八年级上册勾股定理
- 格式:doc
- 大小:289.00 KB
- 文档页数:2
CA BDBAC DB专题复习:勾股定理1、勾股定理考点一、勾股定理定义:直角三角形两直角边的平方和等于斜边的平方。
解释:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2(古时候把直角三角形中较短边叫做“勾”,较长的直角边为“股”,斜边称为“弦”)典型例题例题1、(1)在直角三角形ABC中,AC=5,BC=12,求AB的长。
(2)在直角三角形ABC中,AB=25,AC=20,求BC的长。
常见的勾股数:3,4,5;5,12,13;6,8,10等技巧总结:利用勾股定理,在直角三角形中,已知两边可求第三边;一般情况下,用a,b 表示直角边,c表示斜边,则有a2+b2=c2,还可以有其他形式的变式。
例题2、一个零件的的形状如图所示,已知AC=3,AB=4,BD=12,求CD的长.例题3、如图所示,已知三角形ABC中,AB=10,BC=21,AC=17,求BC边上的高。
技巧总结:有时某些线段不可以直接写出来,可以用数学转化的思想,构造直角三角形,再求出答案,也可以用勾股定理建立方程去求。
例题4、如图,台风过后某小学的旗杆在B处断裂,旗杆顶部A落在离旗杆底部点C8米处,已知旗杆长16米,则旗杆是在距底部多少米处断裂?技巧总结:要用勾股定理的变形公式。
例题5、已知:在△ABC 中,∠C=90°,∠A 、∠B 、∠C 的对边为a 、b 、c 。
求证:a 2+b 2=c 2。
技巧总结:分析:左右两边的正方形边长相等,则两个正方形的面积相等。
左边S=4×21ab +c 2,右边S=(a+b )2,左边和右边面积相等,即4×21ab +c 2=(a+b )2 对应的课堂练习:1. 下列说法正确的是( )A .若 a 、b 、c 是△ABC 的三边,则a 2+b 2=c 2B .若 a 、b 、c 是Rt △ABC 的三边,则a 2+b 2=c 2C .若 a 、b 、c 是Rt △ABC 的三边, 90=∠A ,则a 2+b 2=c 2D .若 a 、b 、c 是Rt △ABC 的三边, 90=∠C ,则a 2+b 2=c 22. △ABC 的三条边长分别是a 、b 、c ,则下列各式成立的是( ) A .c b a =+ B.c b a >+ C.c b a <+ D.222c b a =+ 3.一个直角三角形中,两直角边长分别为3和4,下列说法正确的是( ) A .斜边长为25 B .三角形周长为25C .斜边长为5D .三角形面积为20 4.在R t A B C ∆中, 90=∠C , (1)如果a =3,b =4,则c = ; (2)如果a =6,b =8,则c = ; (3)如果a =5,b =12,则c = ;(4) 如果a =15,b =20,则c = .5.如图,三个正方形中的两个的面积S 1=25,S 2=144,则另一个的面积S 3为_______1.如图,直角△ABC 的主要性质是:∠C=90°,(用几何语言表示)⑴两锐角之间的关系: ;⑵若D 为斜边中点,则斜边中线 ;⑶若∠B=30°,则∠B 的对边和斜边: ;⑷三边之间的关系: 。
数学八年级上册勾股定理一、勾股定理的内容1. 定理表述- 在直角三角形中,两直角边的平方和等于斜边的平方。
如果直角三角形的两条直角边长度分别是a和b,斜边长度为c,那么a^2+b^2=c^2。
- 例如,一个直角三角形的两条直角边分别为3和4,根据勾股定理,斜边c满足3^2+4^2=c^2,即9 + 16=c^2,c^2=25,所以c = 5。
2. 定理的证明- 赵爽弦图证明法- 赵爽弦图是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形。
- 设直角三角形的两条直角边分别为a、b(b>a),斜边为c。
大正方形的面积可以表示为c^2,同时它又等于四个直角三角形的面积加上中间小正方形的面积。
- 四个直角三角形的面积为4×(1)/(2)ab = 2ab,中间小正方形的边长为b - a,其面积为(b - a)^2=b^2-2ab+a^2。
- 所以c^2=a^2+b^2。
- 毕达哥拉斯证法(拼图法)- 用四个全等的直角三角形(直角边为a、b,斜边为c)拼成一个以a + b为边长的正方形。
- 这个大正方形的面积为(a + b)^2=a^2+2ab + b^2,同时它又等于四个直角三角形的面积加上中间边长为c的正方形的面积,即4×(1)/(2)ab+c^2=2ab +c^2。
- 所以a^2+b^2=c^2。
二、勾股定理的应用1. 已知直角三角形的两边求第三边- 当已知两条直角边求斜边时,直接使用c=√(a^2)+b^{2}。
例如,直角边a = 6,b = 8,则c=√(6^2)+8^{2}=√(36 + 64)=√(100)=10。
- 当已知一条直角边和斜边求另一条直角边时,使用a=√(c^2)-b^{2}(设c为斜边,b为已知直角边)。
例如,斜边c = 13,一条直角边b = 5,则a=√(13^2)-5^{2}=√(169 - 25)=√(144)=12。
2. 解决实际问题中的直角三角形问题- 例如,在一个长方形中,已知长为8米,宽为6米,求对角线的长度。
一、理论知识1.勾股定理:直角三角形两直角边的平方和等于斜边的平方。
2.勾股定理逆定理:如果三角形的三条边a,b,c 满足222a b c +=,那么这个三角形是直角三角形。
3.勾股数:满足222a b c += 的三个正整数,称为勾股数。
勾股定理的证明:拼图法证明1:我国数学家赵爽的证法:将四个直角三角形按图2那样摆放,构成了一个以直角三角形的斜边c (弦)为边长的正方形(弦图),其面积为2c 。
四个直角三角形的面积和为2ab ,弦图中间是以勾、股之差为边的正方形,面积为2()b a - 。
于是,有222()ab b a c +-=。
整理得222a b c +=。
证明2:如图△ABC 和△CDE 是两个全等的直角三角形,这两个直角三角形拼成了一个梯形。
则ABC CDE ACE ABDE S S S S ++△△△梯形= 即21111()()2222a b a b ab ab c ++=++ 化简得222a b c +=二、典型题型1.求线段长度方程思想的运用,利用面积计算例题1-1:如图,折叠矩形的一边AD ,使点D 落在BC 边上的点F 处,且AB=8cm ,BC=10cm ,求EC 的长。
思路:①折叠全等 ②方程思想-归入到一个三角形,利用勾股定理,待求所在的三角形。
解:由折叠全等知道AF=AD=BC=10cm ,在Rt △ABF 中,226BF AF AB =-=,FC=4cm ,设EC=x ,EF=8-x ,则利用勾股定理可求出EC例题1-2:如图,直角三角形ABC 中,AD ,CE 是三角形的两条中线,其长分别为5和210,那么这个直角三角形的斜边长为( )A.10B. 410C. 13D. 213解:设AB=x ,BC =y ,则在两个Rt △ABD ,Rt △CBE 中,利用中线长度已知和勾股定理,可求出x 和y ,则可求出AC例题1-3:如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6m 和8m .按照输油中心O 到三条支路的距离相等来连接管道,则O 到三条支路的管道总长(计算时视管道为线,中心O 为点)是( )A.2mB. 3mC. 6mD.9m解:△ABC 的面积=△AOB 的面积+△BOC 的面积+△AOC 的面积即可求解点O 到三条边的距离相等,所以可设为h 。
八年级上册数学公式法
1.勾股定理:直角三角形中,直角边的平方和等于斜边的平方。
公式:$a^2 + b^2 = c^2$
其中,$a$ 和 $b$ 是直角三角形的两条直角边,$c$ 是斜边。
2.平方差公式:$(a+b)(a-b) = a^2 - b^2$
用于计算两个数的平方差。
3.完全平方公式:$(a+b)^2 = a^2 + 2ab + b^2$ 和$(a-b)^2 = a^2 -
2ab + b^2$
用于计算一个数的平方,加上或减去两倍的该数与另一数的乘积,再加或减另一数的平方。
4.二次根式的乘法法则:$\sqrt{a} \times \sqrt{b} = \sqrt{ab}$ (其中$a
\geq 0, b \geq 0$)
用于计算两个非负数的平方根的乘积。
5.二次根式的除法法则:$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$ (其
中 $a \geq 0, b > 0$)
用于计算一个非负数的平方根除以另一个非负数的平方根。
6.分式的乘法法则:$\frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd}$
用于计算两个分式的乘积。
7.分式的除法法则:$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times
\frac{d}{c} = \frac{ad}{bc}$
用于计算一个分式除以另一个分式。
八年级数学上册知识点总结数学》(八年级上册)知识点总结第一章勾股定理1、勾股定理:直角三角形两直角边a,b的平方和等于斜边c的平方,即a²+b²=c²。
2、勾股定理的逆定理:如果三角形的三边长a,b,c有关系a²+b²=c²,那么这个三角形是直角三角形。
3、勾股数:满足a²+b²=c²的三个正整数,称为勾股数。
第二章实数一、实数的概念及分类1、实数的分类:正有理数、有理数零有限小数和无限循环小数、实数负有理数、正无理数、无理数无限不循环小数、负无理数。
2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一特点,归纳起来有四类:1)开方开不尽的数,如7、32等;2)有特定意义的数,如圆周率π,或化简后含有π的数,如222π+8等;3)有特定结构的数,如0.xxxxxxxx01…等;4)某些三角函数值,如sin60等。
二、实数的倒数、相反数和绝对值1、相反数:实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,则有a+b=0,a=−b,反之亦成立。
2、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值(|a|≥)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a≥;若|a|=−a,则a≤。
3、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和−1.零没有倒数。
4、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算。
三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x的平方等于a,即x²=a,那么这个正数x就叫做a的算术平方根。
八年级数学《勾股定理》知识点一、勾股定理:1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方ABCabc弦股勾勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形。
2. 勾股数:满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。
)*附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,133. 判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2 ,那么这个三角形是直角三角形。
(经典直角三角形:勾三、股四、弦五)其他方法:(1)有一个角为90°的三角形是直角三角形。
(2)有两个角互余的三角形是直角三角形。
用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c);(2)若c2=a2+b2,则△ABC是以∠C为直角的三角形;若a2+b2<c2,则此三角形为钝角三角形(其中c为最大边);若a2+b2>c2,则此三角形为锐角三角形(其中c为最大边)4.注意:(1)直角三角形斜边上的中线等于斜边的一半(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
(3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。
5. 勾股定理的作用:(1)已知直角三角形的两边求第三边。
(2)已知直角三角形的一边,求另两边的关系。
(3)用于证明线段平方关系的问题。
(4)利用勾股定理,作出长为n的线段1。
八年级数学上册知识点:勾股定理八年级数学上册知识点:勾股定理一、勾股定理:1.勾股定理内容:如果直角三角形的两直角边长分别为a,斜边长为c,那么a2+b2=c2,即直角三角形两直角边的平方和等于斜边的平方。
2.勾股定理的证明:勾股定理的证明方法很多,常见的是拼图的方法用拼图的方法验证勾股定理的思路是:(1)图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变;(2)根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理。
4.勾股定理的适用范围:勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征。
二、勾股定理的逆定理1.逆定理的内容:如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,其中c为斜边。
说明:(1)勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和与较长边的平方作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;(2)定理中a,b,c及a2+b2=c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足a2+b2=c,那么以a,b,c为三边的三角形是直角三角形,但此时的斜边是b.2.利用勾股定理的逆定理判断一个三角形是否为直角三角形的一般步骤:(1)确定最大边;(2)算出最大边的平方与另两边的平方和;(3)比较最大边的平方与别两边的平方和是否相等,若相等,则说明是直角三角形。
三、勾股数能够构成直角三角形的三边长的三个正整数称为勾股数.四、一个重要结论:由直角三角形三边为边长所构成的三个正方形满足“两个较小面积和等于较大面积”。
五、勾股定理及其逆定理的应用解决圆柱侧面两点间的距离问题、航海问题,折叠问题、梯子下滑问题等,常直接间接运用勾股定理及其逆定理的应用。
常见考法(1)直接考查勾股定理及其逆定理;(2)应用勾股定理建立方程;(3)实际问题中应用勾股定理及其逆定理。
八年级上册第一章《勾股定理》复习要点知识点一:勾股定理要点:⑴•勾股定理:直角三角形两直角边的平方和等于斜边的平方如果直角三角形的两条直角边分别为a、b,斜边为c,那么,a2 +b2 =c2,(2).历史文化:勾股定理在西方文献中又称毕达哥拉斯定理。
我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边为弦。
⑶格式:a=8 b=15 解:由勾股定理得c2 =a2 +b2=82+152=64+225=289•/ C>0 ••• C=17【典例精析】1•一架2.5m长的梯子斜靠在一竖直的墙上,这时梯足距墙脚0.7m •那么梯子的顶端距墙脚的距离是( )•(A)0.7m (B)0.9m (C)1.5m (D)2.4m2•如图,为了求出湖两岸A、B两点之间的距离,一个观测者在点C设桩,使三角形ABC恰好为直角三角形.通过测量,得到AC长160m, BC长128m ,则AB长________________ m.3•利用四个全等的直角三角形可以拼成如图所示的图形, 这个图形被称为弦图•从图中可以看到:大正方形面积=小正方形面积+四个直角三角形面积. 因而c2= +•化简后即为c2= __________ •知识点二:直角三角形的判别要点;*如果三角形三边长为a、b、c, c为最长边,只要符合a2 +b2 =c2,这个三角形是直角三角形。
(勾股定理逆定理,是直角三角形的判别条件)【典例精析】1、在下列长度的各组线段中,能组成直角三角形的是( )A.5、6、7B.1 、4、9C.5 、12、13D.5、11、122、满足下列条件的厶ABC不是直角三角形的是(A.b2=c2- a2B.a : b : c=3 : 4 : 5C. / C=Z A-Z BD. / A:/ B:/C=12: 13 : 1553、三角形的三边长分别是15, 36, 39,这个三角形是______ 三角形。
4、将直角三角形的三条边同时扩大4倍后,得到的三角形为()A.直角三角形B. 锐角三角形C. 钝角三角形D. 不能确定5•有两棵树,一棵高6米,另一棵高2米, 两树相距5米•一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少飞了多少米?知识点三:勾股定理的综合应用【典例精析】1、如图1- 1,在钝角VABC 中,CB = 9, AB = 17, AC = 10, AD BC 于D,求AD 的长。
八年级上册
勾股定理
1、如图,在四边形ABCD 中,,3,2,90,60===∠=∠=∠CD BC D B A
则=AB ( ) A.4 B.5 C.32 D.
33
8
2、如果一个三角形的一条边是另一边的2倍,并且有一个角是
30,那么这个三角形的形状是( )
A.直角三角形
B.钝角三角形
C.锐角三角形
D.不能确定
3、如图,在ABC Rt ∆中,
90=∠BAC ,过顶点A 的直线ACB ABC BC DE ∠∠、,//的平分线分别交DE 于点D E 、,若10,6==BC AC ,则DE 的长为
( ) A.14 B.16 C.18 D.20
4、如图,P 为ABC ∆边BC 上的一点,且PB PC 2=,已知,60,45
=∠=∠APC ABC 则
ACB ∠的度数是_____。
5、如图,四边形ABCD 中,已知AB:BC:CD:DA=2:2:3:1,且
90=∠B ,则______=∠DAB 。
6、如图,四边形ABCD 中,,26,24,8,6cm DA cm CD cm BC cm AB ====且
90=∠ABC ,则四边形ABCD 的面积是2_____cm 。
7、如图,P 是长方形ABCD 内一点,已知5,4,3===PC PB PA ,那么2
PD 等于_____。
8、矩形纸片ABCD 中,3=AB 厘米,4=BC 厘米,现将C A ,重合,
使纸片折叠压平,设折痕为EF ,重叠部分∆AEF 的面积为____。
9、如图,已知B A ∠=∠,111,,PP BB AA 均垂直于11B A ,A
A
B
B C
C P
题图)
第4(D
题图)第5(D A B
C
题图)第6(题图)(第7A
B C
D
P
12
,20,16,1711111====B A BB PP AA
2222AD CD BD =+\则_____=+PB AP 。
10、如图,一个直角三角形的三边长均为正整数,已知它的一条直角边的长恰是3,那么另一条直角边的长是______。
11、如图,在ABC ∆中,D AC AB BAC ,,90==∠
是BC 上的点,求证: 12、如图,在ABC ∆中,BE AD CD AE CA BC AB 、,,===相交于P ,AD BQ ⊥于Q ,求证:PQ BP 2=
13、如图,在等腰直角ABC ∆的斜边上取异于C B ,的两点F E ,,
使,45 =∠EAF 求证:以CF BE EF ,,为边的三角形是直角三角
形。
14、如图,在ABC Rt ∆中,
90=∠A ,D 为斜边BC 中点,DF DE ⊥,
求证:2
2
2
CF BE EF +=
A 1
A B
1B 1P P
题图)
第9
(题图)
第14(。