10正弦量的相量表示法
- 格式:pdf
- 大小:150.21 KB
- 文档页数:2
第九讲 正弦量的相量表示法一、相量法的引入1、相量法的概念:的用一个称为相量的向量或复数来表示正弦电压和电流。
2、正弦量的复数表示法:假设正弦电压为 )sin()(m ψω+=t U t u 复数的形式:ψψ∠==∠+=+=m 22Y e Y ab arctg b a bi a Y j m 复数的模:表示电压的振幅;复数的幅角:表示电压的初相。
正弦波电压的相量表示法:ψψ∠==m j m m e U U U 二、相量1、概念:在复数平面上表示正弦电压和电流的复数的方有向线段。
3-2-1 正弦电压和电流的相量2、正弦电压相量与正弦电压的关系(1)正弦电压量的实质:电压的旋转相量在坐标轴(实轴或虚轴)上的投影。
(2)电压的旋转相量:当电压相量以角速度ω沿反时针方向旋转,即为旋转相量。
实轴上的投影:)cos(m ψω+t U 属于时间函数虚轴上的投影:)sin(m ψω+t U 属于时间函数图3-2-1 旋转相量及其在实轴和虚轴上的投影(3)正弦量与相量表示法的相互关系三、实例分析【例3-2-1】正弦电流A )60314sin(5)(1︒+=t t i , A )120314cos(10)(2︒--=t t i ,求电流相量,画出相量图,并求出i (t )=i 1(t)+i 2(t)。
解:表示正弦电流A )60314sin(5)(1︒+=t t i 的相量为A 605A e 560j m1 ∠==I用相量法分析电路时,各正弦量的瞬时表达式用正弦函数(余弦函数)表示。
将电流相量A 6051m ∠=I 和A 15010m 2 ∠=I 画在一个复数平面上,就得到相量图3-2-2。
从相量图上容易看出各正弦电压电流的相位关系。
i m m i m u m m u m ) cos()() cos()(ψψωψψωωω∠=−→←+=∠=−→←+=I I t I t i U U t U t u A 15010A )150314sin(10 A)180********sin(10A )120314cos(10)(m 22 ∠=−→−+=+︒+-=--=I t t t t i图3-2-2 例3-2-1相量图电压电流相量:可为最大值相量,也可为有效值相量(U 及I )。
第九讲 正弦量的相量表示法一、相量法的引入1、相量法的概念:的用一个称为相量的向量或复数来表示正弦电压和电流。
2、正弦量的复数表示法:假设正弦电压为 )sin()(m ψω+=t U t u 复数的形式:ψψ∠==∠+=+=m 22Y e Y ab arctgb a bi a Y j m 复数的模:表示电压的振幅;复数的幅角:表示电压的初相。
正弦波电压的相量表示法:ψψ∠==m j m m e U U U 二、相量1、概念:在复数平面上表示正弦电压和电流的复数的方有向线段。
3-2-1 正弦电压和电流的相量2、正弦电压相量与正弦电压的关系(1)正弦电压量的实质:电压的旋转相量在坐标轴(实轴或虚轴)上的投影。
(2)电压的旋转相量:当电压相量以角速度ω沿反时针方向旋转,即为旋转相量。
实轴上的投影:)cos(m ψω+t U 属于时间函数虚轴上的投影:)sin(m ψω+t U 属于时间函数图3-2-1 旋转相量及其在实轴和虚轴上的投影(3)正弦量与相量表示法的相互关系三、实例分析 【例3-2-1】正弦电流A )60314sin(5)(1︒+=t t i , A )120314cos(10)(2︒--=t t i ,求电流相量,画出相量图,并求出i (t )=i 1(t)+i 2(t)。
解:表示正弦电流A )60314sin(5)(1︒+=t t i 的相量为A 605A e 560j m1 ∠==I用相量法分析电路时,各正弦量的瞬时表达式用正弦函数(余弦函数)表示。
将电流相量A 6051m ∠=I 和A 15010m2 ∠=I 画在一个复数平面上,就得到相量图3-2-2。
从相量图上容易看出各正弦电压电流的相位关系。
im m i m u m m u m ) cos()() cos()(ψψωψψωωω∠=−→←+=∠=−→←+=I I t I t i U U t U t u A 15010A )150314sin(10 A)180********sin(10A )120314cos(10)(m 22 ∠=−→−+=+︒+-=--=I t t t t i图3-2-2 例3-2-1相量图 电压电流相量:可为最大值相量,也可为有效值相量(U 及I )。
正弦量的相量表示法正
弦量的相量表示方法
(1)正弦量的表示法
波形图、瞬时值表达式和相量的表示方法,如图1-15所示。
前两种不便于运算,重点介绍相量表示法。
(2)正弦量的旋转矢量表示法
一个正弦量的瞬时值可以用一个旋转的有向线段在纵轴上的投影值来表示称为旋转矢量。
正弦量在各时刻的瞬时值与旋转矢量在对应时刻在纵轴上的投影一一对应。
由于矢量具有了正弦量的三要素,因而正弦量可以用矢量来表示。
只有正弦量才能用矢量表示,非正弦量不可以。
只有同频率的正弦量才能画在一张矢量图上,不同频率不行。
正弦量用矢量表示时,有两种方式:若其幅度用最大值表示,则用符号
;若其幅度用有效值表示,则用符号:
正弦量矢量作图方式,如图1-16所示。
(3)正弦量的复数表示法
正弦量的复数表示方法有四种表达形式:代数形式、三角函数形式、指数形式、极坐标形式。
复数的图示,如图1-17所示。
a,b都是实数,a称为A的实部,b称为A的虚部,j=称为虚数单位(数学中用i表示,电工技术中i已用来表示电流,故改用j表示)。
②三角函数形式:
A=r(cosφ+jsinφ)
式中
③指数形式:
更多:正弦交流电的电压和电流值
百度搜索“就爱阅读”,专业资料,生活学习,尽在就爱阅读网,您的在线图书馆。
正弦量的相量表示法在物理学中,正弦量(sine wave)是一种振荡量,它可以以普遍的正弦函数的形式来表示。
它往往用来表示物理或数学模型中的规律性或周期性变化,因此拥有在物理研究中重要的应用价值。
正弦量也是数字信号处理、生物科技、通信和声学中的重要组成部分。
正弦量的相量(phasor)表示法是对正弦量的一种数学表示方式,用一个复数来表示整个正弦波的大小和相位(即时间延迟)。
正弦量的复数表示法可以将其分解成两个部分,一部分用有理解题目中提到的正弦量的大小(模)来表示,另一部分用相应的正弦量的角度(相角)来表示。
弦量的相量表示法可以用工程学中常见的极坐标和/或复平面形式来表示,可以用曲线图和/或数字示意来表示。
正弦量的相量表示法的基本原理是用一个复数来表示正弦量的实部和虚部,采用极坐标和/或复平面形式来表示。
在极坐标中,我们可以用极径(r)和极角(θ)来表示正弦量:在极坐标中,极径表示正弦量的大小,而极角表示正弦量的相位。
在复平面上,我们可以采用复数的形式来表示正弦量,即复数z的实部和虚部:在复平面上,复数的实部表示正弦量的大小,而复数的虚部表示正弦量的角度。
正弦量的相量表示法有几个优点。
首先,正弦量的相量表示法可以用数字的形式来精确地表示正弦量的相位。
其次,正弦量的相量表示法可以用复数的形式来精确表示正弦量的大小。
最后,正弦量的相量表示法使得正弦量的数学操作变得简单、高效。
正弦量的相量表示法在很多情况下都有重要的应用价值。
例如,在电机控制中,正弦量的相量表示法可以用来描述电机的运动,以及与其相关的特性,如频率、相位和相应的电压、功率等。
此外,正弦量的相量表示法在电子学的元件分析和模拟中也有广泛的应用价值。
由于正弦量的相量表示法的众多优点,在现今的工程学研究中,它得到了越来越广泛的应用。
正弦量的相量表示法为物理学、数字信号处理、生物科技、通信和声学等领域的研究提供了一种新的模型来建立物理模型和模拟信号运行行为,从而改善现有系统的性能。
正弦量和相量的相互转化正弦量和相量是物理学中常用的两个概念,它们之间存在着密切的关系。
正弦量是指一个周期性变化的物理量,可以用正弦函数来描述;而相量则是指表示一个物理量的大小和方向的有向线段。
本文将从正弦量和相量的定义、性质以及相互转化的方法等方面进行介绍,以帮助读者更好地理解和应用这两个概念。
一、正弦量的定义和性质正弦量是指一个物理量随时间变化的规律呈现出周期性的特征。
在数学上,正弦量可以用正弦函数来表示,即y=A*sin(ωt+φ),其中A 表示振幅,ω表示角频率,t表示时间,φ表示相位。
正弦函数的图像是一条连续的曲线,呈现出周期性的波动。
正弦量具有以下性质:1. 周期性:正弦函数的图像在一个周期内重复出现,周期为2π/ω,即振动的时间间隔。
2. 振幅:振幅A表示正弦函数图像的最大值,即波峰或波谷的高度。
3. 相位:相位φ表示正弦函数图像在时间轴上的水平偏移量,可以用来描述波形的起始位置。
4. 频率:频率f是周期的倒数,即f=1/T,表示单位时间内振动的次数。
5. 相位差:两个正弦量之间的相位差指的是它们图像上波峰或波谷之间的时间差,也可以用来描述波形的相对位置。
二、相量的定义和性质相量是指表示一个物理量的大小和方向的有向线段。
在物理学中,我们常用箭头来表示一个相量,箭头的长度表示物理量的大小,箭头的方向表示物理量的方向。
相量在数学上可以用坐标来表示,即(x, y, z),其中x、y、z分别表示相量在三个坐标轴上的分量。
相量具有以下性质:1. 大小:相量的大小等于其分量的矢量和的模,即|A|=√(x²+y²+z²)。
2. 方向:相量的方向由其分量的方向决定,可以用一个角度或者一个方向余弦来表示。
3. 加法:相量的加法遵循平行四边形法则,即将两个相量的起点连接起来,然后从起点到终点的有向线段表示它们的矢量和。
4. 减法:相量的减法可以通过将减去的相量取负再进行加法运算来实现。