射频功率计基础知识
- 格式:docx
- 大小:186.76 KB
- 文档页数:4
射频功率计原理
射频功率计是一种用来测量射频信号功率的仪器。
其工作原理是将信号通过一个能够吸收能量的元件,例如热电偶或者晶体管等,产生电压信号,然后通过电路进行放大和处理,最终计算得到信号的功率值。
射频功率计的重要性在于其可以用来检测和调整射频信号的输
出功率,从而确保信号传输的质量和可靠性。
在无线通信、雷达、天线测试等领域,射频功率计被广泛地应用。
射频功率计的精度和灵敏度往往受到许多因素的影响,例如元件的质量、输入信号的频率和功率等。
因此,在使用射频功率计时,需要仔细选取合适的元件和调整仪器的参数,以确保测量结果的准确性和可靠性。
总之,射频功率计在射频信号测量和调整中具有不可替代的作用,是射频工程师必备的工具之一。
- 1 -。
第一部分射频基本概念第一章常用概念一、特性阻抗特征阻抗是微波传输线的固有特性,它等于模式电压与模式电流之比。
对于TEM波传输线,特征阻抗又等于单位长度分布电抗与导纳之比。
无耗传输线的特征阻抗为实数,有耗传输线的特征阻抗为复数。
在做射频PCB板设计时,一定要考虑匹配问题,考虑信号线的特征阻抗是否等于所连接前后级部件的阻抗。
当不相等时则会产生反射,造成失真和功率损失。
反射系数(此处指电压反射系数)可以由下式计算得出:z1二、驻波系数驻波系数式衡量负载匹配程度的一个指标,它在数值上等于:由反射系数的定义我们知道,反射系数的取值范围是0~1,而驻波系数的取值范围是1~正无穷大。
射频很多接口的驻波系数指标规定小于1.5。
三、信号的峰值功率解释:很多信号从时域观测并不是恒定包络,而是如下面图形所示。
峰值功率即是指以某种概率出现的尖峰的瞬态功率。
通常概率取为0.1%。
四、功率的dB表示射频信号的功率常用dBm、dBW表示,它与mW、W的换算关系如下:dBm=10logmWdBW=10logW例如信号功率为x W,利用dBm表示时其大小为五、噪声噪声是指在信号处理过程中遇到的无法确切预测的干扰信号(各类点频干扰不是算噪声)。
常见的噪声有来自外部的天电噪声,汽车的点火噪声,来自系统内部的热噪声,晶体管等在工作时产生的散粒噪声,信号与噪声的互调产物。
六、相位噪声相位噪声是用来衡量本振等单音信号频谱纯度的一个指标,在时域表现为信号过零点的抖动。
理想的单音信号,在频域应为一脉冲,而实际的单音总有一定的频谱宽度,如下页所示。
一般的本振信号可以认为是随机过程对单音调相的过程,因此信号所具有的边带信号被称为相位噪声。
相位噪声在频域的可以这样定量描述:偏离中心频率多少Hz处,单位带宽内的功率与总信号功率相比。
例如晶体的相位噪声可以这样描述:七、噪声系数噪声系数是用来衡量射频部件对小信号的处理能力,通常这样定义:单元输入信噪比除输出信噪比,如下图:对于线性单元,不会产生信号与噪声的互调产物及信号的失真,这时噪声系数可以用下式表示:Pno 表示输出噪声功率,Pni 表示输入噪声功率,G 为单元增益。
射频功率计原理
射频功率计是一种用于测量射频电路中电功率的仪器。
其原理基于电磁场的能量传输和转化。
在射频电路中,电磁波在传输过程中会与电路元件发生相互作用,从而产生电功率。
射频功率计利用电路元件的特性,测量电路中的电功率。
射频功率计通常采用热偶、热电偶、热释电等原理进行测量。
其中,热偶原理是基于热电效应测量电功率的。
热电偶原理是基于两种不同金属之间的热电效应测量电功率的。
热释电原理是基于材料吸收电磁波时产生的热量测量电功率的。
射频功率计的测量范围通常从微瓦到千瓦不等,可以满足不同应用场景的需求。
同时,射频功率计还可以实现功率监测、功率控制、功率调节等功能。
总之,射频功率计是电子工程领域中必不可少的测量仪器之一,其原理基于电磁场的能量传输和转化,可以实现对射频电路中电功率的准确测量和控制。
- 1 -。
1电平是以分贝表示的绝对功率,单位dBm,计算公式:dBm=10lg(*mw/1mw)2某发信机额定功率电平为30dBm,其杂散辐射相对电平为-70dBc,该项指标表明,杂散辐射电平为-40 dBm(30 dBm-70 dB)。
3增益(db):指放大器或系统的功率放大倍数,单位为分贝(dB)4插损=器件输出电平(dBm)-器件输入电平(dBm)5隔离度——耦合端口与输出端口的功率比(隔离端口与输入端口的功率之比),单位为dB6无源器件的方向性=隔离度-耦合度7常规工程无源器件:耦合器、合路器、电桥、衰减器、负载、功分器等。
8负载是一种特殊的衰减器,衰减度为无限大。
9合路器分为同频段合路器和异频段合路器两种,3dB电桥主要应用于同频段内不同载波间的合路应用。
10滤波器的典型指标:频率范围、带宽、插入损耗、带外抑制、驻波(回波损耗)、带内波动、功率容量等。
11直放站分类,按带宽分为宽带直放站和选频直放站,按传输方式分为:无线直放站和有线直放站;按接入方式分为:直接耦合直放站和空间耦合直放站。
12若一个系统的功率放大的倍数是2,则这个系统的增益是3dB 。
若系统的输出电平是43dBm,输入电平是10dBm,则系统的增益是33dB。
13无源器件按电气性能可分为微带和腔体。
14光合波器或光分波器统称为波分复用器。
它能将使光纤的通信容量成倍的提高。
目前多采用1310nm和1550nm波长的波分复用器。
15天线是将高频电流或波导形式的能量变换成电磁波并向规定方向发射出去或把来自一定方向的电磁波还原为高频电流的一种设备。
主要参数:方向图、增益、输入阻抗、驻波比、极化方式、前后比等。
16天线按极化方式分为单极化天线及双极化天线。
单极化天线又分为垂直极化和水平极化。
17天线增益是指天线朝一个特定方向收发信号的能力。
其单位用dBi和dBd表示,其中dBi=dBd+2.15,0dBd=2.15dBi。
18天线波瓣宽度是指天线辐射图中,低于峰值3dB处夹角的宽度或主波瓣宽度从最大值下降一半时两点所张的夹角19天线前后比指最大正向增益与最大反向增益之比,用分数表示。
射频功率计原理
射频功率计原理
射频功率计原理
射频功率计是用于测量射频电路中功率的一种仪器。
其原理是根据电磁场理论,利用能量在空间传递的特性,测量被测电路中的功率。
射频功率计一般分为直接读数和间接读数两种类型。
直接读数型射频功率计是基于热辐射原理,利用热敏元件(如热电偶、热电阻等)将电路中的功率转换成热量,再将热量转换成电信号,以读出被测电路中的功率大小。
间接读数型射频功率计是基于功率反比定律,利用已知功率源和未知功率源的电压电流关系,通过比较两个电路之间的功率大小来测量被测电路中的功率。
常见的间接读数型射频功率计有行波管功率计、倍频器功率计、电桥功率计等。
无论是直接读数型还是间接读数型射频功率计,在使用时需要注意选用适当的测量范围和频率范围,以及保持测量精度,避免对被测电路造成损伤。
- 1 -。
射频基础知识培训一、射频概述射频(Radio Frequency,简称RF)是指无线电频率范围内的电磁波信号。
射频技术在现代通信、无线电、雷达等领域起着重要作用。
本次培训将介绍射频的基础知识,包括射频信号的特性、射频电路设计及射频测量。
二、射频信号的特性1. 频率范围:射频信号的频率范围通常指300kHz至300GHz之间的频段。
这一频率范围被广泛应用于无线通信和雷达系统中。
2. 带宽:射频信号的带宽是指在频率上的范围,用于传输信息。
带宽越宽,信号传输的速率越高。
3. 衰减:射频信号在传输过程中会发生衰减,衰减的程度与信号传播距离、传输介质等因素有关。
为了保持信号的质量,需要采取衰减补偿措施。
三、射频电路设计1. 射频放大器设计:射频放大器用于增强射频信号的强度。
设计射频放大器需要考虑电源电压、功率放大系数、频率响应等因素。
2. 射频滤波器设计:射频滤波器用于去除非期望频率范围内的干扰信号。
设计射频滤波器需要考虑信号带宽、截止频率、滤波器类型等因素。
3. 射频混频器设计:射频混频器用于将不同频率的信号进行混合,产生新的频率信号。
设计射频混频器需要考虑输入信号频率、混频器类型、频率转换效率等因素。
四、射频测量1. 射频功率测量:射频功率测量用于确定射频信号的功率水平。
常用的测量仪器包括射频功率计和射频功率传感器。
2. 射频频谱分析:射频频谱分析用于分析射频信号在频率上的变化情况。
常用的仪器包括射频频谱分析仪和扫频仪。
3. 射频网络分析:射频网络分析用于测量射频电路的传输特性(如反射系数、传输系数等)。
常用的仪器包括网络分析仪和隔离器。
五、总结通过本次射频基础知识培训,我们了解了射频信号的特性、射频电路设计和射频测量等内容。
掌握这些基础知识对于从事射频相关工作或研究具有重要意义。
我们将进一步深入学习射频技术并应用于实际项目中,提升我们的专业能力和水平。
(以上文字仅供参考,具体内容可根据实际情况进行添加或修改)。
带你了解射频、光纤的基础知识一、基本物理量、基本概念的介绍1、功率/电平·功率——理论上定义为做功的速率。
单位为 mW、W(瓦)、kW等。
·电平——功率的另一种表示。
单位为dBm(取1mW为基准值,以分贝表示的绝对功率电平)。
·换算公式:电平(dBm)=10lgP(功率mW¤1mW) 。
如 5W®10lg5000=37dBm; 10W®10lg10000=40dBm.(功率增倍,电平增加3dB)·输出功率——指放大器的功率输出能力。
常以功率或电平表示。
2、增益(dB)·增益——指放大器或系统的功率放大倍数,单位为分贝(dB)。
·增益(dB)=系统输出电平(dBm)-系统输入电平(dBm)3、插损(dB)·插损——插入损耗的简称,表示当电路中接入某一无源器件或部件后所引起的损耗(即衰减)。
单位为分贝(dB)。
·插损(dB)=器件输出电平(dBm)–器件输入电平(dBm)4、选择性、带宽·选择性——衡量滤波器选择有用信号同时抑制无用信号的能力。
常用带宽BW、矩形系数K0.1来表示。
·带宽BW——滤波器对信号的衰减为-3dB时所决定的频率宽度。
·矩形系数K0.1——滤波器对信号的衰减为-20dB(或-40dB、-60dB)时的频宽与滤波器带宽BW 的比值。
其值越接近于1,滤波器的选择性越好。
5、阻抗匹配·阻抗匹配——使系统反射系数为零,即无反射时称为匹配。
·相应的传输线有三种状态:无反射状态(行波)、全反射状态(驻波)、行驻波。
6、驻波比、回波损耗·驻波比——行驻波状态时,波腹电压与波节电压之比(VSWR)。
·回波损耗RL(dB) =反射信号电平(dBm)–入射信号电平(dBm)7、三阶互调·三阶互调——若存在两个正弦信号w1和w2,由于非线性作用将产生许多互调分量|±p w1 ±q w2 |,p+q称为阶。
功率计三种分类详解
功率计是测量电功率的仪器。
搞射频微波的各位亲们相比不陌生,功率计基本上也是和信号源、频谱仪、网络分析仪并行的几个大件之一,当然没有前面几个大哥那么昂贵
图1 功率测量仪器的组成
功率计分类
一、按照连接方式分类
射频或微波功率计按照在测试系统中的连接方式不同,又可分为:终端式和通过式两种。
终端式功率计把功率计探头作为测试系统的终端负载,功率计吸收全部待测功率,由功率指示器直接读取功率值。
由于需要吸收全部入射功率,终端式功率计常用于测试小信号。
终端式功率计有如下特点:
(1)在常见的射频和微波功率测量仪器中,终端式功率计的幅度测量精度是最高的,超越了频谱仪或者信号分析仪,典型测量精度可以达到±1.6%.
(2)不能测量大功率。
通常上限为+20dBm,下限为-60dBm左右。
(3)可以测量各种调制信号的平均功率、峰值功率、突发功率等。
通过式功率计,它是利用某种耦合装置,如定向耦合器、耦合环、探针等从传输的功率中按一定的比例耦合出一部分功率,送入功率计度量,传输的总功率等于功率计指示值乘以比例系数。
通过式功率计的业内先驱是Bird,射频微波的老人应该都知道。
下图就是典型的通过式功率计的原理框图:
图2. 通过式功率计的原理框图
通过式功率计的主要特点;
(1)通过式功率计具有大功率测量能力。
理论上来说,只要传输线可以通过的功率,通过式功率计都可以测量。
所以广电上动辄上千瓦的功率,都是由通过式功率计来测量的。
(2)通过式功率计很难做到宽带,这是由于里面的定向耦合器的限制。
(3)由于定向耦合器的耦合度存在,通过式功率计不能用于太小的功率测量。
这个和终端式功率计正好各有所长。
二、按照灵敏度和测量范围分类
射频或微波功率计按灵敏度和测量范围分类,可以分为测热电阻型功率计、热电偶型功率计、量热式功率计、晶体检波式功率计。
测热电阻型功率计使用热变电阻做功率传感元件。
热变电阻值的温度系数较大。
被测信号的功率被热变电阻吸收后产生热量,使其自身温度升高,电阻值发生显著变化,利用电阻电桥测量电阻值的变化,显示功率值。
热电偶型功率计热电偶型功率计中的热偶结直接吸收高频信号功率,结点温度升高,产生温差电势,电势的大小正比于吸收的高频功率值。
这种功率计的测量精度比较高,一般用于比较精确的功率测量。
图3 热电偶功率计原理简图
量热式功率计典型的热效应功率计,利用隔热负载吸收高频信号功率,使负载的温度升高,再利用热电偶元件测量负载的温度变化量,根据产生的热量计算高频功率值。
这个基本上我们实验室里面就见得不多了,多用于校准级的功率基准测试。
晶体检波式功率计晶体二极管检波器将高频信号变换为低频或直流电信号。
适当选择工作点,使检波器输出信号的幅度正比于高频信号的功率。
晶体管检波式功率计由于测量速度快、精度适中等特点,一直在射频微波的测量中广为使用。
三、按照被测信号的不同分类
射频或微波功率计按被测信号分类:连续波功率计和脉冲峰值功率计。
图4 峰值功率计原理简图
功率计技术指标以下是射频功率计的典型技术指标:
a)功率范围保证测量精度的可测功率最大值和最小值范围。
功率计的功率范围决定于功率探头。
b)最大允许功率探头不被损坏的最大输入功率值,通常指平均功率。
在测量大功率峰值信号时,注意峰值电压不能超过一定值,否则造成电压击穿。
使用功率计时绝对不能测量大于允许功率值的信号,否则会造成功率探头烧毁。
c)频率范围能保证测量精度和性能指标的被测信号的频率范围。
d)测量精度指功率探头校准修正后的精度。
不包括测试系统的失配误差。
e)稳定性功率计的稳定性取决于功率探头的稳定性和指示器的零漂及噪声干扰。
f)响应时间也称功率传感元件的时间常数。
通常指功率指示器上升到稳定值的64%所需的时间。
g)探头的型号、阻抗选用功率计探头时,功率探头的使用频率、功率范围必须与被测信号一致,探头传输线的结构和阻抗应与被测传输线相互匹配。
比如一个典型的功率计的技术参数可能如下:
频率范围:9KHz~110GHz(取决于传感器)
功率范围:-70~+44dBm
绝对精度:(对数)±0.02dB ;(线性)±0.5%
相对精度:(对数)±0.04dB ;(线性)±1.0%
对数方式:1.0 ;0.1 ;0.01和 0.001 dB (默认设置:0.01 dB)
线性方式:1~4位数(默认设置:3位数)
SWR: 1.06(最大值)
作为信号强度的天平,功率计在射频微波测量中具有非常重要的作用。
现在亲们基本明白了功率计的原理了吧。