现代仪器分析实验课ICP-MS介绍-2011
- 格式:ppt
- 大小:7.85 MB
- 文档页数:64
电感耦合等离子体质谱(icp-ms)电感耦合等离子体质谱(ICP-MS)简介电感耦合等离子体质谱(ICP-MS)是一种分析化学技术,采用高温等离子体将样品离解,从而分析样品中的元素。
采用ICP-MS技术可以在单个分析中检测多种元素、低浓度下的元素、分子异构体等。
ICP-MS常被用于研究化学以及生物医学领域的元素分析。
ICP-MS步骤ICP-MS主要包括四个步骤:样品制备、样品进样、等离子体产生和测量。
样品制备:样品制备步骤通常需要根据不同实验目的采取不同的方法。
例如,对于土壤或岩石样品,需要先进行湿燥并研磨成粉末;对于生物样品,需要使用有机溶剂提取目标元素。
因此,样品制备是ICP-MS分析的关键步骤之一。
样品进样:样品进样有两种方式:液体进样和固体进样。
液体进样主要是通过取样器将待测液体进入ICP。
固体进样需要将样品先通过转化成气态或液态的方式,并通过雾化器达到液体态,进入高温等离子体中。
等离子体产生:产生等离子体可采用两种方式:射频感应和直流放电。
射频感应通过在射频电场中通过高频驱动电势,生成高温等离子体。
而直流放电则是通过加热、高电压电弧作用、激光加热等方式,将样品蒸发、溅射成气态,并与气态惰性气体混合后,通过喷雾头进入高温等离子体中。
测量:测量步骤通常与其他仪器相结合,例如,ICP-MS可以与气质谱计(GC-ICP-MS)或液相色谱计(LC-ICP-MS)结合进行气/液样品的分析。
ICP-MS的测量步骤产生的是离子信号,通过质谱扫描方式进行质谱谱图测量。
在测量信号强度与目标元素数量之间会有一定的关联性,因此需要通过标准样本的建立,建立信号强度与元素数量之间的关联性。
1. 应用于环境科学领域:ICP-MS可以用于水、土壤和空气等环境样品中的痕量元素测定,且可以同时测定多种元素。
2. 应用于材料科学领域:ICP-MS技术可以分析材料中的有毒元素、金属元素及其化合物含量,以及其他重要元素和分子的含量。
ICP-MS基本原理ICP-MS(电感耦合等离子体质谱)是一种高灵敏度、高选择性和高分辨率的质谱分析技术,广泛应用于地质、环境、生物、医药等领域。
它通过将样品离子化并加速到高速,然后通过质量分析器分离和检测离子,从而实现对样品中元素的定量和定性分析。
ICP-MS的基本原理包括样品进样、离子化、质量分析和检测四个步骤。
首先,样品进样是ICP-MS分析的第一步。
样品通常以溶液形式进入进样系统,然后被喷雾器雾化成微小的液滴,进入等离子体中。
在等离子体中,样品被分解成原子和离子,形成带电的粒子。
其次,离子化是ICP-MS的关键步骤。
在等离子体中,通过加热和激发,样品中的原子和分子被激发成带电的离子。
这些离子具有不同的电荷和质量,可以通过质量分析器进行分离和检测。
然后,质量分析是ICP-MS的核心部分。
分离和检测离子的质量是通过质量分析器实现的。
ICP-MS中常用的质量分析器是四极质谱仪,它可以根据离子的质荷比进行分离和检测。
通过调节电场和磁场的强度,可以实现对不同质荷比的离子的选择性分离和检测。
最后,检测是ICP-MS的最后一步。
经过质量分析器分离和检测后,离子的信号被转换成电信号,并传输到数据系统进行处理和分析。
通过测量离子的信号强度,可以计算出样品中元素的含量,并进行定量和定性分析。
总的来说,ICP-MS是一种高灵敏度、高选择性和高分辨率的质谱分析技术,其基本原理包括样品进样、离子化、质量分析和检测四个步骤。
通过这些步骤,可以实现对样品中元素的定量和定性分析,为地质、环境、生物、医药等领域的研究和应用提供了重要的技术支持。
ICP-MS在科学研究和工业生产中具有广阔的应用前景,将为人类社会的发展和进步做出重要贡献。
ICPMS原理介绍(doc X页)ICP-MS中文培训资料1理论原理2硬件组成及功能讲解1ICP-MS原理部分概述ICP,MS是一种灵敏度非常高的元素分析仪器,可以测量溶液中含量在ppb或ppb以下的微量元素。
广泛应用于半导体、地质、环境以及生物制药等行业中。
ICP,MS全称是电感藕合等离子体质谱,它是一种将ICP技术和质谱结合在一起的分析仪器。
ICP利用在电感线圈上施加的强大功率的高频射频信号在线圈内部形成高温等离子体,并通过气体的推动,保证了等离子体的平衡和持续电离,在ICP,MS中,ICP起到离子源的作用,高温的等离子体使大多数样品中的元素都电离出一个电子而形成了一价正离子。
质谱是一个质量筛选和分析器,通过选择不同质核比(m/z)的离子通过来检测到某个离子的强度,进而分析计算出某种元素的强度。
ICP,MS的发展已经有20年的历史了,在长期的发展中,人们不断的将新的技术应用于ICP,MS的设计中,形成了各类ICP,MS。
ICP,MS主要分为以下几类:四极杆ICP,MS,高分辨ICP,MS(磁质谱),ICP,tof,MS。
本文主要介绍四极杆ICP,MS。
主要组成部分图1是ICP,MS的主要组成模块。
接口离子镜分析器离子源检测器图1 ICP,MS主要组成模块样品通过离子源离子化,形成离子流,通过接口进入真空系统,在离子镜中,负离子、中性粒子以及光子被拦截,而正离子正常通过,并且达到聚焦的效果。
在分析器中,仪器通2过改变分析器参数的设置,仅使我们感兴趣的核质比的元素离子顺利通过并且进入检测器,在检测器中对进入的离子个数进行计数,得到了最终的元素的含量。
各部分功能和原理1. 离子源离子源是产生等离子体并使样品离子化的部分,离子源结构如图2所示,主要包括RF图 2 离子源的组成工作线圈、等离子体、进样系统和气路控制四个组成部分。
样品通过进样系统导入,溶液样品通过雾化器等设备进入等离子体,气体样品直接导入等离子体,RF工作线圈为等离子体提供所需的能量,气路控制不断的产生新的等离子体,达到平衡状态,不断的电离新的离子。
ICP-MS原理介绍ICP-MS是一种高分辨率分析技术,它是指采用电感耦合等离子体质谱仪对样品中的离子进行分析。
ICP-MS的原理主要是利用高能量激发等离子体,并通过质谱系统对稳定性的离子进行分析和检测。
下面我们将对ICP-MS的原理进行详细介绍。
1. 概述ICP-MS即电感耦合等离子体质谱技术(Inductively Coupled Plasma Mass Spectrometry),其原理基于离子与电磁场相互作用的性质。
在等离子体中,高能量粒子以及高温和高压之下,原子变成了离子,从而对原子组成进行分析和检测。
ICP-MS是一种高灵敏度分析技术,其检测极限可达到亚ppb水平,因此被广泛应用于生物、化学、地球科学以及环境科学等领域。
其应用研究范围主要是分析样品中的金属元素,包括有机物中的微量金属,地球物质中的稀土元素和放射性同位素,生物样品中的重金属等。
2. 基本原理ICP-MS的基本原理是:样品通过离子化和质谱分析系统,得到样品中元素的离子通量,并利用电荷质量比(m/z)进行分离并检测。
其主要由三个部分组成:样品制备、离子化和质谱分析系统。
(1) 样品制备ICP-MS的样品制备是一个重要的环节,样品制备的不良会直接影响到成果的准确性和可靠性。
样品制备过程主要包括样品预处理、样品稀释等准备工作。
(2) 离子化离子化是ICP-MS技术的核心部分,通过高能量等离子体将样品中的原子转化成离子。
等离子体的形成需要气体和电源两个基本因素,气体主要起到等离子体形成和维持的作用,而电源则为生成等离子体提供能量。
(3) 质谱分析系统在ICP-MS 中,质谱分析系统主要由四部分组成:离子透镜、万向节、侧向排出器和质谱分析区。
ICP-MS采用多极质谱分析技术,将离子透镜分为分选装置和转向装置,分选装置对离子进行初步分选,转向装置用来将离子传送到质谱分析区进行分析和检测。
最后,离子经过质谱检测器检测,以得到信号处理结果。
ICP-MS的原理与应用1. ICP-MS的原理ICP-MS(Inductively Coupled Plasma Mass Spectrometry)是一种高灵敏度的元素分析技术,结合了ICP和MS两种技术的优点。
以下是ICP-MS的工作原理:1.电感耦合等离子体(ICP)–ICP是一种高温等离子体,由RF发生器产生。
–ICP中的气体被电磁场加热并电离,形成充满活跃离子和电子的等离子体。
–ICP提供了一个高温、高离子浓度的环境,有利于样品中元素的离子化。
2.离子光学系统–ICP产生的离子通过一系列的离子光学器件,如离子镜和偏转器,按质荷比被传输到质谱仪。
–离子光学系统的设计和参数设定决定了进入质谱仪的离子束的取向和调制。
3.质谱分析(MS)–质谱仪分析样品中的离子,并根据离子的质量/荷比进行分离和检测。
–典型的ICP-MS使用磁扇形质量过滤器(如四极杆)来分离离子。
4.检测器–检测器通常是一个具有高增益和高分辨率的电子倍增器。
–离子的到达在检测器上形成的电荷被放大并转换成电信号。
–通过测量电荷或电压信号的幅度,可以确定样品中的元素含量。
2. ICP-MS的应用ICP-MS作为一种高灵敏度、高选择性的分析技术,在多个领域中被广泛应用。
以下是一些ICP-MS的应用:1.环境分析–ICP-MS可以用于分析水和土壤中的微量元素。
–它可以检测重金属、有机物和其他环境污染物的含量。
–ICP-MS还可以用来研究大气颗粒物的组成和来源。
2.地质学研究–ICP-MS可用于研究地质样品中的稀有元素、硫化物、矿物和岩石的成分。
–它可以提供有关岩石的年龄、起源和地壳演化的信息。
3.生物医学研究–ICP-MS在药物代谢、毒理学和临床分析中起着重要作用。
–它可以用于分析人体组织和血液中的微量元素,如铁、锰和铬。
4.食品和农产品检测–ICP-MS可以用于检测食品和农产品中的农药残留、重金属污染和营养元素含量。
–它被广泛应用于食品安全检测和农产品质量控制。
电感耦合等离子体质谱ICP-MS1.ICP-MS仪器介绍测定超痕量元素和同位素比值的仪器。
由样品引入系统、等离子体离子源系统、离子聚焦和传输系统、质量分析器系统和离子检测系统组成。
工作原理:样品经预处理后,采用电感耦合等离子体质谱进行检测,根据元素的质谱图或特征离子进行定性,内标法定量。
样品由载气带入雾化系统进行雾化后,以气溶胶形式进入等离子体的轴向通道,在高温和惰性气体中被充分蒸发、解离、原子化和电离,转化成带电荷的正离子,通过铜或镍取样锥收集的离子,在低真空约133.322帕压力下形成分子束,再通过1~2毫米直径的截取板进入质谱分析器,经滤质器质量分离后,到达离子探测器,根据探测器的计数与浓度的比例关系,可测出元素的含量或同位素比值。
仪器优点:具有很低的检出限(达ng/ml或更低),基体效应小、谱线简单,能同时测定许多元素,动态线性范围宽及能快速测定同位素比值。
地质学中用于测定岩石、矿石、矿物、包裹体,地下水中微量、痕量和超痕量的金属元素,某些卤素元素、非金属元素及元素的同位素比值。
2.ICP产生原理ICP-MS所用电离源是感应耦合等离子体(ICP),它与原子发射光谱仪所用的ICP是一样的,其主体是一个由三层石英套管组成的炬管,炬管上端绕有负载线圈,三层管从里到外分别通载气,辅助气和冷却气,负载线圈由高频电源耦合供电,产生垂直于线圈平面的磁场。
如果通过高频装置使氩气电离,则氩离子和电子在电磁场作用下又会与其它氩原子碰撞产生更多的离子和电子,形成涡流。
强大的电流产生高温,瞬间使氩气形成温度可达10000k 的等离子焰炬。
样品由载气带入等离子体焰炬会发生蒸发、分解、激发和电离,辅助气用来维持等离子体,需要量大约为1 L/min。
冷却气以切线方向引入外管,产生螺旋形气流,使负载线圈处外管的内壁得到冷却,冷却气流量为10-15 L/min。
使用氩气作为等离子气的原因:氩的第一电离能高于绝大多数元素的第一电离能(除He、F、Ne外),且低于大多数元素的第二电离能(除Ca、Sr、Ba等)。
现代分析测试技术实验报告实验名称:电感耦合等离子-质谱(ICP-MS)测海链藻对微量金属元素的吸附量1. 实验目的1.1了解ICP-MS的基本原理;1.2掌握ICP-MS仪的结构及使用方法。
2. 实验原理ICP-MS 全称电感耦合等离子体质谱(Inductively Coupled Plasma Mass ectrometry),可分析几乎地球上所有元素(Li-U)ICP-MS技术是80年代发展起来的新的分析测试技术。
它以将ICP的高温(8000K)电离特性与四极杆质谱计的灵敏快速扫描的优点相结合而形成一种新型的最强有力的元素分析、同位素分析和形态分析技术。
该技术提供了极低的检出限、极宽的动态线性范围、谱线简单、干扰少、分析精密度高、分析速度快以及可提供同位素信息等分析特性。
自1984年第一台商品仪器问世以来,这项技术已从最初在地质科学研究的应用迅速发展到广泛应用于环境保护、半导体、生物、医学、冶金、石油、核材料分析等领域。
ICP-MS由等离子体发生器,雾化室,炬管,四极质谱仪和一个快速通道电子倍增管(称为离子探测器或收集器)组成。
其工作原理是:雾化器将溶液样品送入等离子体光源,在高温下汽化,解离出离子化气体,通过镍取样锥收集的离子,在低真空压力下形成分子束,再通过截取板进入四极质谱分析器,经滤质器质量分离后,到达离子探测器,根据探测器的计数与浓度的比例关系,可测出元素的含量或同位素比值。
3. 仪器、试剂、样品预处理及制备3.1 仪器Agilent 7500 Series电感耦合等离子体质谱仪(美国安捷伦公司);MK-III型光纤压力自控密闭微波消解系统(上海新科微波溶样测试技术研究所);DHG-9070A型电热恒温鼓风干燥箱(上海精宏实验设备有限公司);Milli-Q型净水器(美国,Millipore公司);DTG160型分析天平(上海天平仪器厂);玛瑙研钵。
3.2 试剂浓硝酸;H2O2(30%);硝酸钾配制N标准贮备液(10μmol/mL);磷酸二氢钾配制P 标准贮备液(2μmol/mL);氯化铵溶液(4.67 mol/L)。
icp-ms 工作原理
ICP-MS(电感耦合等离子体质谱)是一种常用的质谱技术,用于元素的定性和定量分析。
其工作原理如下:
1. 样品进样:样品通常以液态形式进入ICP-MS系统。
样品通过进样器进入射频环境下的等离子体。
2. 等离子体产生:通过在射频线圈中通入高频电场,气体放电变成等离子体。
气体内的原子在高温高能的环境下被电离,形成正离子。
3. 离子聚焦:正离子在一系列的准直装置中被聚焦,以便将它们引导到质谱仪的质子源中。
4. 质子源:在质子源中,正离子进一步被电离,并且获得进一步加速。
电离的原子核或分子离子以高速被产生并通过透镜系统传输到质谱仪的分离装置。
5. 分离装置:分离装置通常为一段能够根据质量-电荷比将离子分离的时间飞行轴,例如飞行时间质谱。
该装置利用离子在电场中的不同迁移速度来分离它们。
6. 检测器:最后,离子在检测器上产生电信号。
根据信号的大小,可以定性和定量分析不同元素的存在。
ICP-MS具有高灵敏度、高选择性和广泛的元素覆盖范围等特
点,常用于环境监测、食品安全、地质学研究和医学诊断等领域。
icp-ms 原理ICP-MS原理ICP-MS是一种基于等离子体质谱技术的分析方法,广泛应用于环境、地质、食品、医药等领域。
它通过将样品原子化和电离,利用质谱仪对离子进行分析,从而获得样品中各种元素的含量信息。
ICP-MS原理的核心是等离子体和质谱仪的相结合。
首先,将样品溶解并转化为气态、液态或固态的形式,然后通过气体进样系统引入进入等离子体。
等离子体是由高频电源产生的高温等离子体火焰,其中包含了大量的离子和自由电子。
在等离子体中,样品分子会经历电子碰撞、化学反应和电离等过程,最终形成离子。
这些离子根据其质量和电荷比率,经过质谱仪中的质量分析器分离并检测。
质谱仪通常采用四级杆质量分析仪,具有高分辨率和高灵敏度。
ICP-MS的核心原理是质谱仪中的磁场和电场的作用。
磁场可以将离子按照其质量-电荷比分离,电场可以将分离好的离子引导到检测器中进行测量。
通过测量离子的强度和时间,可以确定样品中各种元素的含量。
ICP-MS具有很高的灵敏度和选择性。
它可以同时测量多种元素,范围从低至ppq(10^-15)级到高至wt%(百分之几)。
此外,ICP-MS 还具有很高的精确度和准确度,可以满足不同领域对元素含量分析的要求。
ICP-MS的应用非常广泛。
在环境领域,可以用于监测大气、水体、土壤中的重金属和有机污染物;在地质领域,可以用于研究岩石、矿石和地球化学过程;在食品领域,可以用于检测农产品中的营养元素和有害物质;在医药领域,可以用于药物和生物样品的分析。
然而,ICP-MS也存在一些限制。
首先,它需要昂贵的设备和专业的操作技术,不适合于小型实验室或个人使用。
其次,样品的准备过程可能比较复杂,需要特殊的前处理步骤。
最后,由于离子化的过程,ICP-MS只能对溶液或气态样品进行分析,对固态样品的分析存在一定的困难。
总体来说,ICP-MS是一种非常强大和广泛应用的分析技术,可以提供高灵敏度和高选择性的元素分析。
它在许多领域都有重要的应用,对于环境监测、地质研究、食品安全和医药分析等方面起着重要的作用。
ICPMS原理介绍ICP-MS中⽂培训资料1理论原理2硬件组成及功能讲解ICP-MS原理部分概述ICP-MS是⼀种灵敏度⾮常⾼的元素分析仪器,可以测量溶液中含量在ppb或ppb以下的微量元素。
⼴泛应⽤于半导体、地质、环境以及⽣物制药等⾏业中。
ICP-MS全称是电感藕合等离⼦体质谱,它是⼀种将ICP技术和质谱结合在⼀起的分析仪器。
ICP利⽤在电感线圈上施加的强⼤功率的⾼频射频信号在线圈内部形成⾼温等离⼦体,并通过⽓体的推动,保证了等离⼦体的平衡和持续电离,在ICP-MS 中,ICP起到离⼦源的作⽤,⾼温的等离⼦体使⼤多数样品中的元素都电离出⼀个电⼦⽽形成了⼀价正离⼦。
质谱是⼀个质量筛选和分析器,通过选择不同质核⽐(m/z)的离⼦通过来检测到某个离⼦的强度,进⽽分析计算出某种元素的强度。
ICP-MS的发展已经有20年的历史了,在长期的发展中,⼈们不断的将新的技术应⽤于ICP-MS的设计中,形成了各类ICP -MS。
ICP-MS主要分为以下⼏类:四极杆ICP-MS,⾼分辨ICP-MS(磁质谱),ICP-tof-MS。
本⽂主要介绍四极杆ICP-MS。
主要组成部分图1是ICP-MS的主要组成模块。
图1 ICP-MS主要组成模块样品通过离⼦源离⼦化,形成离⼦流,通过接⼝进⼊真空系统,在离⼦镜中,负离⼦、中性粒⼦以及光⼦被拦截,⽽正离⼦正常通过,并且达到聚焦的效果。
在分析器中,仪器通过改变分析器参数的设置,仅使我们感兴趣的核质⽐的元素离⼦顺利通过并且进⼊检测器,在检测器中对进⼊的离⼦个数进⾏计数,得到了最终的元素的含量。
各部分功能和原理1.离⼦源离⼦源是产⽣等离⼦体并使样品离⼦化的部分,离⼦源结构如图2所⽰,主要包括RF图 2 离⼦源的组成⼯作线圈、等离⼦体、进样系统和⽓路控制四个组成部分。
样品通过进样系统导⼊,溶液样品通过雾化器等设备进⼊等离⼦体,⽓体样品直接导⼊等离⼦体,RF⼯作线圈为等离⼦体提供所需的能量,⽓路控制不断的产⽣新的等离⼦体,达到平衡状态,不断的电离新的离⼦。