实验十二 聚合物拉伸性能测试
- 格式:doc
- 大小:1.78 MB
- 文档页数:3
织物拉伸断裂强力测试实验报告一、实验目的本实验旨在测试织物的拉伸断裂强力,以评估其质量和性能。
二、实验原理织物的拉伸断裂强力是指在一定条件下,织物在受到外力作用时,在纵向方向上发生断裂所需要的最小力值。
该值通常用来评估织物的耐用性和质量。
三、实验材料和器材1. 实验材料:选择不同材质、不同密度、不同厚度的织物进行测试。
2. 实验器材:拉力试验机、夹具。
四、实验步骤1. 准备工作:选择合适的织物样品,并根据样品宽度和长度计算出相应的试样尺寸。
2. 安装夹具:将试样夹入拉力试验机中,并安装夹具。
3. 开始测试:启动拉力试验机,让其按照设定速度进行拉伸测试,直至试样断裂。
4. 记录数据:记录测试过程中产生的数据,包括最大载荷值和断裂位置等信息。
5. 分析结果:根据数据分析结果,评估织物的质量和性能。
五、实验结果分析通过对不同材质、不同密度、不同厚度的织物进行拉伸测试,得出如下结论:1. 织物的拉伸断裂强力受到材质、密度和厚度等因素的影响。
2. 纤维质量好、密度大、厚度适中的织物具有较高的拉伸断裂强力。
3. 织物在断裂前会发生明显的变形,而且不同材质、密度和厚度的织物在变形过程中表现出不同的特点。
六、实验注意事项1. 实验前应对试样进行处理,保证试样尺寸均匀,并去除可能存在的污渍和杂质。
2. 在夹具安装过程中应保证试样夹紧牢固,避免试样脱落或滑动。
3. 在测试过程中应根据试样情况调整拉伸速度和最大载荷值等参数,以获得更准确可靠的测试结果。
七、实验结论通过本次实验,我们可以得出如下结论:1. 织物的拉伸断裂强力是评估其质量和性能的重要指标之一。
2. 织物的拉伸断裂强力受到多种因素影响,包括材质、密度和厚度等。
3. 在进行织物拉伸断裂强力测试时,需要注意试样的处理和夹具的安装,以保证测试结果的准确性和可靠性。
【机械加工】聚合物拉伸强度和断裂伸长率的测定聚合物是由多个单元分子组合而成的高分子化合物。
由于其物理和化学特性的独特组合,聚合物广泛应用于各种领域,如制造业、医学、航空航天等。
聚合物材料的长期使用性能依赖于其力学性能,其中拉伸强度和断裂伸长率是最重要的力学性能参数之一。
本文将介绍聚合物拉伸强度和断裂伸长率的测定方法。
1. 聚合物拉伸强度的测定拉伸强度是指在材料拉伸过程中,断裂前材料承受的最大力值。
聚合物材料的拉伸强度测定可以通过多种测试方法来实现,其中比较常见的方法有万能试验机和拉字符。
(1)万能试验机测定方法万能试验机是一种常见的力学测试设备,可以用于材料的弯曲、压缩和拉伸等测试。
在拉伸测试中,试样被拉伸,同时在试样两端固定的夹具上施加上下两个称重传感器,记录试验过程中材料的伸长量和所承受的拉力,计算出材料的拉伸强度。
(2)拉字符测定方法断裂伸长率是指在材料拉伸过程中,试样破裂前伸长的长度与试样初始长度之比。
这个参数是用来描述聚合物材料在受压力下发生拉伸变形时,它能够延长到多大的程度,从而在很大程度上反映出材料的拉伸性能。
测试断裂伸长率的方法通常使用拉字符等拉伸测试设备。
其测试方法如下:首先,在试样的中心位置与试样的两端使用标记刻度。
之后,将试样插入拉字符夹口,并通过万能试验机或原始数据记录仪等设备来施加拉伸载荷使试样开始拉伸。
当试样达到承载极限或破折点时,即被拉断时,我们会注意到在拉伸成功的断口处可以看到有一个明显的断点。
通过量度试样在破裂时断口前后的距离,就可以计算出试样的断裂伸长率。
综上所述,拉伸强度和断裂伸长率是用来描述聚合物材料的重要力学性能参数,对于聚合物的研发、生产、市场应用等过程十分重要。
通过选择合适的测试方法和设备,对聚合物的性能进行准确、快速和有效的测试,可以帮助人们更好地了解聚合物材料的力学性能,并提高聚合物材料的生产和应用效率。
聚合物材料力学性能测试方法比较聚合物材料是一类具有高分子量的大分子化合物,具有良好的力学性能和化学稳定性,广泛应用于汽车、航空航天、电子、建筑等领域。
为了评估和比较不同聚合物材料的力学性能,科学家们开发了各种测试方法。
本文将比较几种常用的聚合物材料力学性能测试方法。
1. 拉伸测试方法拉伸测试是评估材料抗拉强度、断裂伸长率、弹性模量等力学性能的常见方法。
在拉伸测试中,材料在不断施加力的作用下,沿着其长度方向逐渐拉伸,记录下载荷和伸长量的变化。
通过伸长量与载荷之间的关系,可确定材料的力学性能。
2. 压缩测试方法压缩测试用于评估材料在受到压缩作用下的性能。
材料在压缩测试中受到垂直于其面积方向的力,并测量材料的应力应变关系。
通过压缩测试,可以确定材料的压缩强度、弹性模量等力学性能。
3. 弯曲测试方法弯曲测试是评估材料在受到弯曲力作用下的性能的方法。
材料在弯曲测试中受到两个力的作用,使其发生弯曲变形。
通过测量材料在不同载荷下的应变量和挠度,可以确定材料的弯曲强度、弯曲模量等力学性能。
4. 硬度测试方法硬度测试用于评估材料表面抗压、抗刮、抗穿刺等力学性能。
常用的硬度测试方法包括洛氏硬度测试、布氏硬度测试、维氏硬度测试等。
这些方法通过在材料表面施加一定的载荷,测量形成的痕迹的大小来评估材料的硬度。
5. 冲击测试方法冲击测试用于评估材料在受到突然冲击或冲击载荷下的性能。
常见的冲击测试方法包括冲击韧性试验、冲击强度试验等。
通过施加冲击载荷,测量材料的断裂韧性和抗冲击能力,可以评估材料的力学性能。
不同的聚合物材料力学性能测试方法有各自的优缺点,选择适合的方法取决于具体的测试需求。
拉伸、压缩和弯曲测试方法较为常用,适用于评估聚合物材料的静态力学性能。
硬度测试方法简单快捷,适用于快速比较不同材料的硬度。
而冲击测试方法则更适用于评估材料在受到突然冲击或冲击载荷下的性能。
除了选择合适的测试方法,还需要注意测试条件的标准化。
实验4 聚合物拉伸强度和断裂伸长率的测定1. 实验目的(1)熟悉高分子材料拉伸性能测试标准条件和测试原理。
(2)掌握测定聚合物拉伸强度和断裂伸长率的测定方法。
(3)考察拉伸速度对聚合物力学性能的影响。
2. 实验原理拉伸试验是在规定的试验温度、试验速度和湿度条件下,对标准试样沿其纵轴方向施加拉伸载荷,直到试样被拉断为止。
基本公式:L L L -=ε (2-13) 0A F=σ (2-14) )(000L L A FL E -==εσ(2-15) 式中,ε伸长率即应变;σ为应力;L 为样品某时刻的伸长;0L 为初始长度;0A 为初始横截面积;F 为拉伸力;E 为拉伸模量。
聚合物的拉伸性能可通过其应力-应变曲线来分析,典型的聚合物拉伸应力-应变曲线如图2-28(左)所示。
在应力-应变曲线上,以屈服点为界划分为两个区域。
屈服点之前是弹性区,即除去应力后材料能恢复原状,并在大部分该区域内符合虎克定律。
屈服点之后是塑性区,即材料产生永久性变形,不再恢复原状。
根据拉伸过程中屈服点的表现,伸长率的大小以及其断裂情况,应力-应变曲线大致可分为如图2-28(右)所示的五种类型:①软而弱;②硬而脆;③硬而强;④软而强;⑤硬而韧。
图2-28 五种典型聚合物拉伸应力-应变曲线1-软而弱;2-硬而脆;3-硬而强;4-软而强;5-硬而韧本实验在不同应变速度下测定聚乙烯的应力-应变曲线。
将已知长度和横截面积的样品,夹在两个夹具之间,以恒速拉伸至断裂,测定应力随伸长的变化。
分析在不同应变速度时测定的数据,可以了解材料的强度、韧性及极限性能。
有合适的样品架或可设法固定住的聚合物都可进行本实验。
均匀的样品重复性可优于±5%。
但由于制各样品和实验操作中存在的一些不可避免的可变因素,使重复性比此数值要差些。
3. 实验设备和材料(1)仪器设备万能电子拉力机(日本岛津AG-lOKNA),游标卡尺、直尺。
万能电子拉力机测试主体结构示意图,如图2-29所示。
实验 聚合物拉伸强度和断裂伸长率的测定1. 实验目的(1)熟悉高分子材料拉伸性能测试标准条件和测试原理。
(2)掌握测定聚合物拉伸强度和断裂伸长率的测定方法。
(3)考察拉伸速度对聚合物力学性能的影响。
2. 实验原理拉伸试验是在规定的试验温度、试验速度和湿度条件下,对标准试样沿其纵轴方向施加拉伸载荷,直到试样被拉断为止。
基本公式:L L L -=ε (式2-1) 0A F=σ (式2-2) )(000L L A FL E -==εσ (式2-3) 式中,ε伸长率即应变;σ为应力;L 为样品某时刻的伸长;0L 为初始长度;0A 为初始横截面积;F 为拉伸力;E 为拉伸模量。
聚合物的拉伸性能可通过其应力-应变曲线来分析,典型的聚合物拉伸应力-应变曲线如图2-1(上)所示。
在应力-应变曲线上,以屈服点为界划分为两个区域。
屈服点之前是弹性区,即除去应力后材料能恢复原状,并在大部分该区域内符合虎克定律。
屈服点之后是塑性区,即材料产生永久性变形,不再恢复原状。
根据拉伸过程中屈服点的表现,伸长率的大小以及其断裂情况,应力-应变曲线大致可分为如图2-28(下)所示的五种类型:①软而弱;②硬而脆;③硬而强;④软而强;⑤硬而韧。
图2-28 五种典型聚合物拉伸应力-应变曲线1-软而弱;2-硬而脆;3-硬而强;4-软而强;5-硬而韧本实验在不同应变速度下测定聚氨酯的应力-应变曲线。
将已知长度和横截面积的样品,夹在两个夹具之间,以恒速拉伸至断裂,测定应力随伸长的变化。
分析在不同应变速度时测定的数据,可以了解材料的强度、韧性及极限性能。
有合适的样品架或可设法固定住的聚合物都可进行本实验。
均匀的样品重复性可优于±5%。
但由于制各样品和实验操作中存在的一些不可避免的可变因素,使重复性比此数值要差些。
3. 实验设备和材料(1)仪器设备万能电子拉力机,游标卡尺、直尺。
万能电子拉力机测试主体结构示意图,如图2-29所示。
实验十二聚合物拉伸性能测试
一、实验目的
(1)熟悉电子力学试验机的原理及使用方法;
(2)绘制聚合物的应力-应变曲线,测定其拉伸强度、断裂强度和断裂伸长率。
二、实验原理
拉伸性能是聚合物力学性能中最重要、最基本的性能之一。
拉伸性能的好坏,可以通过拉伸试验来检验。
拉伸试验是在规定的试验温度、湿度和速度条件下,对标准试样盐纵轴方向施加静态拉伸负荷,直至试样被拉断为止。
用于聚合物应力—应变曲线测定的电子拉力机是将试样上施加的载荷、形变通过压力传感器和形变测量装置转变成电信号记录下来,经计算机处理后,测绘处试样在拉伸形变过程中的应力-应变曲线。
从应力-应变曲线上可得到材料的各项拉伸性能指标值:如拉伸强度、拉伸断裂应力、拉伸屈服应力、拉伸弹性模量、断裂伸长率等。
通过拉伸试验提供的数据,可对高分子材料的拉伸性能做出评价,从而为质量控制,研究、开发与工程设计及其他项目提供参考。
应力-应变曲线一般分为两个部分:弹性变形区和塑性变形区。
在弹性变形区,材料发生可完全恢复的弹性变形,应力与应变呈线性关系,符合胡克定律。
在塑性变形区,形变是不可逆的塑性形变,应力和应变增加不再呈正比关系,最后出现断裂。
图12-1为典型的聚合物拉伸应力-应变曲线。
图12-1 典型的聚合物拉伸应力—应变曲线
不同的高聚物材料、不同的测定条件,分别呈现不同的应力-应变行为。
根据应力-应变曲线的形状,目前可大致归纳为五种类型,如图12-2所示。
(1)软而韧拉伸强度低,弹性模量小,且伸长率也不大,如溶胀的凝胶等。
(2)硬而脆拉伸强度和弹性模量较大,断裂伸长率小,如聚苯乙烯等。
(3)硬而强拉伸强度和弹性模量较大,且有适当的伸长率,如硬聚氯乙烯等。
(4)软而韧断裂伸长率大,拉伸强度也较高,但弹性模量低,如天然橡胶、顺丁橡胶等。
(5)硬而韧弹性模量大、拉伸强度和断裂伸长率也大,如聚对苯二甲酸乙二醇酯、尼龙等。
图12-2 聚合物的拉伸应力—应变曲线
三、实验仪器设备和样品
1. 仪器
(1)拉力试验机任何满足实验要求的、具有多种拉伸速率的拉力试验机均可使用。
本次采用深圳新三思CMT-5504型万能力学试验机,基本结构如图12-3所示。
(2)游标卡尺。
图12-3 微机控制电子拉力试验机
2. 试样
本次试验材料为聚丙烯(PP),每组试样不少于5个,试样要求表面平整、无气泡、裂纹、分层等缺陷。
四、实验步骤
1. 开机:试验机—计算机。
2. 进入实验软件,选择好联机方向,选择正确的通讯口,选择对应的传感器和引伸计后联机;
3. 检查夹具,根据实际情况(主要是试样的长度及夹具的间距)设置好限位装置;在试验软件内选择相应的实验方案,进入试验窗口,输入“用户参数”;
4. 夹持试样。
夹具夹持试样时,要使试样纵轴与上、下夹具中心线相重合,并且要松紧适宜,以防止试样滑脱或断在夹具内;
5. 将“最大力”和“位移”清零,然后点击“运行”,开始自动实验;
6. 试样拉断后,打开夹具,取出试样
7. 重复步骤3~6,进行其余样条的测试。
若试样断裂在中间平行部分之外时,此试样作废,另取试样补做;
8. 试验结束后,关闭试验机和电脑,关掉电源。
五、数据处理
(1)拉伸强度或拉伸断裂应力或拉伸屈服应力(MPa )
= t p bd
式中 p ——最大负荷或断裂负荷或屈服负荷,N ;
b ——试样工作部分宽度,mm ;
d ——试样工作部分厚度,mm 。
(2)断裂伸长率εt (%):
00
-ε= t L L L 式中 L ——试样拉伸至断裂时的长度,mm ;
L 0——试样原始标距,mm 。
计算结果以算数平均值表示,σt 取三位有效数字,εt 取两位有效数字。
六、注意事项
微机控制电子拉力机属于精密设备,在操作过程中,务必遵守操作规程,精力集中,认真负责。
(1)每次设备开机后预热10min ,待系统稳定后,才可以进行试验。
任何时候都不能带电电源线和信号线,否则很容易损坏电气控制部分。
(2)实验开始前,一定要调整好限位挡圈,以免操作失误损坏传感器。
(3)试验过程中,不能远离试验机。
(4)实验过程中,除停止键和急停开关外,不要按控制盒上的其他按键,否则会影响试验。
(5)试验结束后,一定要关闭所有电源。
七、思考题
影响聚合物拉伸强度的主要因素有哪些?请简要分析。