人工神经网络基础
- 格式:ppt
- 大小:547.50 KB
- 文档页数:8
第二章深度神经网络一、概述1、基本概念深度学习(Deep Learning)是一种没有人为参与的特征选取方法,又被称为是无监督的特征学习(Unsupervised Feature Learning)。
深度学习思想的神经网络利用隐含层从低到高依次学习数据的从底层到高层、从简单到复杂、从具体到抽象的特征,而这一特性决定了深度学习模型可以学习到目标的自适应特征,具有很强的鲁棒性。
深度学习的另外一个思想是贪婪算法(greedy algorithm)的思想,其在训练的时候打破了几十年传统神经网络训练方法的“桎梏”,采用逐层训练(greedy layer-wise)的贪婪思想,并经过最后的微调(fine-tuning),这一训练算法的成功也使得深度学习获得了巨大成功。
传统的模式识别方法:机器学习过程从最初的传感器得到原始的数据,到经过预处理,都是为了第三步和第四步的特征提取和特征选择,而这个耗时耗力的工作一般要靠人工完成。
这种靠人工的,需要大量的专业知识的启发式的特征提取方法注定要限制机器学习的发展,而深度学习的非监督学习阶段的“盲学习”的特性能够解决该问题,即:深度学习在特征提取和选择时是完全自主的,不需要任何的人工干预。
2、神经网络发展受限之处多隐含层的网络容易收敛到参数空间的局部最优解,即偏导数为0 的点,尤其在目标识别中,由于图像的信噪比很低,神经网络很容易陷入局部极小点; 训练算法与网络的初始参数有很大关系,比较容易过拟合;训练速度慢;在误差反向传播的训练算法中,层数越深,误差越小,甚至接近于0,造成训练失败。
误差反向传播算法必须要用到带标签的数据(有导师学习、监督学习),获取带标签的数据十分困难。
3、深度学习的学习算法深度学习的基本模型从形式上来看和神经网络一致,基本的结构单元都是神经元,由神经元组成网络层,整个网络由输入层,隐含层和输出层组成。
在深度学习理论中,一个网络的学习算法每运行一次,只调整一层网络的参数。
第九章人工神经网络基础人工神经网络(Artificial Neural Network, ANN)是在模拟人脑神经系统的基础上实现人工智能的途径,因此认识和理解人脑神经系统的结构和功能是实现人工神经网络的基础。
而人脑现有研究成果表明人脑是由大量生物神经元经过广泛互连而形成的,基于此,人们首先模拟生物神经元形成人工神经元,进而将人工神经元连接在一起形成人工神经网络。
因此这一研究途径也常被人工智能研究人员称为“连接主义”(connectionism)。
又因为人工神经网络开始于对人脑结构的模拟,试图从结构上的模拟达到功能上的模拟,这与首先关注人类智能的功能性,进而通过算法来实现的符号式人工智能正好相反,为了区分这两种相反的途径,我们将符号式人工智能称为“自上而下的实现方式”,而称人工神经网络称为“自下而上的实现方式”。
人工神经网络中存在两个基本问题。
第一个问题是人工神经网络的结构问题,即如何模拟人脑中的生物神经元以及生物神经元之间的互连方式的问题。
确定了人工神经元模型和人工神经元互连方式,就确定好了网络结构。
第二个问题是在所确定的结构上如何实现功能的问题,这一般是,甚至可以说必须是,通过对人工神经网络的学习来实现,因此主要是人工神经网络的学习问题。
具体地说,是如何利用学习手段从训练数据中自动确定神经网络中神经元之间的连接权值的问题。
这是人工神经网络中的核心问题,其智能程度更多的反映在学习算法上,人工神经网络的发展也主要体现在学习算法的进步上。
当然,学习算法与网络结构是紧密联系在一起的,网络结构在很大程度上影响着学习算法的确定。
本章首先阐述人脑神经系统,然后说明人工神经元模型,进而介绍人工神经网络的基本结构类型和学习方式。
9.1 人脑神经系统人工神经网络是在神经细胞水平上对人脑的简化和模拟,其核心是人工神经元。
人工神经元的形态来源于神经生理学中对生物神经元的研究。
因此,在叙述人工神经元之前,首先介绍目前人们对生物神经元的构成及其工作机理的认识。
第一章前向神经网络一、感知器1、感知器网络结构设网络输入模式向量为:对应的输出为:连接权向量为:2、感知器的学习➢初始化连接权向量及输出单元的阈值赋予(-1,+1)区间内的随机值,一般为较小的随机非零值。
➢连接权的修正每个输入模式作如下计算:(a)计算网络输出:(b)计算输出层单元希望输出与实际输出y之间的误差:(c)修正各单元与输出层之间的连接权与阈值:➢对m个输入模式重复步骤,直到误差k d(k=1,2,…,m)趋于零或小于预先给定的误差限ε。
3、感知器的图形解释➢整个学习和记忆过程,就是根据实际输出与希望输出之间的误差调整参数w 和θ,即调整截割平面的空间位置使之不断移动,直到它能将两类模式恰当划分的过程。
➢学习过程可看作是由式决定的n维超平面不断向正确划分输入模式的位置移动的过程。
4、感知器的局限性➢两层感知器只能解决线性可分问题➢增强分类能力的唯一出路是采用多层网络,即在输入及输出层之间加上隐层构成多层前馈网络。
➢Kolmogorov理论经过严格的数学证明:双隐层感知器足以解决任何复杂的分类问题。
➢简单的感知器学习过程已不能用于多层感知器,必须改进学习过程。
二、BP 神经网络 1、反向传播神经网络1) 误差逆传播神经网络是一种具有三层或三层以上的阶层型神经网络: ➢ 上、下层之间各神经元实现全连接,即下层的每一个单元与上层的每个单元都实现权连接;➢ 而每层各神经元之间无连接; ➢ 网络按有监督的方式进行学习。
2)➢ 当一对学习模式提供给网络后,神经元的激活值,从输入层经各中间层向输出层传播,在输出层的各神经元获得网络的输入响应。
➢ 在这之后,按减小希望输出与实际输出误差的方向,从输出层经各中间层逐层修正各连接权,最后回到输入层,故得名“误差逆传播算法”。
➢ 随着这种误差逆传播修正的不断进行,网络对输入模式响应的正确率也不断上升。
2、梯度下降法1)梯度法是一种对某个准则函数的迭代寻优算法。
人工神经网络的基础知识及应用前景人工神经网络是一种模拟仿真人类神经系统的计算模型,其工作原理是通过模拟大量神经元之间的交互作用,实现对输入信号的处理和输出结果的预测。
它已经成为了人工智能领域的重要研究方向,具有广泛的应用前景。
一、神经网络的基本概念一般来说,神经网络的基础是由连接器、神经元和权值组成的。
其中连接器是连接神经元的“线路”,神经元则是神经网络的基本计算单元,而权值则是表示神经元之间连接强度的系数。
这三个元素的组合和调整,形成了新一代人工智能技术的基体。
具体来说,神经网络的基本概念涉及到几个方面:1. 神经元:神经元是神经网络的基本计算单元,类似于人体神经系统中的细胞。
它接收从其他神经元传来的信号并对信号进行处理,最后将信号传递到其他神经元。
2. 连接器:连接器是连接神经元的“线路”,类似于人体神经系统中的神经纤维。
连接器传递信号的强度可以根据权值来调整。
3. 权值:权值表示神经元之间连接强度的系数。
这些权值通过不断的训练和调整,可以使神经网络更好地完成分类、识别等任务。
二、神经网络的工作原理神经网络的工作原理类似于人脑的处理方式。
它由多个神经元组成,每个神经元接收输入信号并产生输出信号。
在神经网络中,输入信号被送到第一层神经元中,这些神经元处理输入信号并产生一个新的信号传递到下一层神经元中。
最终结果可以通过输出层获得。
整个过程就像是一种类似反馈机制的过程,在反复的输入和输出过程中,神经网络可以不断调整自身的权值,从而获得更好的性能。
三、神经网络的应用前景随着各种深度学习技术的不断发展,神经网络的应用前景也越来越广泛。
以下是一些常见的应用方向:1. 模式识别:神经网络可以用于分析和识别不同类型的图像、文本、语音和视频等数据,帮助人们进行目标识别和分类。
2. 智能控制:神经网络可以用于智能控制,比如在机器人、自动驾驶和自动化生产线上,可以通过神经网络提高自主决策的能力。
3. 自然语言处理:神经网络可以用于自然语言处理和机器翻译等领域,帮助人们更好地理解和利用语言信息。