种调整可以优化燃料的燃烧效率,提高发动机的动力性能和燃油经济性。
CVVT发动机使用一套复杂的机械装置或电子系统来控制气门的开启和关闭时间。
这些装置可以根据发动机转速、负荷和温度等参数进行动态调整。
通过调整气门正时,发动机可以在不同速度范围内实现更充分的燃烧和更高的动力输出。
2. CVVT发动机的优势CVVT发动机相比传统的固定正时发动机具有以下几个优势:•增加动力输出:通过优化气门正时,CVVT发动机可以提供更高的扭矩和马力输出。
这意味着驾驶者可以获得更强大的加速性能和更好的燃油经济性。
•降低燃料消耗:CVVT发动机能够在不同负荷条件下进行精确控制,以使燃烧过程更加高效。
这种优化可以降低燃料消耗,提高燃油经济性。
•减少尾气排放:通过优化燃烧过程,CVVT发动机可以降低尾气中有害物质的排放。
这对环境保护至关重要,也符合现代汽车行业对绿色发展的要求。
3. CVVT发动机的应用CVVT发动机已经广泛应用于许多汽车制造商的产品中。
它被认为是提高发动机性能和燃油经济性的关键技术。
几乎所有类型的发动机(汽油、柴油、增压、自然吸气等)都可以采用CVVT技术。
CVVT技术在现代汽车行业中具有重要的意义。
通过优化气门正时,CVVT发动机可以实现更高的动力输出和更低的燃料消耗,带来更好的驾驶体验和更高的运行效率。
此外,CVVT技术还可以减少尾气排放,为环境保护做出贡献。
VETC发动机介绍VETC发动机是指可变汽门正时(VVT)与电控可变气门升程(ETC)技术相结合的发动机,VETC即Variable Valve Timing and Electronic lift Control。
该发动机通过对气门的开启时间和升程进行灵活控制,以达到更高的燃烧效率和动力输出。
VVT技术是指通过调整进气和排气气门的开启时间,来实现最佳气缸充气与排气时机的技术。
VVT技术最早出现在20世纪70年代末,它通过改变气门正时,可以实现在不同转速和负荷条件下的最佳气缸充气效果,从而提高燃烧效率和动力输出。
传统的发动机由于气门正时固定,无法充分适应各种工况要求,导致燃烧效率和动力输出受限。
而VVT技术能够实时调整气门正时,提高燃烧效率,增加动力输出,同时降低油耗和排放。
ETC技术是指通过电子控制气门升程的技术。
传统的发动机气门升程是通过凸轮来控制的,气门升程是固定的,难以满足不同工况下的要求。
而ETC技术则通过电子控制,可以灵活调整气门升程,实现最佳气缸充气效果,提高燃烧效率和动力输出。
ETC技术的引入使汽车发动机的性能和经济性得到了双重提升。
VETC发动机将VVT和ETC两种技术相结合,通过精确的电子控制,实现对气门的开启时间和升程的精确调整。
这种综合技术的应用,使发动机在不同的转速和负荷条件下,能够实现最佳气缸充气和排气效果,充分发挥发动机的动力潜能。
1.提高燃烧效率:VETC发动机通过精确调整气门的开启时间和升程,使气缸能够获得最佳的充气和排气效果,提高了燃烧效率,降低了能源浪费,从而减少了燃油消耗。
2.增加动力输出:通过VETC发动机的精确控制,可以获得更大的动力输出,提高汽车的加速性能和行驶稳定性。
3.减少排放:VETC发动机的燃烧效率提高,燃烧反应更加充分,燃烧产物中的有害物质减少,减少了对环境的污染。
4.提高发动机性能:VETC发动机能够根据不同工况需求进行灵活调整,使其在低转速时提供较大扭矩,在高转速时具有较大的马力输出,大大提高了发动机的综合性能。
发动机的可变气门正时技术发动机是现代交通工具的核心部件之一,对汽车性能的影响至关重要。
而发动机的可变气门正时技术正是一种能够提高发动机性能和燃油经济性的关键技术。
本文将对发动机的可变气门正时技术进行详细介绍。
一、可变气门正时技术的概述可变气门正时技术是指通过调整发动机进排气门的开启和关闭时间,使得气门的开闭与活塞的运动同步,以达到更好的进排气效果。
这项技术的出现,使得发动机可以根据不同工况的需求灵活调整气门的开启时间,从而提高发动机的动力输出、燃烧效率和燃油经济性。
二、主要的可变气门正时技术1. 可变气门正时技术——连续可变气门正时系统连续可变气门正时系统通过电子控制单元(ECU)和液压执行机构实现气门正时的连续调节。
传感器会监测发动机的工况参数,如转速、负荷和速度等,然后通过ECU对气门正时进行精确的控制。
这一技术最大的优势就是可以根据不同工况实时调整气门正时,以获取最佳的气门开度。
2. 可变气门正时技术——阶段可变气门正时系统阶段可变气门正时系统是通过调整气门凸轮轴的相位,以实现不同工作阶段的气门正时控制。
这一技术通常由液压或电动控制单元操控,通过改变凸轮轴齿轮的位置,改变气门的开闭时间。
相比于连续可变气门正时系统,阶段可变气门正时系统在调整范围上稍显局限,但实施起来更加简单可靠。
三、可变气门正时技术的优势1. 提高发动机的动力输出通过可变气门正时技术,可以根据发动机的工作状态实时调整气门的开闭时间,进一步优化气门开度和气门提前角度,从而提高发动机的进气效率。
这样可以增加每缸气体的流量和容积效率,使得燃烧更加充分,输出更大的动力。
2. 提高燃烧效率和燃油经济性可变气门正时技术还可以通过调整进排气门的开闭时间和气门提前或滞后角度来改变气缸内的活塞行程,优化燃烧室的容积和爆发时机,从而实现更高的燃烧效率。
通过提高燃烧效率,车辆可以在相同燃料条件下产生更多的动力,从而提高燃油经济性,减少排放。
3. 降低排放和噪音发动机的可变气门正时技术可以帮助实现更好的进气和排气效果,减少气门过早或过晚开启的问题,有效降低废气排放和噪音。
可变气门正时系统的作用
可变气门正时系统(VVT)作为市场上最新的发动机技术,具有多种功能,主要目的是通过控制曲轴摆臂的行程、位置和速度来调整气门开启时间和形式。
它能够使发动机在不同条件下运行得更加顺畅,更少地消耗燃料,从而带来更多的优势。
此外,VVT的一大特性是能灵活地调整气门开启时间和形式,从而使发动机保护性、可靠性和性能都得到显著的提升。
它能够根据驾驶者的行为以及路况的不同情况来调整气门的开启时间和形式;由此实现对效率、加速度和低速运行都进行微妙地平衡。
VVT也能减少发动机由于“冷却-重新运行”效应所带来的不利影响;同时提供准确的传感信号来有效地评估发动机性能。
因此,使用VVT正时系统能够将一个理想的性能典型化、标准化并恢复到一定水平:减少空气对流量;减少气门牵制; 增强低速运衅扭矩; 提高中高速输入; 加快中低速重新启动; 降低低速噪声; 保证准时油泵泵供油。
VVTVVT(Variable Valve Timing)可变气门正时系统。
该系统通过配备的控制及执行系统,对发动机凸轮的相位进行调节,从而使得气门开启、关闭的时间随发动机转速的变化而变化,以提高充气效率,增加发动机功率。
基本简介发动机可变气门正时技术(VVT,Variable Valve Timing)原理是根据发动机的运行情况,调整进气(排气)的量,和气门开合时间、角度,使进入的空气量达到最佳,提高燃烧效率。
优点是省油,功升比大而缺点是中段转速扭矩不足。
韩系车的VVT是根据日本中的丰田的VVT-I和本田的VTEC技术模仿而来,但是相比丰田的VVT-I可变正时气门技术,VVT仅仅是可变气门技术,缺少正时技术,所以VVT发动机确实要比一般的发动机省油,但是赶不上日系车的丰田和本田车省油。
BMW在之前的一代发动机中早已采用该技术,目前如本田的VTEC、i-VTEC、;丰田的VVT-i;日产的CVVT;三菱的MIVEC;铃木的VVT;现代的VVT;起亚的CVVT;江淮的VVT;长城的VVT等也逐渐开始使用。
总的说来其实就是一种技术,名字不同。
VVT--iVVT中文意思是“可变气门正时”,由于采用电子控制单元(ECU)控制,因此丰田起了一个好听的中文名称叫“智慧型可变气门正时系统”。
该系统主要控制进气门凸轮轴,又多了一个小尾巴“i”,就是英文“Intake”(进气)的代号。
这些就是“VVT-i”的字面含义了。
VVT—i.系统是丰田公司的智能可变气门正时系统的英文缩写,最新款的丰田轿车的发动机已普遍安装了VVT—i系统。
丰田的VVT—i系统可连续调节气门正时,但不能调节气门升程。
它的工作原理是:当发动机由低速向高速转换时,电子计算机就自动地将机油压向进气凸轮轴驱动齿轮内的小涡轮,这样,在压力的作用下,小涡轮就相对于齿轮壳旋转一定的角度,从而使凸轮轴在60度的范围内向前或向后旋转,从而改变进气门开启的时刻,达到连续调节气门正时的目的。
可变气门正时技术可变气门正时技术的引入和发展随着汽车工业的快速发展和对动力系统性能的不断追求,可变气门正时技术应运而生。
通过对发动机气门的开闭时间和幅度进行控制,可变气门正时技术可以在不同工况下优化气门的进、排气效果,提高发动机的燃烧效率和动力性能。
本文将从可变气门正时技术的发展历程、工作原理、优势和应用前景等方面进行探讨。
一、可变气门正时技术的发展历程可变气门正时技术最早出现在上世纪70年代,当时主要采用的是机械或液压控制方式。
随着电子技术的发展,电控可变气门正时技术逐渐替代了传统的机械和液压控制方式,成为主流。
同时,随着对环境保护和燃油经济性要求的提高,可变气门正时技术也不断创新,出现了多种不同的控制方式,如电磁控制、液压机械控制、连杆机械控制等,以满足不同发动机和车辆的需求。
二、可变气门正时技术的工作原理可变气门正时技术的工作原理主要是通过控制发动机的气门开闭时间和幅度来调节气门事件。
一般来说,气门的开启时间应与活塞的位置相吻合,以确保气门的开启和关闭不会对活塞造成损害。
传统的固定气门正时技术无法满足动力系统在不同转速和负荷下的要求,而可变气门正时技术可以根据不同工况自动调节气门的开闭时间和幅度,以优化燃烧效率和动力输出。
三、可变气门正时技术的优势可变气门正时技术具有以下几个优势:1.提高燃烧效率:可变气门正时技术可以根据不同负荷工况自动调节气门的开闭时间和幅度,使得燃气进出气缸的流动更加顺畅,从而提高燃烧效率,减少排放物的产生。
2.增加动力输出:通过控制气门的开启和关闭时间,可变气门正时技术可以使发动机在高转速下更有效地吸入和排出气体,提高动力输出,提升车辆的加速性能。
3.降低能耗和排放:与固定气门正时相比,可变气门正时技术可以在发动机负荷较低时减少气门的开启时间,降低发动机泵功耗,从而减少燃油消耗和排放物的产生,提高燃油经济性。
4.增加发动机的灵活性:可变气门正时技术可以根据不同工况自动调节气门的开闭时间和幅度,使得发动机具备更大的调节范围,适应不同的道路条件和驾驶需求。
什么是连续可变气门正时系统短短一年内,在引擎可变技术方面有相当资深实力的BMW与Honda车厂又有惊人之举,但是,更令人眼睛一亮的是在这两家发表新引擎之前呢, Toyota车厂于去年全新改款的'01 Celica身上搭载一颗新设计的VVTL-i引擎,这颗引擎可不同于之前的VVT-i引擎喔!.....VVTL-i比VVT-i多了个"L",到底有何先进?有何突破呢?还是天下引擎一大抄呢?!而Honda去年底推出的STREAM车上,用的就是新一代i-VTEC引擎,它可跟S2000上的VTEC不同,那有何差异呢?再者是最近刚在日内瓦车展中,BMW则发表一颗全新的Valvetronic引擎,它更被比喻成最完美的可变气门引擎,它到底有何能耐?它跟之前的VANOS引擎又有什么不同呢?现在我们就来具体介绍介绍。
一.前言:还记得工程师们为什么需要设计一颗具有"可变气门正时"的引擎吗?简单的回答就是,我们希望引擎能随着不同时候的需求,而能表现出最符合我们期望的状态,而这需求可以是从"动力"的观点,也可以是从"油耗经济"的观点,也可以是"排气环保"的观点,但是,你要在同一时刻一样的引擎转速,车速,工作温度,而要求既要大Power,又要省油,还要环保。
这岂不是改写热力学第二定律而颠覆Carnot Cycle的极限?那是不可能的! 但是,工程师要作的就是努力地去接近这样的极限,那也就是效率的观点。
"效率”这字对学理工的朋友应该不陌生,它也是应用科学的研究者数十年如一日的努力目标,做光电元件的人在设计时,要用到这个字!做家电产品的工程师也要用这个字!连是否应该盖一座电厂,也需要用这个字来度量我们的能源政策!所以才有买冷气机或冰箱应该要选用高EF值(high efficiency value高效率值)的建议;而一具引擎的热效率,直接的表现就是功率与油耗之间的取舍!就为了改善引擎的效率,又要满足不同引擎转速时的动力渴望,所以才需要发展"可变气门"引擎!二.90年代可变气门引擎的遗憾:工程师为了克服同一具引擎要高转速大马力,也要低转速高扭力,对不同需求的进排气相位角差异,V ANOS与VVT-i直接改变进排气时的timing(正时)与duration()来解决这个问题,此机构简单,又一针见血,是BMW与Toyota的骄傲之作;而最早在可变气门引擎上获得表现的Honda,于80年代中期推出VTEC 引擎,它则艺高人胆大地把两颗引擎摆在同一颗引擎当中,因为它们在同一支凸轮轴上同时塞下了两种不同角度的凸轮(lobe),利用摇臂内的切换以决定是否顶到大或小凸轮,而成功地改变引擎的进排气的正时,重叠角外,还多个life(升程),但是它在凸轮轴未切换前,正时,重叠时间与升程是不变的,所以VTEC 是阶段性的可变气门,而VANOS与VVT-i虽连续性的变化正时与重叠时间,但是升程却无法改变,就因为这样的差异,VTEC一直拿下每公升排气量的最大马力输出(125hp/Liter,S2000,量产化DOHC_VTEC)纪录!所以VANOS、VVT-i治标不治本,而VTEC治本但有时却不治标!VVTL-i vs. i-VTEC vs. Valvetronic[NextPage]三.2000年Toyota的力作─VVTL-i介绍:01 Celica with VVTL-I丰田的VVTL-i引擎全名就是-Variable Valve 正时 & 升程 - Intelligent,它跟VVT-i是不同的引擎,VVT-i目前已渐渐必被Toyota或Lexus旗下车款所使用,从最高级的LS430,GS300,IS200到最平民的Corolla身上都已经广泛地运用到这项科技,而2000年中发表的全新一代Celica(可惜台湾还没引进)则进一步地发展VVTL-i引擎,这引擎也用类似Honda VTEC的原理,在原来的VVT-i引擎上的凸轮轴,多了可以切换大小不同角度的凸轮(凸轮),也利用"摇臂"的机置来决定是否顶到高角或小角度的凸轮,而作到"可连续式"地改变引擎的正时(正时),重叠时间(重叠相位角)与"两阶段式"的升程(升程)!VVT-i controller来转动凸轮轴,而达到气门的正时改变(此为VVTL-i的凸轮轴)VVTL-i上以摇臂中的"pin"来巧妙地决定是否顶到那种角度的凸轮还记得VVT-i引擎是如何作到变化进气时的气门正时吗?它就是在图一中,有一个VVT-I control圆盘,以转动此控制盘,而来提早或延迟气阀的开与关的时间,所以,VVT-I BMW Vanos一样的原里,VVT-i 用类似的机置来作到"连续式"的可变气门正时,只是VVT-i是用电动方式来驱动这controller,而Vanos 则是用油压的方式,两者皆能跟著不同引擎转速来达到气门正时的连续性变化!而VVTL-i则在VVT-i引擎上再多了于"摇臂"与"凸轮轴"内下功夫,它这回就运用到跟VTEC一样的方法来根本解决引擎在高转速时所需要更多的气门重叠时间与气门的开关升程深度,小小不同的地方在摇臂内VVTL-i藉由油压来使一小小个销的移动来决定顶到那种尺寸的凸轮!低、中转速时,凸轮轴上只有小角度的凸轮有顶到摇臂VVTL-i在引擎转速低时,虽然凸轮轴一样地在转动,但是,由於摇臂内的pin未移动,所以是小角度的凸轮部份有效地顶到摇臂,进而驱动到valve的开关,此时,大角度的突轮一样在转动, (因为在同一根凸轮轴上嘛)但是却是无效地空转。
智能可变气门正时系统的工作原理
智能可变气门正时系统是一种能够根据发动机运行情况自动调
节气门正时的系统,其主要目的是提高发动机的性能和燃油经济性。
该系统通常由传感器、控制器和执行器三部分组成。
系统工作过程如下:首先,传感器采集发动机的运行参数,如转速、负荷、温度等,并将这些数据传输给控制器。
控制器根据传感器采集的数据,自动计算出最佳的气门正时,并将控制信号传输给执行器。
执行器根据控制器的控制信号,自动调节气门的开度和关闭时间,从而实现气门正时的变化。
智能可变气门正时系统的优点在于,能够根据发动机的不同运行情况,自动调节气门正时,使发动机始终处于最佳的工作状态。
这样可以提高发动机的性能和燃油经济性,减少尾气排放和噪声污染。
此外,智能可变气门正时系统还具有结构简单、可靠性高、适应性强等特点。
总之,智能可变气门正时系统是一种能够自动调节气门正时的系统,能够提高发动机的性能和燃油经济性,减少尾气排放和噪声污染。
简述可变气门正时系统的控制原理可变气门正时系统(Variable Valve Timing,简称VVT)是一种用于控制发动机气门开闭时间和持续时间的技术。
它通过调整气门的开启和关闭时间,以适应不同工况下发动机的需求,从而实现提高燃烧效率、降低排放和提升动力性能的目的。
本文将从控制原理的角度对VVT进行简述。
VVT的控制原理主要涉及到几个关键的技术,包括电控可变气门正时系统(Electronically Controlled Variable Valve Timing,简称ECVVT)、液压可变气门正时系统(Hydraulic Variable Valve Timing,简称HCVVT)和可变气门升程系统(Variable Valve Lift,简称VVL)等。
我们来看一下ECVVT的控制原理。
ECVVT通过电控方式实现气门正时的调整。
它使用了一套由电子控制单元(ECU)、凸轮轴位置传感器、气门位置传感器和执行机构等组成的系统。
ECU通过凸轮轴位置传感器和气门位置传感器等传感器获取发动机工况和气门状态等信息,并根据预设的控制策略来控制执行机构调整气门的开闭时间。
在不同的工况下,ECU会根据发动机的负荷、转速和温度等参数来计算出最佳的气门正时,然后通过控制执行机构来实现气门的精确控制。
我们来了解一下HCVVT的控制原理。
HCVVT通过液压控制方式实现气门正时的调整。
它使用了一个由凸轮轴、凸轮轴相位调节器、油压控制阀和油液供给系统等组成的系统。
凸轮轴相位调节器通过改变凸轮轴的相位来实现气门正时的调整。
当需要调整气门正时时,油压控制阀会根据控制信号调整凸轮轴的相位,从而改变气门的开闭时间。
通过控制油压的大小和相位调节器的位置,可以实现气门正时的精确控制。
我们来介绍一下VVL的控制原理。
VVL通过调整气门升程来实现气门正时的调整。
它使用了一个由凸轮轴、分段凸轮轴和控制机构等组成的系统。
在不同的工况下,控制机构会根据发动机的负荷、转速和温度等参数来调整凸轮轴的位置,进而改变气门的升程。
可变气门正时发展历程可变气门正时技术是一种能够调节发动机进气和排气气门开启时间的技术。
它既可以提高发动机的燃烧效率,降低排放污染物的排放,又可以提高发动机的动力性能和燃油经济性。
在过去的几十年里,可变气门正时技术经历了许多演变和改进,下面将分别介绍其发展的几个阶段。
第一阶段是传统的机械式可变气门正时技术。
这种技术是最早出现的可变气门正时技术,它通过机械装置调节气门的开启时间。
例如,通过改变凸轮轴上的凸轮的形状或者通过连杆系统来实现气门的开关时间的调节。
这种技术存在的一个问题是,调节范围有限,不能灵活地适应不同工况下的发动机性能需求。
第二阶段是电子式可变气门正时技术的出现。
这种技术通过电子控制单元(ECU)来控制气门的开启时间。
ECU可以根据不同的工况和驾驶要求,实时调节气门的开启时间,从而使发动机的性能更加优化。
这种技术的出现使得气门的开启时间可以根据具体需求进行调节,具有更好的灵活性。
第三阶段是连续可变气门正时技术的研发和应用。
传统的可变气门正时技术只能在几个固定的工作点进行调节,而连续可变气门正时技术可以在整个发动机负荷范围内实现气门的连续调节,从而更加精确地适应不同负荷下的发动机性能需求。
这种技术的应用可以使发动机在低速和高速工况下都能够获得更好的动力性能和燃油经济性。
第四阶段是可变气门升程和气门提前角正时技术的发展。
传统的可变气门正时技术只能调节气门的开启时间,而不能调节气门的升程和提前角。
可变气门升程和气门提前角正时技术可以通过调节气门的升程和提前角来实现对燃烧过程的更精确控制,从而进一步提高发动机的燃烧效率和功率输出。
目前,可变气门正时技术已经被广泛应用于各种类型的发动机中,包括汽车发动机、卡车发动机和船舶发动机等。
随着技术的不断进步,可变气门正时技术将继续发展,为发动机的性能和燃油经济性提供更多的潜力。
可变气门正时技术(VVT)是近些年来被逐渐应用于现代轿车上的新技术中的一种,发动机采用可变气门正时技术可以提高进气充量,使充量系数增加,发动机的扭矩和功率可以得到进一步的提高。
现代的cvvt也是源自VVT的发动机控制技术。
发动机的气门正时是指气门打开的时间,也就是气门应该在活塞运行到哪个位置的时候打开。
一般我们会感觉,进气门应该在活塞从上止点开始向下运动,进行进气行程的时候打开,在活塞到达下止点完成进气行程的时候关闭;相应的排气门应该是活塞从下止点开始向上运动开始排气行程的时候打开,活塞运行到上止点完成排气行程的时候关闭。
但是,因为空气是有惯性的,它需要一定的反应时间,为了更多的进气和排气,进气门会在活塞向下运动之前打开,并且到达下止点之后才关闭;排气门也是一样,会在活塞向上运动之前打开,到达上止点之后才关闭。
那么我们会发现在活塞到达上止点完成排气行程的时候,也就是进气行程开始之前,会出现进气门和排气门同时打开的现象。
这就是所谓的气门叠加,这个叠加时曲轴转过的角度就气门叠加角。
发动机在其不同的转速范围段,对气门叠加角的需求是不同的,低转速需要较小的气门叠加角,高转速的时候反之,需要较大的气门叠加角。
普遍不带气门正时可变的发动机,是无法同时满足这两个需求的,一般只能采用一个折衷值,那么发动机在高速或者低速的时候运转都不会很舒服。
传统的发动机气门工作状态如下:当发动机处于低转速时,凸轮轴的运转速度较慢,进气速度也相对较慢,气门则保持相对较长的开启时间和较小的开度。
而当车辆在高速路上以120km/h的速度行驶时,发动机的转速则会维持在3000~4000rpm,甚至更高。
这一状态下,气门开闭频率加快,进气速度也加快,虽然进气量大,但气门的开启时间短,使进氧量较少,造成燃烧不完全。
如果在这一传统的发动机配气机构上引入电子控制系统——气门正时控制,那么发动机的工作效率将得到大幅改善。
通过对凸轮轴的改造以及对传感器信号的收集,在低转速时,正时系统可控制凸轮轴使进气门提前开启或延时关闭,以保证气缸在低转速下的进气通畅;高转速时,还可对气门的开度实现适时调整,确保气缸内的燃烧更充分。
丰田可变气门正时系统VVTI系统的工作原理
可变气门正时系统VVTI系统是指可变气门正时系统(Variable Valve Timing and Intelligent,VVT-I),是一种高效气门控制技术,采用电子控制技术来改善发动机性能,同时减少燃油消耗,从而节省燃油,并大大提升发动机性能和改善发动机的耐久性。
可变气门正时控制系统VVT-i由控制处理器(ECU),气门调节机构(VVT),传感器(活塞形成位置,进气歧管,气缸压力,油温等)以及其他辅助通讯部件组成。
ECU通过
传感器收集信息,分析如机翻的排量,进气量,涡轮增压压力等发动机工作压力,根据发
动机需要信号来控制气门正时度,确保发动机在不同运行状态下高效有效和稳定运转。
可变气门正时系统VVT-i具有特点:
1)减少燃油消耗,缩短加速时间,提升发动机性能;
2)能够根据发动机转速的需求来调整气门正时度;
3)减少汽油沉淀,降低尾气排放;
4)提高发动机散热性能,延长引擎使用寿命;
5)减小机械发动机损坏风险。
可变气门正时系统VVT-i可以有效地克服发动机性能不稳定、发动机调试不灵活、噪
声大、发动机加油多等发动机问题,是改善发动机技术的有效方法。