当前位置:文档之家› 钢结构节点计算钢结构节点计算钢结构节点计算

钢结构节点计算钢结构节点计算钢结构节点计算

钢结构节点计算钢结构节点计算钢结构节点计算
钢结构节点计算钢结构节点计算钢结构节点计算

“梁梁拼接全螺栓刚接”节点计算书====================================================================

计算软件:MTS钢结构设计系列软件MTSTool v3.5.0.0

计算时间:2012年12月02日16:53:51

==================================================================== H1100梁梁拼接全螺栓刚接

一. 节点基本资料

节点类型为:梁梁拼接全螺栓刚接

梁截面:H-1100*400*20*34,材料:Q235

左边梁截面:H-1100*400*20*34,材料:Q235

腹板螺栓群:10.9级-M20

螺栓群并列布置:10行;行间距70mm;2列;列间距70mm;

螺栓群列边距:50 mm,行边距50 mm

翼缘螺栓群:10.9级-M20

螺栓群并列布置:2行;行间距70mm;4列;列间距70mm;

螺栓群列边距:45 mm,行边距50 mm

腹板连接板:730 mm×345 mm,厚:16 mm

翼缘上部连接板:605 mm×400 mm,厚:22 mm

翼缘下部连接板:605 mm×170 mm,厚:24 mm

梁梁腹板间距为:a=5mm

节点前视图如下:

节点下视图如下:

二. 荷载信息

设计内力:组合工况内力设计值

工况N(kN) Vx(kN) My(kN·m) 抗震组合工况1 0.0 115.4 152.3 否

组合工况2 0.0 135.4 172.3 是

三. 验算结果一览

验算项数值限值结果

承担剪力(kN) 6.77 最大126 满足

列边距(mm) 50 最小33 满足

列边距(mm) 50 最大88 满足外排列间距(mm) 70 最大176 满足

中排列间距(mm) 70 最大352 满足

列间距(mm) 70 最小66 满足

行边距(mm) 50 最小44 满足

行边距(mm) 50 最大88 满足外排行间距(mm) 70 最大176 满足

中排行间距(mm) 70 最大352 满足

行间距(mm) 70 最小66 满足净截面剪应力比0.066 1 满足

净截面正应力比0.000 1 满足

净面积(cm^2) 163 最小162 满足

承担剪力(kN) 8.93 最大140 满足极限受剪(kN·m) 9450 最小7670 满足

列边距(mm) 45 最小44 满足

列边距(mm) 45 最大88 满足

外排列间距(mm) 70 最大176 满足

中排列间距(mm) 70 最大352 满足

列间距(mm) 70 最小66 满足

行边距(mm) 50 最小33 满足

行边距(mm) 50 最大88 满足

外排行间距(mm) 70 最大176 满足

中排行间距(mm) 70 最大352 满足

行间距(mm) 70 最小66 满足

净截面剪应力比0.000 1 满足

净截面正应力比0.021 1 满足

净面积(cm^2) 129 最小106 满足

净抵抗矩(cm^3) 13981 最小13969 满足

抗弯承载力(kN·m) 6485.0 最小6055.8 满足

抗剪承载力(kN) 3516.1 最小2813.2 满足

孔洞削弱率(%) 21.71% 最大25% 满足

四. 梁梁腹板螺栓群验算

1 螺栓群受力计算

控制工况:组合工况2,N=0 kN;V x=135.4 kN;M y=172.3 kN·m;

2 腹板螺栓群承载力计算

列向剪力:V=135.4 kN

螺栓采用:10.9级-M20

螺栓群并列布置:10行;行间距70mm;2列;列间距70mm;

螺栓群列边距:50 mm,行边距50 mm

螺栓受剪面个数为2个

连接板材料类型为Q235

螺栓抗剪承载力:N vt=N v=0.9n fμP=0.9×2×0.45×155=125.55kN

计算右上角边缘螺栓承受的力:

N v=135.4/20=6.77 kN

N h=0 kN

螺栓群对中心的坐标平方和:S=∑x2+∑y2=833000 mm2

N mx=0 kN

N my=0 kN

N=[(|N mx|+|N h|)2+(|N my|+|N v|)2]0.5=[(0+0)2+(0+6.77)2]0.5=6.77 kN≤125.55,满足3 腹板螺栓群构造检查

列边距为50,最小限值为33,满足!

列边距为50,最大限值为88,满足!

外排列间距为70,最大限值为176,满足!

中排列间距为70,最大限值为352,满足!

列间距为70,最小限值为66,满足!

行边距为50,最小限值为44,满足!

行边距为50,最大限值为88,满足!

外排行间距为70,最大限值为176,满足!

中排行间距为70,最大限值为352,满足!

行间距为70,最小限值为66,满足!

五. 腹板连接板计算

1 腹板连接板受力计算

控制工况:同腹板螺栓群(内力计算参上)

连接板剪力:V l=135.4 kN

采用一样的两块连接板

连接板截面宽度为:B l=730 mm

连接板截面厚度为:T l=16 mm

连接板材料抗剪强度为:f v=125 N/mm2

连接板材料抗拉强度为:f=215 N/mm2

连接板全面积:A=B l*T l*2=730×16×2×10-2=233.6 cm2

开洞总面积:A0=10×22×16×2×10-2=70.4 cm2

连接板净面积:A n=A-A0=233.6-70.4=163.2 cm2

连接板净截面剪应力计算:

τ=V l×103/A n=135.4/163.2×10=8.297 N/mm2≤125,满足!

连接板截面正应力计算:

按《钢结构设计规范》5.1.1-2公式计算:

σ=(1-0.5n1/n)N/A n=(1-0.5×10/20)×0/163.2×10=0 N/mm2,≤215,满足!

按《钢结构设计规范》5.1.1-3公式计算:

σ=N/A=0/23360×10=0 N/mm2,≤215,满足!

2 腹板连接板刚度计算

腹板的净面积为:

20×(1100-2×34)/100-10×20×22/100=162.4cm2

腹板连接板的净面积为:

(730-10×22)×16×2/100=163.2cm2≥162.4,满足

六. 翼缘螺栓群验算

1 翼缘螺栓群受力计算

控制工况:组合工况1,N=0 kN;V x=115.4 kN;M y=152.3 kN·m;

翼缘螺栓群承担的轴向力:F f=|M f|/(h-t f)/2=71.435kN

2 翼缘螺栓群承载力计算

行向轴力:H=71.435 kN

螺栓采用:10.9级-M20

螺栓群并列布置:2行;行间距70mm;4列;列间距70mm;

螺栓群列边距:45 mm,行边距50 mm

螺栓受剪面个数为2个

连接板材料类型为Q345

螺栓抗剪承载力:N vt=N v=0.9n fμP=0.9×2×0.5×155=139.5kN

轴向连接长度:l1=(4-1)×70=210 mm<15d0=330,取承载力折减系数为ξ=1.0

折减后螺栓抗剪承载力:N vt=139.5×1=139.5 kN

计算右上角边缘螺栓承受的力:

N v=0 kN

N h=71.435/8=8.929 kN

螺栓群对中心的坐标平方和:S=∑x2+∑y2=58800 mm2

N mx=0 kN

N my=0 kN

N=[(|N mx|+|N h|)2+(|N my|+|N v|)2]0.5=[(0+8.929)2+(0+0)2]0.5=8.929 kN≤139.5,满足3 翼缘螺栓群极限承载力验算

翼缘受拉承载力:

1.2A f f ay=1.2×2×400×34×235×10-3=7670.4 kN

螺栓群螺栓个数:n=4×2×4=32 个

单个螺栓极限受剪承载力:

N vu=0.58n f A e f u=0.58×2×244.794×1.04=295.319kN

单个螺栓对应的板件极限受剪承载力:

N cu=∑tdf cu=34×20×1.5×375 ×10-3=382.5kN

螺栓群极限受剪承载力:min(nN vu,nN cu)=9450.222 kN≥7670.4,满足

4 翼缘螺栓群构造检查

列边距为45,最小限值为44,满足!

列边距为45,最大限值为88,满足!

外排列间距为70,最大限值为176,满足!

中排列间距为70,最大限值为352,满足!

列间距为70,最小限值为66,满足!

行边距为50,最小限值为33,满足!

行边距为50,最大限值为88,满足!

外排行间距为70,最大限值为176,满足!

中排行间距为70,最大限值为352,满足!

行间距为70,最小限值为66,满足!

七. 翼缘连接板计算

1 翼缘连接板受力计算

控制工况:组合工况2,N=0 kN;V x=135.4 kN;M y=172.3 kN·m;

翼缘连接板承担的轴向力:F f=|M f|/(h-t f)/2=80.816kN

2 翼缘连接板承载力计算

连接板轴力:N l=80.816 kN

采用两种不同的连接板

连接板1截面宽度为:B l1=170 mm

连接板1截面厚度为:T l1=24 mm

连接板1有2块

连接板2截面宽度为:B l2=400 mm

连接板2截面厚度为:T l2=22 mm

连接板材料抗剪强度为:f v=170 N/mm2

连接板材料抗拉强度为:f=295 N/mm2

连接板全面积:A=B l1*T l1*2+B l2*T l2=(170×24×2+400×22)×10-2=169.6 cm2

开洞总面积:A0=2×22×(24+22)×2×10-2=40.48 cm2

连接板净面积:A n=A-A0=169.6-40.48=129.12 cm2

连接板净截面剪应力:τ=0 N/mm2≤170,满足!

连接板截面正应力计算:

按《钢结构设计规范》5.1.1-2公式计算:

σ=(1-0.5n1/n)N/A n=(1-0.5×2/8)×80.816/129.12×10=5.477 N/mm2,≤295,满足!

按《钢结构设计规范》5.1.1-3公式计算:

σ=N/A=80.816/16960×10=4.765 N/mm2,≤295,满足!

3 翼缘连接板刚度计算

单侧翼缘的净面积为:

400×34/100-2×2×22×34/100=106.08cm2

单侧翼缘连接板的净面积为:

(400-2×2×22)×22/100+(170-2×22)×24×2/100=129.12cm2≥106.08,满足

4 拼接连接板刚度验算

梁的毛截面惯性矩:I b0=956168.235cm4

翼缘上的螺栓孔的惯性矩:

I bbf=2×2×2×[22×343/12+22×34×(1100/2-34/2)2]×10-4=170056.503cm4

腹板上的螺栓孔的惯性矩:

I bbw=10×20×223/12×10-4+20×22×(3152+2452+1752+1052+352+352+1052+1752+2452+3152)×10-4 =17804.747cm4

梁的净惯性矩:

I b=956168.235-170056.503-17804.747=768306.985cm4

梁的净截面抵抗矩:W b=768306.985/1100×2×10=13969.218cm3

翼缘上部连接板的毛惯性矩:

I pf1=2×[400×223/12+400×22×(1100/2+22/2)2]×10-4=553979.947cm4

翼缘上部连接板上的螺栓孔的惯性矩:

I pfb1=2×2×2×[22×223/12+22×22×(1100/2+22/2)2]×10-4=121875.588cm4

翼缘下部连接板的毛惯性矩:

I pf2=2×2×[170×243/12+170×24×(1100/2-24/2-34)2]×10-4=414632.448cm4

翼缘下部连接板上的螺栓孔的惯性矩:

I pfb2=2×2×2×[22×243/12+22×24×(1100/2-24/2)2]×10-4=122281.421cm4

腹板连接板的毛惯性矩:

I pw=2×16×7303/12×10-4=103737.867cm4

腹板连接板上的螺栓孔的惯性矩:

I pbw=2×10×16×223/12×10-4+2×16×22×(3152+2452+1752+1052+352+352+1052+1752+2452+3152)×10-4=28487.595cm4

连接板的净惯性矩:

I p=553979.947+414632.448+103737.867-121875.588

-122281.421-28487.595=799705.658cm4

连接板的净截面抵抗矩:W p=799705.658/(1100/2+22)×10=13980.868cm3≥13969.218,满足

八. 梁梁节点抗震验算

1 抗弯最大承载力验算

梁全塑性受弯承载力:

M bp=[400×34×(1100-34)+0.25×(1100-2×34)2×20]×235 ×10-6=4658.339kN·m

翼缘上部连接板的净面积为:

(400-2×2×22)×22=6864mm2

翼缘下部连接板的净面积为:

(170-2×22)×24×2=6048mm2

翼缘连接板净截面抗拉最大承载力的相应弯矩:

M u1=[6864×470×(1100+22)+6048×470×(1100-2×34-24)]×10-6=6484.962kN·m

翼缘螺栓群抗剪最大承载力的相应弯矩:

螺栓极限受剪承载力:N vu=0.58n f A e f u=0.58×2×244.794×1.04=295.319kN

板件极限承压力:N cu=∑tdf cu=34×20×1.5×470 ×10-3=479.4kN

螺栓连接的极限受剪承载力:N vcu=min(N vu,N cu)=295.319 kN

M u2=2×8×295.319×(1100-34)×10-3=10073.937 kN·m

最大抗弯承载力:M u=min(M u1,M u2)=6484.962kN·m

1.3*M bp=6055.841≤M u=6484.962,满足!

2 抗剪最大承载力验算

梁全塑性抗剪承载力:

V bp=0.58×1032×20×235/1000=2813.232 kN

钢结构节点图

门式刚架横梁与立柱连接节点,可采用端板竖放、平放和斜放三种形式(图、b 、c )。斜梁与刚架柱连接节点的受拉侧,宜采用端板外伸式,与斜梁端板连接的柱的翼缘部位应与端板等厚度;斜梁拼接时宜使端板与构件外边缘垂直(图),应采用外伸式连接,并使翼缘内外螺栓群中心与翼缘中心重合或接近。 屋面梁与摇摆柱连接节点应设计成铰接节点,采用端板横放的顶接连接方式(图)。 屋面梁与混凝土柱采用锚栓连接(图),该连接节点应为铰接节点,锚栓及底板设计同铰接柱脚。 吊车梁承受动力荷载,其构造和连接节点须满足以下规定: 4 吊车梁与制动梁的连接,可采用高强度摩擦型螺栓连接或焊接。吊车梁与刚架上柱的 连接处宜设长圆孔(图);吊车梁与牛腿处垫板采用焊接连接(图);吊车梁之间应采用高强螺栓连接。 (a)端板竖放 (b)端板平放 (c)端板斜放 (d)斜梁拼接 图 刚架连接节点 图 屋面梁和混凝土柱连接节点 (a) (b) (a) (b) (c) 图 屋面梁和摇摆柱连接节点

用于支承吊车梁的牛腿可做成等截面,当也可做成变截面(图);柱在牛腿上下翼缘的相应位置处应设置横向加劲肋;为保证传力均匀,在牛腿上翼缘吊车梁支座处应设置垫板,垫板与牛腿上翼缘连接采用围焊;为避免较大的局部承压应力,在吊车梁支座对应的牛腿腹板处应设置横向加劲肋。 牛腿与柱连接处承受剪力V 和弯矩M=Ve 作用,其截面强度和连接焊缝应按现行钢结构设计规范GB50017进行计算。 在设有夹层的结构中,夹层梁与柱可采用刚接,也可采用铰接(图)。当采用刚接连接时,夹层梁翼缘与柱翼缘应采用全熔透焊接,而腹板可采用高强螺栓与柱连接。柱在与夹层梁上下翼缘相应处应设置横向加劲肋。 山墙柱与刚架横梁宜采用铰接,若山墙柱仅传递水平风荷载,可采用图所示的弹簧片连接方图 夹层梁与柱连接节点 (a)梁与边柱刚接 (b)梁与边柱铰接 (c)梁与中柱刚接 (d)梁与中柱铰接 图 牛腿节点 (a)等截面牛腿 (b)变截面牛腿

钢结构考试计算题

1、试验算图示焊缝连接的强度。已知作用力F=150kN(静力荷载),手工焊,E43 型焊条,w f f =160N/mm 2。(12分) 0.78384A =??()1 0.786W =?截面内力:150,33V KN M KN m ==? 3 2 1501034.9/4300.8 F e F N mm A τ?=== 6 23310119.9/275251.2 M f M N mm W σ ?===故该连接可靠 2、如图所示一梁柱的端板连接,钢材为Q235,采用M20C 级普通螺栓,该连接 所受的偏心力F=150kN ,试验算其连接的强度是否满足要求。 (2 170/b t f N mm =,17.66e d mm =)(12分) 解:偏心距e=80mm ,核心距: ()2221 4801608010160 i y mm ny ρ?+= = =?∑ e ρ=,为小偏心 2 245170416504 b b e t t d N f N π= =?=… () 11222 150000150000801603000010480160b b t t i F Fey N f N N n y ??=+=+=<+∑

3、图示简支梁,不计自重,Q235钢,,受压翼缘有做够约束能保证整体稳定,均布荷载设计值为50kN/m ,荷载分项系数为1.4,f =215N/mm 2。问该梁抗弯强度及刚度是否满足要求。已知: 25N/mm 1006.2,3845,250][?=== E EI ql l x ωω(16分) x x -10×150 -10×150 -8×500 解:截面几何特征值: ()3341 150520142500 278433333.312x I mm = ?-?= 3 1070897.4/2 x x I W mm h ==…截面抗弯强度:取 1.05x γ= ()1 1.450363158M kN m =??=?6 2231510280.1/295/1.051070897.4x x x M N mm f N mm W σγ?===<=?,满足要求 445 5550600011384384 2.0610278433333.30.068250 x ql EI ω??===>??? 梁刚度不满足要求… 1、试设计如图所示角钢与连接板的连接角焊缝。轴心力设计值N =900k N (静力荷载)。钢材Q235,焊条E43系列。(采用三面围焊)(12分 ) 解: 由构造要求,定10f h mm =…正面角焊缝受力 330.720.76125 1.22160204960w f w f f N h l f N β=∑=?????= 肢背焊缝所能承担的内力为: 3 11110.720.7101600.79000.5204.965275202 w f w f w N N h l f l k N kN N =∑=????=- =?-?=得:1235.5w l mm =,取124020260w l mm =+=,满足构造要求 肢尖焊缝所能承担的内力为: 120.720.7101600.39000.5204.96167520w f w f w N h l f l kN kN N =∑=????=?-?=得:274.8w l mm =,取1752095w l mm =+=,满足构造要求

钢结构计算题-答案完整

《钢结构设计原理计算题》 【练习1】两块钢板采用对接焊缝(直缝)连接。钢板宽度L= 250mm厚度t=10mm。 根据公式f t w移项得: l w t N l w t f t w (250 2 10) 10 185 425500N 425.5kN 【变化】若有引弧板,问N ? 解:上题中l w取实际长度250,得N 462.5kN 解:端焊缝所能承担的内力为: N30.7h f l w3 f f f w2 0.7 6 300 1.22 160 491904N 侧焊缝所能承担的内力为: N10.7h f l w1f f w4 0.7 6 (200 6) 160 521472N 最大承载力N 491904 521472 1013376N 1013.4kN 【变化】若取消端焊缝,问N ? 解:上题中令N30 , l w1200 2 6,得N 弘505.344 kN 2t,即250-2*10mm。 300mm 长 6mm。求最大承载力N 钢材米用Q 235,焊条E43系列,手工焊,无引弧板,焊缝采用三级检验质量标准, 2 185N /mm。试求连接所能承受的最大拉力N 解:无引弧板时,焊缝的计算长度l w取实际长度减去 【练习2】两截面为450 14mm的钢板,采用双盖板焊接连接,连接盖板宽度 410mm中间留空10mm),厚度8mm 钢材Q 235,手工焊,焊条为E43, f f w160N / mm2,静态荷载,h f

【练习3】钢材为Q 235,手工焊,焊条为E43, f f 160N/mm",静态荷载。双角钢2L125X8采用三面围焊和节点板连接,h f 6mm,肢尖和肢背实际焊缝长度 均为250mm等边角钢的内力分配系数0.7,k20.3。求最大承载力N —}心}\2LI25x8 解: 端焊缝所能承担的内力为: N30.7h f l w3 f f f" 2 0.7 6 125 1.22 160 204960N 肢背焊缝所能承担的内力为: N10.7h f l w1f f w20.7 6 (2506) 160327936N 根据N1 N3 k1N —3 2 1N31204960 得: N(N13)(3279360 960 )614880N K120.72【变化】若取消端焊缝,问 解:上题中令N3614.88kN N ? 0,l w1 250 2 6,得N 456.96kN 【练习4】钢材为Q 235,手工焊,焊条为E43, f f w 已知F 120kN,求焊脚尺寸h f (焊缝有绕角,焊缝长度可以不减去 2 160N / mm,静态荷载。 2h f ) 解:设焊脚尺寸为h f,焊缝有效厚度为h e 0.7h f 将偏心力移 到焊缝形心处,等效为剪力V= F及弯矩在剪力作用下: 3 120 10 342.9 M=Fe h e l w 在弯矩作用下: M M f W f , 2 0.7h f 250 120 103150 2 h f 1234 2 (N / mm ) IK W f 1 代入基本公式 h f 2 (N /mm ) 得: (1234 )2 (342.9)2 (1.22h f)( h f) 1068 160 h f 可以解得:h f6.68mm,取h f h f mi n 1.5 14 5.6mm h f 【变化】上题条件如改为已知h 7 mm。 h 12 f max 14.4mm,可以。 f 8mm,试求该连接能承受的最大荷载N 12

钢结构节点详图制图方法的探索

钢结构节点详图制图方法的探索 1 引言 节点是钢结构设计中的重要组成部分,独立的钢结构构件通过节点连接形成结构。因此在钢结构施工图设计中节点详图也占据了很大的比例。然而,传统钢结构节点详图的绘制存在大量的重复工作。笔者作为一名钢结构设计人员,针对上述问题,经过长期探索,特此提出一种新的制图方法:“示意图+表格”,经实践检验证明该方法简捷、明确。 2 传统节点详图做法 通常的节点设计包括柱脚节点、柱柱拼接节点、梁柱节点、梁梁节点等。节点详图中所反映的是与钢结构构件连接相关的所有信息,其中包括构件截面、构件相对位置、连接方式、焊缝形式、焊角尺寸、螺栓种类、螺栓数量、开孔位置、孔径大小、节点板尺寸、节点板厚度、加强板尺寸等。如图1所示: 14a

1-1 图1 传统梁柱节点图 图1是用传统做法完成的一个梁柱节点图。梁柱都是H型钢,通过栓焊混合的方式进行连接。图中包含了所有与此连接相关的信息,将这种连接方式反映得很清楚。但是这个图只反映了某一特定位置的连接信息,如果在其它位置相同的连接形式下,图中任何参数发生变化,就会产生出新的节点图。 虽然通常钢结构设计过程中最后都要做标准化设计,但是出于工程造价等因素的考虑一般情况下不会将构件形式和截面尺寸归并得太过统一,而且即使是相同的构件由于受力情况不同其节点设计也要做出相应的调整,所以就加大了节点详图绘制的工作量。尽管在实际绘制过程中制图人员可以通过复制已完成的类似图形并加以修改来减少工作量,但是当需要修改的内容较多时操作起来也难免会有疏漏而致使详图发生错误。所以每次的钢结构施工图绘制过程中节点详图的绘制都要花费很多的时间和精力。 3 节点详图新制图方法

钢结构节点计算钢结构节点计算钢结构节点计算

“梁梁拼接全螺栓刚接”节点计算书==================================================================== 计算软件:MTS钢结构设计系列软件MTSTool v3.5.0.0 计算时间:2012年12月02日16:53:51 ==================================================================== H1100梁梁拼接全螺栓刚接 一. 节点基本资料 节点类型为:梁梁拼接全螺栓刚接 梁截面:H-1100*400*20*34,材料:Q235 左边梁截面:H-1100*400*20*34,材料:Q235 腹板螺栓群:10.9级-M20 螺栓群并列布置:10行;行间距70mm;2列;列间距70mm; 螺栓群列边距:50 mm,行边距50 mm 翼缘螺栓群:10.9级-M20 螺栓群并列布置:2行;行间距70mm;4列;列间距70mm; 螺栓群列边距:45 mm,行边距50 mm 腹板连接板:730 mm×345 mm,厚:16 mm 翼缘上部连接板:605 mm×400 mm,厚:22 mm 翼缘下部连接板:605 mm×170 mm,厚:24 mm 梁梁腹板间距为:a=5mm 节点前视图如下: 节点下视图如下:

二. 荷载信息 设计内力:组合工况内力设计值 工况N(kN) Vx(kN) My(kN·m) 抗震组合工况1 0.0 115.4 152.3 否 组合工况2 0.0 135.4 172.3 是 三. 验算结果一览 验算项数值限值结果 承担剪力(kN) 6.77 最大126 满足 列边距(mm) 50 最小33 满足 列边距(mm) 50 最大88 满足外排列间距(mm) 70 最大176 满足 中排列间距(mm) 70 最大352 满足 列间距(mm) 70 最小66 满足 行边距(mm) 50 最小44 满足 行边距(mm) 50 最大88 满足外排行间距(mm) 70 最大176 满足 中排行间距(mm) 70 最大352 满足 行间距(mm) 70 最小66 满足净截面剪应力比0.066 1 满足 净截面正应力比0.000 1 满足 净面积(cm^2) 163 最小162 满足 承担剪力(kN) 8.93 最大140 满足极限受剪(kN·m) 9450 最小7670 满足 列边距(mm) 45 最小44 满足 列边距(mm) 45 最大88 满足

钢结构课程设计(PKPM出图,节点验算)

目录 1、基本资料 (1) 1.1、建筑物基本资料 (1) 1.2、设计荷载 (2) 2、内力图 (2) 3、钢材级别和梁柱截面 (4) 4、焊接方法和焊条型号 (5) 5、节点设计 (5) 5.1梁柱节点 (5) 5.1.1柱节点螺栓强度验算 (5) 5.1.2端板厚度验算 (6) 5.1.3梁柱节点域剪应力验算 (6) 5.1.4螺栓处腹板强度验算 (6) 5.2梁梁节点 (6) 5.2.1梁梁节点螺栓强度验算 (6) 5.2.2端板厚度验算 (7) 5.2.3螺栓处腹板强度验算 (7) 6、施工图 (8) 参考文献 (8) 1、基本资料 1.1、建筑物基本资料 1

2 某单层单跨钢结构厂房长度150m ,檐口高度:7500mm ,基础顶埋深:800mm ,柱距:7500mm ,跨度:15000mm ,屋顶坡度0.1。如图0框架立面图。 图0框架立面图 1.2、设计荷载 恒载:2 /KN 3.0m ,风载:2 /KN 4.0m ,活载:2 /KN 5.0m ,不考虑抗震设防。 2、内力图 用力学求解器计算这种荷载作用下的门式钢架内力,并经最不利组合得出的弯矩包络图,剪力包络图,轴力包络图如下所示。

图1弯矩包络图(单位:KN·M) 图2剪力包络图(单位:KN) 3

4 图3轴力包络图 (单位:KN ) 3、钢材级别和梁柱截面 本门式钢架采用碳素结构钢,牌号表达为Q235钢。经PKPM 软件计算得出钢材截面。由图2可知截面大小,梁采用焊接H 型钢HM234×180×6×8,柱采用焊接H 型钢HM480×250×6×8。 (a ) (b ) 图4截面示意图 (a )梁截面;(b )柱截面

钢结构计算题-答案完整

《钢结构设计原理计算题》 【练习1】两块钢板采用对接焊缝(直缝)连接。钢板宽度L=250mm ,厚度t=10mm 。钢材采用Q235,焊条E43系列,手工焊,无引弧板,焊缝采用三级检验质量标准, 2/185mm N f w t =。试求连接所能承受的最大拉力?=N 解:无引弧板时,焊缝的计算长度w l 取实际长度减去2t ,即250-2*10mm 。 根据公式 w t w f t l N

【变化】若取消端焊缝,问?=N 解:上题中令03=N ,622001?-=w l ,得kN N N 344.5051==

钢结构识图基础【精品】

钢结构识图基础 一、施工图基本知识 在建筑钢结构工程设计中,通常将结构施工图的设计分为设计图设和施工详图设计两个阶段。设计图设计是由设计单位编制完成,施工详图设计是以设计图为依据,由钢结构加工厂深化编制完成,并将其作为钢结构加工与安装的依据。 设计图与施工详图的主要区别是: 设计图是根据工艺、建筑和初步设计等要求,经设计和计算编制而成的较高阶段的施工设计图。它的目的和深度以及所包含的内容是作为施工详图编制的依据,它由设计单位编制完成,图纸表达简明,图纸量少。内容一般包括:设计总说明、结构布置图、构件图、节点图和钢材订货表等。施工详图是根据设计图编制的工厂施工和安装详图,也包含少量的连接和构造计算,它是对设计图的进一步深化设计,目的是为制造厂或施工单位提供制造、加工和安装的施工详图,它一般由制造厂或施工单位编制完成,它图纸表示详细,数量多。内容包括:构件安装布置图、构件详图等。1.制图标准有关规定 (1)线型 在结构施工图中图线的宽度b通常为2.Omm、1.4mm、O.7mm、O.5mm、O.35mm,当选定基本线宽度为b时,则粗实线为b、中实线为O.5b、细实线为O.25b。 在同一张图纸中,相同比例的各种图样,通常选用相同的线宽组。各种线型及线宽所表示的内容如表

(2)构件名称的代号

二、剖面符号和断面符号 1.断面符号 表示从符号处剖开看到的断面,不表示断面后方的其他东西; 2.剖面符号 表示从符号处剖开看到的断面及断面后方的其他东西; 3.在钢构详图中,断面符号和剖面符号使用上有些随意,是因为功能上比较接 近,着重表达的是看物体的方向。 看物的方向是从粗线朝文字的方向看。粗线表示人的眼睛,文字表示看的朝向。 三、索引符号及节点符号 1.不带剖视方向的索引 左边为索引,右边为对应的节点,表示将圈画中的部分放大绘制细节。中的字母a 表示参看节点,底下的“—”表示“在本图中”,如果节点详图不在本 图中,就写对应的图纸编号,比如“详图-09”或“09”等。 有时也直接索引出来后直接放大,不用到节点符号,如下图:

钢结构计算题集

钢结构设计原理计算题 第3章 连接 1、试计算题1图所示角焊缝连接的焊脚尺寸。已知:连接承受静力荷载设计值300P kN =, 240N kN =,钢材为Q235BF ,焊条为E43型,2160w f f N mm =,设计算焊缝长度为实际焊缝长度减去10mm 。 2、计算如2题图所示角焊缝连接能承受的最大静力设计荷载P 。已知:钢材为Q235BF ,焊条为E43型,2/160mm N f w f =,考虑到起灭弧缺陷,每条角焊缝计算长度取为mm 290。 2 解:120P 53M ,P 53V ,P 54N ?=== p 33.0290 67.0210p 54A N 3e N =????==σ p 25.0290 67.0210p 53A N 3e N =????==τ p 61.029067.06 1210120p 53W M 23f M =??????==σ 题2图 题1图 1

2w f 222V 2M N mm /N 160f )P 25.0()22 .1P 61.0P 33.0()()22.1(=≤++=τ+σ+σ kN 5.197P ≤ 3、图示角焊缝连接,承受外力kN N 500=的静载,mm h f 8=,2160mm N f w f =,没有采用引弧板,验算该连接的承载力。 3 解:400,300x y N kN N kN == 23 65.90) 82410(87.0210400mm N l h N w e x f =?-????==∑σ 23 98.67)82410(87.0210300mm N l h N w e y f =?-????==∑τ w f f f f f mm N ≤=+=+222227.10098.67)22 .165.90()(τβσ 4、计算图示角焊缝连接中的f h 。已知承受动荷载,钢材为Q235-BF ,焊条为E43型,2 160mm N f w f =,偏离焊缝形心的两个力kN F 1801=,kN F 2402=,图中尺寸单位:mm ,有引弧板。 4解:将外力1F ,2F 移向焊缝形心O ,得: kN F N 1801==;kN F V 2402== kN F F M 0902401201809012021=?-?=?-?= 题3图

18米跨度钢结构带节点详图

一、设计资料: 1.某厂房总长度60m ,跨度为18m.,柱距6m 。车间内设有两台30/5吨中级工作制吊车。屋架端高1900mm,屋面坡度为1/10,置于钢筋混凝土柱上,上柱截面400x400,柱的混凝土强度等级为C25,无檩屋盖体系,采用1.5×6.0m 。计算最低温度-200C 。采用1.5×6.0m 预应力混凝土大型屋面板和卷材屋面。 二、结构形式与布置图: 屋架支撑布置图如下图所示。 02279 a.18米跨屋架(几何尺寸) b.18米跨屋架全跨单位荷载 作用下各杆件的内力值 A a c e g e' c' a'+2.537 0. 000-4.371-5. 636-4.551 -3.357 -1.8500.00 -4.754 -1.8 62 +0.615 +1 .17 +1 .344 +1 .581 +3.158 +0 .540 -1. 6 32 -1. 305 -1. 520 -1. 748 -1.0-1. 0+0. 4060.00 0.00-0.5+5.325 +5.312 +3.967 +2.637 +0.933 B C D E F G F ' E 'D ' C 'B 'A ' 0.5 1. 0 1.0 1.0 1. 0 1.0 1.0 c . 18米跨屋架半跨单位荷载作用下各杆件的内力值 四、荷载计算与组合 1、荷载计算 预应力混凝土大型屋面板 1.40kN/㎡×1.35=1.89kN/m 2 三毡四油防水层 0.4kN/㎡×1.35=0.54kN/m 2 找平层(20mm 厚) 0.4kN/㎡×1.35=0.54kN/m 2 泡沫混凝土保温层 (80mm ) 0.48kN/㎡×1.35=0.648kN/m 2 钢屋架和支撑自重 (0.12+0.011×30)×1.35=0.608kN/㎡ 管道荷载 0.1×0.35=0.135 kN/㎡ 永久荷载总和 4.361 kN/㎡ 屋面活荷载 0.5×1.4=0.7kN/㎡ 积灰荷载 0.5×1.4=0.7kN/㎡ 可变荷载总和 1.4 kN/㎡

钢结构计算表及尺寸表

2-5 钢结构计算 2-5-1 钢结构计算用表 为保证承重结构的承载能力和防止在一定条件下出现脆性破坏,应根据结构的重要性、荷载特征、结构形式、应力状态、连接方法、钢材厚度和工作环境等因素综合考虑,选用合适的钢材牌号和材性。 承重结构的钢材宜采用Q235钢、Q345钢、Q390钢和Q420钢,其质量应分别符合现行国家标准《碳素结构钢》GB/T 700和《低合金高强度结构钢》GB/T 1591的规定。当采用其他牌号的钢材时,尚应符合相应有关标准的规定和要求。对Q235钢宜选用镇静钢或半镇静钢。 承重结构的钢材应具有抗拉强度、伸长率、屈服强度和硫、磷含量的合格保证,对焊接结构尚应具有碳含量的合格保证。 焊接承重结构以及重要的非焊接承重结构的钢材还应具有冷弯试验的合格保证。 对于需要验算疲劳的焊接结构的钢材,应具有常温冲击韧性的合格保证。当结构工作温度等于或低于0℃但高于-20℃时,Q235钢和Q345钢应具有0℃C冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有-20℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-40℃冲击韧性的合格保证。 对于需要验算疲劳的非焊接结构的钢材亦应具有常温冲击韧性的合格保证,当结构工作温度等于或低于-20℃时,对Q235钢和Q345钢应具有0℃冲击韧性的合格保证;对Q390钢和Q420钢应具有-20℃冲击韧性的合格保证。 当焊接承重结构为防止钢材的层状撕裂而采用Z向钢时,其材质应符合现行国家标准《厚度方向性能钢板》GB/T 5313的规定。 钢材的强度设计值(材料强度的标准值除以抗力分项系数),应根据钢材厚度或直径按表2-77采用。钢铸件的强度设计值应按表2-78采用。连接的强度设计值应按表2-79至表2-81采用。 钢材的强度设计值(N/mm2)表2-77 钢材抗拉、抗压和抗弯抗剪端面承压(刨平顶紧)

钢结构计算题集

第3章 连接 1、试计算题1图所示角焊缝连接的焊脚尺寸。已知:连接承受静力荷载设计值300P kN =, 240N kN =,钢材为Q235BF ,焊条为E43型, 2160 w f f N mm =,设计算焊缝长度为实际焊缝长度减去 10mm 。 2、计算如2题图所示角焊缝连接能承受的最大静力设计荷载P 。已知:钢材为Q235BF ,焊条为E43型,2 /160mm N f w f =,考虑到起灭弧缺陷,每条角焊缝计算长度取为mm 290。 2 解:120P 5 3 M ,P 53V ,P 54N ?=== p 33.029067.0210p 54 A N 3 e N =????==σ p 25.0290 67.0210p 53 A N 3 e N =????==τ p 61.029067.06 1210120p 53 W M 2 3 f M =??????==σ 2w f 222V 2M N mm /N 160f )P 25.0()22 .1P 61.0P 33.0()()22.1(=≤++=τ+σ+σ kN 5.197P ≤ 3、图示角焊缝连接,承受外力kN N 500=的静载,mm h f 8=,2 160mm N f w f =,没有采用引 弧板,验算该连接的承载力。 题2图 题1图 1

3 解:400, 300x y N kN N kN == 23 65.90)82410(87.0210400mm N l h N w e x f =?-????==∑σ 23 98.67) 82410(87.0210300mm N l h N w e y f =?-????==∑τ w f f f f f mm N ≤=+=+222227.10098.67)22 .165.90()( τβσ 4、计算图示角焊缝连接中的f h 。已知承受动荷载,钢材为Q235-BF ,焊条为E43型,2 160mm N f w f =,偏离焊缝形心的两个力kN F 1801=,kN F 2402=,图中尺寸单位:mm ,有引弧板。 4解:将外力1F ,2F 移向焊缝形心O ,得: kN F N 1801==;kN F V 2402== kN F F M 0902401201809012021=?-?=?-?= f f w e f h h l h N 5362407.02101803= ????==∑σ f f w e f h h l h V 714 2407.02102403= ????==∑τ 0.1=f β则:

钢结构计算题-答案完整

《钢结构设计原理计算题》 ,厚度t=10mm 。 。 kN 5. N f l h N w f w f 521472160)6200(67.047.011=?-???=∑= 最大承载力kN N N 4.10131013376521472491904==+= 【变化】若取消端焊缝,问?=N 解:上题中令03=N ,622001?-=w l ,得kN N N 344.5051==

解:上题中令03=N ,622501?-=w l ,得kN N 96.456= 已知F =V f =τM f σ 可以解得:mm h f 68.6≥,取mm h f 7=。 mm h h mm h f f f 4.14122.16.5145.1max min =?=<<==,可以。 【变化】上题条件如改为已知mm h f 8=,试求该连接能承受的最大荷载?=N

已知h f =N f σ M f = σ=σ, , kN f n N v V V 96.87101404 24 =???== ⑵一个螺栓的承压承载力设计值: kN f t d N b c b c 4.851030514203 =???=?∑=- (因为mm t mm t 201022141=?=<=,故公式中取14=∑t ) ⑶最大承载力 kN nN N b 2.6834.858min =?== ⑷净截面强度验算: 223 3/215/9.2173136 102.68314)5.214310(102.683mm N f mm N A N n =>=?=??-?==σ 不满足要求。最大承载力由净截面强度控制: kN f A N n 24.6741021531363 =??==- 【变化】上题条件如改为已知N=600kN ,试验算该连接是否安全?

钢结构节点

1.梁与柱的刚性连接 (1)梁与柱刚性连接的构造形式有三种,如图所示: (2)梁与柱的连接节点计算时,主要验算以下内容: ①梁与柱连接的承载力 ②柱腹板的局部抗压承载力和柱翼缘板的刚度 ③梁柱节点域的抗剪承载力 (3)梁与柱刚性连接的构造 ①框架梁与工字形截面柱和箱形截面柱刚性连接的构造: 框架梁与柱刚性连接 ②工字形截面柱和箱形截面柱通过带悬臂梁段与框架梁连接时,构造措施有两种: 柱带悬臂梁段与框架梁连接

梁与柱刚性连接时,按抗震设防的结构,柱在梁翼缘上下各500mm的节点范围内,柱翼缘与柱腹板间或箱形柱壁板间的组合焊缝,应采用全熔透坡口焊缝。 (4)改进梁与柱刚性连接抗震性能的构造措施 ①骨形连接 骨形连接是通过削弱梁来保护梁柱节点。 骨形连接 梁端翼缘加焊楔形盖板 梁端翼缘加焊楔形盖板 在不降低梁的强度和刚度的前提下,通过梁端翼缘加焊楔形盖板。 (5)工字形截面柱在弱轴与主梁刚性连接 当工字形截面柱在弱轴方向与主梁刚性连接时,应在主梁翼缘对应位置设置柱水平加劲肋,在梁高范围内设置柱的竖向连接板,其厚度应分别与梁翼缘和腹板厚度相同。柱水平加劲肋与柱翼缘和腹板均为全熔透坡口焊缝,竖向连接板与柱腹板连接为角焊缝。主梁与柱的现场连接如图所示。 2梁与柱的铰接连接

(1)梁与柱的铰接连接分为:仅梁腹板连接、仅梁翼缘连接: 仅梁腹板连接仅梁翼缘连接 柱上伸出加劲板与梁腹板相连梁与柱用双盖板 相连 (2)柱在弱轴与梁铰接连接分为:柱上伸出加劲板与梁腹板相连、梁与柱用双盖板相连 柱的拼接节点一般都是刚接节点,柱拼接接头应位于框架节点塑性区以外,一般宜在框架梁上方1.3m左右。考虑运输方便及吊装条件等因素,柱的安装单元一般采用三层一根,长度10~12m 左右。根据设计和施工的具体条件,柱的拼接可采取焊接或高强度螺栓连接。 按非抗震设计的轴心受压柱或压弯柱,当柱的弯矩较小且不产生拉力的情况下,柱的上下端应铣平顶紧,并与柱轴线垂直。柱的25%的轴力和弯矩可通过铣平端传递,此时柱的拼接节点可按75%的轴力和弯矩及全部剪力设计。抗震设计时,柱的拼接节点按与柱截面等强度原则设计。 非抗震设计时的焊缝连接,可采用部分熔透焊缝,坡口焊缝的有效深度不宜小于板厚度的 1/2。有抗震设防要求的焊缝连接,应采用全熔透坡口焊缝。

钢结构计算题答案

第四章 轴心受力构件 4.1 验算由2∟635?组成的水平放置的轴心拉杆的强度和长细比。轴心拉力的设计值为270KN ,只承受静力作用,计算长度为3m 。杆端有一排直径为20mm 的孔眼(图4.37),钢材为Q235钢。如截面尺寸不够,应改用什么角钢? 注:计算时忽略连接偏心和杆件自重的影响。 解:(1)强度 查表得 ∟635?的面积A=6.14cm 2 ,min 1.94x i i cm ==, 22()2(614205)1028n A A d t mm =?-?=?-?=, N=270KN 327010262.62151028 n N Mpa f Mpa A σ?===≥=,强度不满足, 所需净截面面积为3 2270101256215 n N A mm f ?≥= =, 所需截面积为21256 2057282 n A A d t mm =+?= +?=, 选636?,面积A=7.29cm 22729mm =2728mm ≥ (2)长细比 4.2 一块-40020?的钢板用两块拼接板-40012?进行拼接。螺栓孔径为22mm ,排列如图4.38所示。钢板轴心受拉,N=1350KN (设计值)。钢材为Q235钢,解答下列问题; (1)钢板1-1截面的强度够否? (2)是否需要验算2-2截面的强度?假定N 力在13个螺栓中平均分配,2-2截面应如何验算?

(3)拼接板的强度够否? 解:(1)钢板1-1截面强度验算: 210min (3)(400322)206680n A b d t mm =-??=-??=∑, N=1350KN 31135010202.12056680n N Mpa f Mpa A σ?===≤=,强度满足。 (2)钢板2-2截面强度验算: (a ),种情况,(a )是最危险的。 2222()0(5)(400808080522)206463n a A l d t mm =-??=-++-??=, N=1350KN 3 2135010208.92056463n N Mpa f Mpa A σ?===≥=,但不超过5%,强度满足。 对应图(d )的验算: 22()0(5)(400522)205800n d A l d t mm '=-??=-??=, 3 21038.510179.02055800n N Mpa f Mpa A σ'?===≤=' ,强度满足。 (3)拼接板的强度够否? 因为拼接板厚度2122420mm mm =?=≥,所以不必验算拼接板。 4.3 验算图4.39所示用摩擦型高强度螺栓连接的钢板净截面强度。螺栓直径20mm ,孔径22mm ,钢材为Q235AF ,承受轴心拉力N=600KN (设计值)。

钢结构工程量计算规则

一般可以分成几大块:1、柱脚:包括柱底板、地脚螺栓、抗剪件。 2、刚架。按榀数计算,钢柱、钢梁、节点(板及高强螺栓) 3、支撑。(分屋面支撑和墙面支撑。屋面支撑包括有1、水平支撑2、系杆。3、雨棚梁等;墙面支撑包括: 1、柱间支撑 2、系杆。) 4、檩条(同样按屋面及墙面分。屋面:1、檩条 2、隅撑 3、檩托板 4、拉条、斜拉条、撑杆。墙面:1、檩条(墙面檩条、窗侧檩条、雨棚檩条) 2、隅撑 3、檩托板 4、拉条、斜拉条、撑杆 5、门柱、门梁。) 5、建筑维护。分屋面及墙面。(屋面一般含:1、屋面彩板及收边 2、天沟 3、落水管 4、若有采光板或屋脊气楼或涡轮通风器或DK600等顺坡气楼;墙面:1、墙面彩板及收边(若有女儿墙需计算女儿墙内层板) 2、门窗 一般可以分成几大块:1、柱脚: 2、钢柱 3、刚架 4、支撑。 5、檩条 6、建筑维护。分屋面及墙面

序号项目名 称 构件 名称 图示 计量 单位 工程量 计算规则 备注 轻钢1 预 埋 件 部 分 预埋锚 栓 套 按规格、长度分别计算 1、预算报价:以规格分类按 套数计算报价 2、内部结算:以吨位计算= 长度(a+b)*该规格的理论重量, 螺母、垫板需另行计算 (圆钢理论重量=0.00617*d2) 1、总数量:锚栓套数 (参照锚栓布置图)预埋件 加劲板1 加劲板2 (1) (2) T (1)、钢柱预埋件: ①柱脚板:A*B*该规格的理论重 量 ②加劲板: a*b该规格的理论重 量 (2)、门框柱预埋件: ①预埋板:a1*b1*该规格的理论 重量 ②螺杆:(L1+L2)*该规格的理论 重量 (钢板理论重量=7.85*t) (圆钢理论重量=0.00617*d2) 1、钢柱的柱脚板及加 劲板的工程量并入钢 柱工程量中,门框柱 等预埋件单列

成都大学期末考试钢结构计算题

图示焊接工字形截面轴压柱,在柱1/3处有两个M20的C 级螺栓孔,并在跨中有一侧向支撑,试验算该柱的强度、整体稳定?已知:钢材Q235AF ,26500mm A =,mm i x 2.119=,mm i y 3.63=,2/215mm N f y =,kN F 1000=。 解: 34.502 .1196000 ===x ox x i L λ,查表855.0=x ? 39.473 .633000 == = y oy y i L λ 260702105.216500mm A n =??-= 223 /215/1806500 855.0101000mm N f mm N A N x =<=??=? 223 /215/1656070 101000mm N f mm N A N n =<=?=

A为柱的截面积(按实计算),x 0、y 0为柱在x 、y 方向的计算长度。 ⑵ 验算时将上述过程倒过来即可。为方便计算,单位采用cm 。 ① 截面积: 2 846.0202.1302cm A =?+??= ② 惯性距: 43 356.849812 204.29124.2230cm I x =?-?= 43 540012 302.12cm I y =?? = ③ 回转半径: cm A I i x x 06.108456.8498=== cm A I i y y 02.884 5400 == = ④ 长细比: []15070.4905 .10500=<=== λλx ox x i l []15017.3102 .8250 =<== = λλy oy y i l ⑤ 稳定系数:b 类截面,由最大长细比70.49=x λ查附表得:

钢结构计算题含答案

1、某6m 跨度简支梁的截面和荷栽(含梁自重在内的设计值)如图所示。在距支座处有翼缘和腹板的拼接连接,实验算其拼接的对接焊缝。已知钢材为Q235,采用E43型焊条,手工焊,三级质量标准,施焊时采用引弧板。 解: ①计算焊缝截面处的内力 m kN m kN qab M ?=?-???== 8.1036)]4.20.6(4.22402 1 [21 ()[]kN kN a l q V 1444.2324021=-?=?? ? ??-= ② 计算焊缝截面几何特征值: () 464331028981000240103225012 1 mm mm I W ?=?-??= () 363610616.5516102898mm mm W W ?=÷?= { ()363110032.250816250mm mm S W ?=??= ()363110282.325010500mm mm S S W W ?=??+= ③ 计算焊缝强度 查附表得2/185mm N f w t = 2/125mm N f w v =

2 266max /185/6. 18410616.5108.1036mm N f mm N W M w t W =<=??? ? ????==σ 2 26 63max /125/3.1610 10289810282.310144mm N f mm N t I VS w v w W W =<=?????==τ 2max 01/9.1786.1841032 1000mm N h h =?== σσ 2 6 6311/1.1010 10289810032.210144mm N t I VS w W W =?????==τ 折算应力: 22222121/5.2031851.11.1/8.1791.1039.1783mm N f mm N w t =?=<=?+=+τσ % 2、设计图示双盖板对接连接。已知钢板宽a =240mm ,厚度t =10mm ,钢材为Q235钢,焊条为E43,手工焊,轴力设计值N =550kN 。 解: (1)确定盖板尺寸 为了保证施焊,盖板b 取为b=240mm-40mm=200mm 按盖板与构件板等强度原则计算盖板厚度

钢结构图集大全

钢结构图集大全 03SG520-1实腹式钢钢吊车梁(中轻级工作制Q235钢) 04G323-2(钢筋混凝土吊车梁-工作级别A4、A5) 04G329-5建筑物抗震构造详图(配筋砖砌体楼房) 04G323-1(钢筋混凝土吊车梁-工作级别A6) 02J611-3压型钢板及夹心板大门(1) 03SG520-1+钢吊车梁 02J611-3压型钢板及夹心板大门 02TD-102门式钢架轻型房屋钢结构标准(檩条、墙梁)图集.pdf 03J611-4铝合金彩钢夹心板大门 03SG519-1――多高层建筑钢结构节点连接 04J621-2电动采光排烟天窗 01SG515轻型屋面梯形钢屋架 04SG518-2门式刚架轻型房屋钢结构(有悬挂吊车)(1)(1) 01SG519多高层民用建筑钢结构构造节点图集 04G101-401图集现浇 04G337吊车梁走道板

02SG518-1门式刚架轻型房屋钢结构 (JNHB-T-03) 03SG520-2钢吊车梁(中轻级工作制Q345钢) 03G101图集CAD版本 04G325吊车轨道联结及车挡(适用于混凝土结构) 02J401钢梯图集 02SG518-1 01J925-1压型钢板、夹芯板屋面及墙体建筑构造 03SG520-2 08SG115-1钢结构施工图参数表示方法制图规则及构造详图 05G515轻型屋面梯形钢屋架图集 05G514-1-12M实腹钢吊车梁轻级工作制(A1~A3)Q235钢 08G118单层厂房设计选用 09SG117-1单层工业厂房设计示例(一) 01(04)SG519多、高层民用建筑钢结构节点构造详图(含2004年局部修改版) 08CG03轻型钢结构设计实例 05G511梯形钢屋架

钢结构节点图

10.2.3门式刚架横梁与立柱连接节点, 可采用端板竖放、平放和斜放三种形式 (图10.2.3a 、b 、 c )。斜梁与刚架柱连接节点的受拉侧, 宜采用端板外伸式,与斜梁端板连接的柱的翼缘部位应 与端板等厚度;斜梁拼接时宜使端板与构件外边缘垂直(图 使翼缘内外螺栓群中心与翼缘中心重合或接近。 10.2.8屋面梁与摇摆柱连接节点应设计成铰接节点,采用端板横放的顶接连接方式(图 10.2.8 )。 图10.2.9 屋面梁和混凝土柱连接节点 10.2.11吊车梁承受动力荷载,其构造和连接节点须满足以下规定: 4吊车梁与制动梁的连接,可采用高强度摩擦型螺栓连接或焊接。吊车梁与刚架上柱的 连接处宜设长圆孔(图 10.2.11-3a );吊车梁与牛腿处垫板采用焊接连接(图 10.2.11-3b );吊 车梁之间应采用高强螺栓连接。 10.2.3d ),应采用外伸式连接,并 屛 1 M (b) 端板平放 图 10.2.3 (c ) 刚架连接节点 端板斜放 (d) 斜梁拼接 (a) (b) 图 10.2.8 IT 10.2.9屋面梁与混凝土柱采用锚栓连接(图 10.2.9),该连接节点应为铰接节点,锚栓及底板 设计同铰接柱脚。 (b) 屋面梁和摇摆柱连接节点 (a)

10.2.12用于支承吊车梁的牛腿可做成等截面,当也可做成变截面(图 10.2.12);柱在牛腿上 下翼缘的相应位置处应设置横向加劲肋;为保证传力均匀,在牛腿上翼缘吊车梁支座处应设 置垫板,垫板与牛腿上翼缘连接采用围焊;为避免较大的局部承压应力,在吊车梁支座对应 的牛腿腹板处应设置横向加劲肋。 牛腿与柱连接处承受剪力 V 和弯矩M=Ve 作用,其截面强 度和连接焊缝应按现行钢结构设计规范 GB50017进行计算。 10.2.13在设有夹层的结构中,夹层梁与柱可采用刚接,也可采用铰接(图 10.2.13)。当采用 刚接连接时,夹层梁翼缘与柱翼缘应采用全熔透焊接,而腹板可采用高强螺栓与柱连接。柱 图10211-3 吊车梁连接节点 (a)等截面牛腿 (b) 图10.2.12 牛腿节点

相关主题
文本预览
相关文档 最新文档