相态拟合参考(cmg)
- 格式:doc
- 大小:829.50 KB
- 文档页数:14
数值模拟过程(特别是历史拟合)是一项复杂的、消耗人力和机时的繁琐工作,如不遵循一定步骤,掌握一定技巧,可能陷入难以解脱的矛盾之中。
一般认为,同时拟合全区和单井的压力、含水和油气比难以办到,必须将历史拟合过程分解为相对比较容易的步骤进行。
历史拟合一般采取以下几个步骤:1确定模型参数的可调范围;2对模型参数全面检查;3历史拟合;1).全区和单井压力拟合;2).全区和单井含水拟合;3).单井生产指数拟合。
(一)确定模型参数的可调范围确定模型参数的可调范围是一项重要而细致的工作,需收集和分析一切可以利用的资料。
首先分清哪些参数是确定的,哪些参数是可调的。
资料及专家介绍:孔隙度允许修改范围±30%;渗透率视为不定参数,可修改范围±3倍或更多;有效厚度,由于源于测井资料,与取心资料对比偏高30%左右,主要是钙质层和泥质夹层没有完全挑出来,视为不定参数,可调范围-30%左右;流体压缩系数源于实验室测定,变化范围小,视为确定参数;岩石压缩系数源于实验测定,但受岩石内饱和流体和应力状态的影响,有一定变化范围;同时砂岩中与有效厚度相连的非有效部分,也有一定孔隙和流体在内,在油气运移中起一定弹性作用。
因而,允许岩石压缩系数可以扩大一倍;相对渗透率曲线视为不定参数,允许作适当修改;油、气的PVT性质,视为确定参数;油水界面,在资料不多的情况下,允许在一定范围内修改。
(二)对模型参数全面检查工资油藏数值模拟的数据很多,出现错误的可能性很大。
为此,在进行历史拟合之前,对模型数据进行全面检查是十分必要的。
数据检查包括模拟器自动检查和人工检查两方面,缺一不可。
模拟器自动检查包括:1、各项参数上下界的检查对各项参数上下界的检查,发现某一参数超过界限,打出错误信息。
1).检查原始地质储量并与容积法计算进行比较;N = 7758?A×h×Φ×Soi/Boi2).检查所有原始油藏性质图和输入数据。
文章编号:1000-0747(2004)02-0125-03凝析气流体的复杂相态钟太贤1,2,袁士义2,胡永乐2,刘合年2,李海平3(1.中国地质大学(北京);2.中国石油勘探开发研究院;3.中国石油天然气股份有限公司)摘要:近几年国内外发现的深部凝析气藏往往含有许多重质组分,使流体出现复杂的气、液、固三相相变,巨厚的凝析气藏流体表现出近临界特征,甚至出现异常的流体分布状态。
根据实验研究,如果凝析气流体含蜡量较高,可分为4个明显不同的相变区域:①低温高压时呈气、固两相状态;②高温高压时呈单相气体状态;③低温较低压时气、液、固三相共存;④高温较低压时气、液两相平衡。
高温高压条件下的凝析气流体具有偏差系数很大、界面张力很低等特殊性质,而水在高温储集层中很容易以蒸汽状态存在于气体中,由于水的含量较大,会对流体的性质产生明显影响,影响凝析气藏的储量评价,如果凝析水遇到酸性气体成为酸性水,将严重腐蚀生产设备。
参33关键词:凝析气;相态;固体;多孔介质;实验;热力学中图分类号:TE311 文献标识码:A 凝析气相态研究一直是凝析气藏开发中极其重要的研究内容[1,2]。
数十年来,人们积累了大量凝析气相态特征知识,促进了凝析气藏开发方式的优化。
然而,随着气田的开发和研究的不断深入,人们不断遇到的新问题已成为当前凝析气相态研究的重要前沿课题。
1气液相态特征在20世纪30年代以前,人们对天然地层流体的相态研究很少[1,2],但30年代美国凝析气藏的发现和开发极大地促进了地层流体的相态研究,特别是早期以Katz、Sage等[3-8]为代表的一大批著名学者做了大量的气液相态实验,这为后来地层实际流体相态计算理论的发展奠定了坚实基础。
早期人们通过生产现场观察,发现凝析油的颜色呈稻草黄色、白色或无色透明,将此作为判断凝析气藏流体的重要标志之一。
1966年Kilgren的实验研究发现[9],地面为黑色的油在原始地层状态下也会以气体状态存在,从而扩展了人们对地层凝析油性质的理解。
Computer Modelling Group, Inc.加拿大数值模拟集团2008 Tutorial 2008培训教材Building, Running and Analyzing a“Black Oil” Reservoir Simulation Model建立、运行以及分析组分模拟模型Using 使用采用Builder2007.11组分模型- Field UnitsBuilder 2007.11 GEM 2007.11&在你硬盘上创建一个工作目录,把与该指南相关的图放在该目录下。
启动 CMG 主界面 (桌面上的图标或者开始/程序/CMG/Launcher)•选择菜单项Projects,然后Add Project.•浏览并选择存储图文件的目录•工程命名为Tutorial•点击确定回到主界面•现在你应该能看到工作目录打开 Builder(双击图标)•选择-GEM Simulator-Field Units-Single Porosity-today’s date-点击 ok•出现数据输入面板•点击File (位于左上角的菜单栏),然后Open Map File•选择Map Type –Atlas Boundary format,x/y坐标系的单位为ft•点击Browse按钮选择并导入构造顶部文件To10flt.bna•点击确定•点击窗口最大化按钮(窗口右上角的方块)使窗口最大化,以方便观察。
•点击Reservoir(位于菜单栏), 然后“Create Grid” ,选择“Non-Orthogonal Corner Point…”•点击按钮•右上角有个较小的向导将帮助建立网格。
需要4条边界线,包括开始的top-most, left-most, bottom-most以及最后的right-most.•通过鼠标点击油藏顶端的边缘数值化top-most boundary。
•点击Next line按钮,开始点击油藏边缘,完成Right-most boundary.•点击Next Line按钮,点击油藏边缘,完成Bottom-most boundary.•最后点击Next Line按钮,开始点击Left-most boundary(并不需要完全圈住,在下一步BUILDER自动找到最初的点,并与最后的点连接起来。
第80期:使用CMG-GEM模拟二氧化碳驱操作流程Builder/GEM/Results 2017.10编写人:吴晓云很多人了解并开始使用CMG,是从STARS开始的,说到IMEX和GEM便无从下手了,GEM 模型要如何创建?CO2混相驱机理要如何设置?需要输出哪些结果?这些是初次接触GEM常常遇到的,我们先来聊一聊这些问题。
大家都有这样的共识—不同的数值模拟软件具有普遍的相似性,事实上,这种普遍的相似性在不同的模拟器之间也存在,其中80~90%的设置是相似的,区别主要集中于流体模型即Components部分。
CO2混相驱过程中,可能发生溶解、膨胀、混相或非混相、沥青质沉积、相渗滞后、润湿反转、扩散和弥散、水溶气、液态CO2冷伤害、离子交换、矿物质盐析和溶解等现象。
面对这么多的机理表征,大家显得无所适从,所以,把握主次才最为关键!首先,从最基础的模拟出发,溶解、膨胀,混相或非混相模拟是最重要的了,而这些机理的表征EoS已经为我们全权代劳了,做CO2驱的小伙伴们可以轻松上阵了。
其次,如果通过室内实验或者现场以及流体分析,还存在沥青质沉积、相渗滞后、润湿反转等现象,我们可以在基础模型上通过一系列的关键字定义即可表征。
做CO2驱或天然气驱过程中,最小混相压力是大家关注的首要参数,也是比较纠结的一个参数,巴不得直接把它丢给模型,达到“超过该压力,驱油百分百”的效果。
但是,在实际的驱替过程中可不是如此简单,模拟器也不是根据这个最小混相压力去触发100%驱油效率,而是以一种更加聪明的方式来模拟的。
混相是什么?简单来说,消除界面,那就是界面张力降为0。
GEM中计算界面张力的参数是等张比容(PCHOR)。
而关联界面张力和驱油效率,可以借助IFT(界面张力)效应来实现。
那么,MMP就不用关注了吗?也不是,MMP有各种经验公式和测定方法,业内比较认可和比较常用的细管实验法,虽然测定的方法也会受到细管长度、孔、渗等各种因素的影响,但是如果我们认可最小混相压力,在2017版WinProp 新增了对其的拟合功能,可以微调ΩA和ΩB以及注入气与重组分的二元交互作用系数,同时需监测其他实验数据的拟合精度。
3 油藏注气动态研究—跟踪模拟研究数值模拟是分析油藏动态的重要工具之一,为了能弄清油藏目前和未来的开采动态,为动态监测和油田开发提供依据,针对葡北油田的生产实际进行了下列研究工作:(1)相态拟合(2)细管试验拟合(3)长岩心实验拟合(4)三维地质参数场建立(5)储量拟合(6)历史拟合(7)目前生产动态(8)动态预测通过历史拟合等研究工作得到了目前的气水前沿位置及剩余油饱和度分布情况,并获到了用于动态预测的地质、流体参数场。
在动态预测中考虑了按目前现有井网和注采方式及明年另加两口新井(一采一注)进行开发的2个方案;另外还考虑了按目前现有井网在2001年1月将所有的注气井转为注水井,及明年另加两口新井(一采一注)进行开发的2个方案,方案总数共四个。
最后给出了油藏整体开发动态及部份典型井开采至2020年的生产动态指标。
3.1相态参数的拟合本次研究选用加拿大CMG数值模拟软件集团的相态模拟分析软件Winprop对葡北油田相态参数进行拟合计算。
Winprop是与油气藏模拟一体化的相态分析软件,模拟相态特征和油气藏流体性质,确定油气藏特征和流体组分变化,形成完整的PVT拟合数据,包括流体重馏分特征化、组分归并、实验室数据回归拟合、相图计算等。
对于分析和拟合分离器油和气的合并、压缩系数确定、等组分膨胀、等容衰竭、分离器测试等过程,是一个有力的相态分析工具,既能分析复杂油气藏油气系统的相态,又能产生组分模拟器GEM所需的PVT拟合参数场。
3.1.1 相态特征研究利用井所产流体的实验室分析参数,结合油气藏的开发生产动态资料是判别地层流体性质特征的有效方法和主要手段。
葡北20井取得高压物性、地层水饱和蒸汽压等丰富的实验数据,并已累计生产了大量的天然气和原油,为地层流体性质的综合研究和确定油气藏类型奠定了坚实的基础。
3.1.2 地层流体组成本次研究中,葡北20井流体资料来自吐哈石油勘探开发研究院1996年的实验报告。
拟合过程对拟合有影响的参数有:临界压力、临界温度、偏心因子、Ωa因子、Ωb 因子;对拟合饱和压力有影响的参数有:烃类相互作用系数PVC3;对拟合粘度有影响的参数有:相对分子量molecular weight、体积偏移V ol.shift、粘度相关参数viscosity correlation parameter等。
由于原油粘度和饱和压力对混相压力大小起着至关重要的影响,所以在相态拟合中我们先将粘度曲线拟合好之后,再拟合饱和压力、密度、气油比、原油体积系数等相关参数。
等组分膨胀实验中,原油体积系数的实验曲线和实际曲线基本吻合,且基本不随回归参数的改变发生变化,所以基本不用拟合,但是粘度和密度的实验曲线和实际曲线的差异过大;微分脱气实验中,气油比和原油体积系数、粘度和饱和压力都比实际值偏小。
如下图所示:PV关系曲线原油粘度拟合曲线原油密度拟合曲线体积系数及溶解气油比拟合曲线原油粘度拟合曲线我们先拟合粘度曲线,重烃组分的参数数值比轻烃组分对拟合的影响要大,在回归参数(regression parameters)部分中,选中组分物性(component properties)和粘度参数(viscosity parameters)中相对较重的烃类对应的对粘度有影响的参数(具体哪些重烃对应哪些参数也要逐一试验),能选中的回归参数个数不能超过50,根据运算后的结果发现等组分膨胀实验和微分脱气实验的拟合曲线有很大的改善,但仍需要进一步的调整,且算出的饱和压力比油田实际饱和压力要小。
粘度和密度的微调在等组分膨胀实验和微分脱气实验模块中,可以设置原油粘度和密度的权重(weight),权重越大,对拟合参数的影响就越大(粘度和密度的权重相互之间也有影响)。
饱和压力的大小也可通过设置权重拟合。
经过多次试算和对比,给出了两个实验模块中最合适的权重:等组分膨胀实验中粘度和密度的权重为30,微分脱气实验中给粘度的权重30。
由于饱和压力和实际相差不是太大,而且修改饱和压力的权重对拟合粘度和密度有很大的影响,所以将饱和压力的拟合留在组分劈分之后。
cmgstars软件功能介绍及实例介绍预览说明:预览图片所展示的格式为文档的源格式展示,下载源文件没有水印,内容可编辑和复制CMG-STARS热采、化学驱、冷采及其它先进开采方式数值模拟软件软件功能及国内外实例介绍加拿大计算机模拟软件集团(CMG)目录一、CMG总体介绍(以问答形式)3二、CMG-STARS软件功能介绍10(一)CMG-STARS化学驱模块数值模拟功能介绍101、聚合物驱功能及特点:102、凝胶功能及特点:12(二)CMG-STARS蒸汽辅助重力泄油模拟功能介绍13(三)CMG-STARS出砂冷采以及适度出砂模拟功能介绍15三、CMG-STARS软件国内外应用实例17(一)聚合物驱国内实例17(二)表面活性剂驱国内实例-华北油田淖50断块19(三)三元复合驱国外实例-北美海上油田20(四)凝胶调剖国内实例21(五)国外凝胶调剖实例1-奥地利leoben大学22(六)蒸汽辅助重力泄油(SAGD)实例-Conoco 22(7)稠油出砂冷采及适度出砂实例23(八)泡沫驱实例-挪威的SINTEF石油研究公司24(九)热水驱+注N2泡沫采油实例25(十)微生物采油实例27(十一)电磁加热稠油开采实例:28一、CMG总体介绍1.C MG 公司简介CMG公司(加拿大计算机模拟软件集团)是1977年在加拿大阿尔伯达省卡尔加里市成立的数模研究机构。
依靠在数模软件研究开发及应用方面的丰富经验并经过二十多年的成功拓展,从最初由政府资助的研究机构发展成为成功的上市公司,是全世界发展最快的石油数模软件开发公司。
公司总部设在加拿大阿尔伯达省卡尔加里,在伦敦、休斯敦、卡拉卡斯和北京设有分公司或办事处。
2.国际资质认证机构认证情况在技术测试方面,CMG在以往的SPE数值比较测试中,差不多参与了所有的测试,而且得到了良好的评价。
CMG公司旗下聚积了许多在国际石油数模领域极具影响力的技术专家,在每年全球大型的技术交流会(包括:SPE、CIM等地)上发表了大量有影响性的文章,在油藏数值模拟科技研究上一直保持着领先地位,提供了许多技术服务给国际数模界。
3 油藏注气动态研究—跟踪模拟研究数值模拟是分析油藏动态的重要工具之一,为了能弄清油藏目前和未来的开采动态,为动态监测和油田开发提供依据,针对葡北油田的生产实际进行了下列研究工作:(1)相态拟合(2)细管试验拟合(3)长岩心实验拟合(4)三维地质参数场建立(5)储量拟合(6)历史拟合(7)目前生产动态(8)动态预测通过历史拟合等研究工作得到了目前的气水前沿位置及剩余油饱和度分布情况,并获到了用于动态预测的地质、流体参数场。
在动态预测中考虑了按目前现有井网和注采方式及明年另加两口新井(一采一注)进行开发的2个方案;另外还考虑了按目前现有井网在2001年1月将所有的注气井转为注水井,及明年另加两口新井(一采一注)进行开发的2个方案,方案总数共四个。
最后给出了油藏整体开发动态及部份典型井开采至2020年的生产动态指标。
3.1相态参数的拟合本次研究选用加拿大CMG数值模拟软件集团的相态模拟分析软件Winprop对葡北油田相态参数进行拟合计算。
Winprop是与油气藏模拟一体化的相态分析软件,模拟相态特征和油气藏流体性质,确定油气藏特征和流体组分变化,形成完整的PVT拟合数据,包括流体重馏分特征化、组分归并、实验室数据回归拟合、相图计算等。
对于分析和拟合分离器油和气的合并、压缩系数确定、等组分膨胀、等容衰竭、分离器测试等过程,是一个有力的相态分析工具,既能分析复杂油气藏油气系统的相态,又能产生组分模拟器GEM所需的PVT拟合参数场。
3.1.1 相态特征研究利用井所产流体的实验室分析参数,结合油气藏的开发生产动态资料是判别地层流体性质特征的有效方法和主要手段。
葡北20井取得高压物性、地层水饱和蒸汽压等丰富的实验数据,并已累计生产了大量的天然气和原油,为地层流体性质的综合研究和确定油气藏类型奠定了坚实的基础。
3.1.2 地层流体组成本次研究中,葡北20井流体资料来自吐哈石油勘探开发研究院1996年的实验报告。
其井流物组份组成见表3-1。
3.1.3 拟组分划分PVT拟合PVT拟合的目的是用状态方程型相态分析软件对实验室所做的等组分膨胀、等容衰竭实验等数据进行计算拟合,得到可代表真实储层流体特性的状态方程参数。
这些参数是组分模型中凝析油、气性质计算的基础,用于组分模拟研究。
表3-1 葡北20井井流物组份组成表应用组分模拟器GEM 前处理相态软件Winprop 对葡北20井相态资料进行了拟合计算,为数值模拟提供相匹配的流体相态参数场。
3.1.3.1 拟组份划分由于受计算机内存,速度等条件的限制,在数值模拟中没有必要使用原有所有组份参与模拟计算,通常经劈分和合并重新进行拟组分处理,以此减少所求解方程组数目,提高计算效率。
本次模拟C 7+劈分为6个组分,再经合并最终拟组分划分为6个。
拟6组份:C 1+N 2,C 2+CO 2,C 3+IC 4+NC 4,IC 5+NC 5+NC 6,C 7~C 11,C 11+。
3.1.3.2 PVT 数据拟合应用Winprop 相态分析软件对葡北20井的相态资料进行反复拟合计算,得到PVT 参数见表3-2和表3-3。
通过反复拟合计算,其对比结果见图3-1~图3-7。
3.1细管实验拟合混相驱是提高油气采收率的重要方法之一,确定混相压力是混相驱的一项重要工作。
目前,确定混相压力的方法很多,归纳起来,主要有简单的计算方法、实验室测定以及模拟方法。
本次研究应用数值模拟方法进行细管模拟,确定了新疆吐哈葡北油田挥发性油藏注气驱替的最小混相压力(MMP),并用拟三元相图对MMP进行了分析和解释,模拟结果与实验室细管实验所确定的MMP基本一致,从而验证了模拟方法确定混相条件的可靠性。
3.2.1 细管实验模拟葡北油田注气混相条件主要采用细管模拟和细管实验方法来确定。
在细管模拟中设计的细管模型长34 m,横截面为矩形,边长为0.004 m和0.008 m。
平均孔隙度为0.367,渗透率为250×10-3μm2。
网格划分为X方向34个,Y 方向和Z方向各1个,网格步长DX=1 m,DY=0.004 m,DZ=0.008 m。
在初始端和末端各有一口井,一口为生产井,另一口为注入井。
地层原油来自葡北20井地层流体PVT模拟研究结果。
整个驱替是在恒定温度92.6℃(地层温度)的条件下进行,模拟仍然采用6个拟组份,注入溶剂为混相筛选注入气组成,拟组分摩尔含量C1+N2为0.7867、C2+CO2为0.1629、C3+IC4+NC4为0.0455、IC5+NC5+NC6为0.0038、C7~C11为0.0011、C11+为0。
先用地层原油饱和细管模型,然后在实验压力下注入筛选注入气进行驱替,记录注入1.27 PV孔隙体积时,不同压力下的原油采收率,绘制成采收率与驱替压力的关系曲线图。
由图3-7可知,当压力大于22Mpa时原油采收率为63.995%,以后采收率逐步提高,在30Mpa左右存在一个波动,波动的原因一个方面是一维模拟器存在数值弥散问题,另一个原因是混相状态本身存在的波动。
然后大约在33Mpa时出现转折。
当注入压力大于33Mpa以后,采收率没有多大变化。
以此认为筛选注入气和地层原油此时达到混相,其原油采收率为90.1095%,其中的MMP为33Mpa。
3.2.2 混相特征分析不同类型烷烃气的混相驱和非混相驱通常可以用拟三角相图来表示。
大量的研究认为,混相条件与拟三角相图(或三角相图)中注入流体、油藏原油、临界切线的相对位置有关。
如果注入流体点与油藏原油点位于临界切线的左边,过程为非混相;如果注入流体点与油藏原油点位于临界切线的两边,过程为一次接触混相或多次接触混相。
图3-8为33Mpa和92.6℃(地层温度)筛选注入气与地层原油的拟三角相图,油藏原油点正好位于临界切线上,属于上述第二种情形。
当压力低于33Mpa时,注入流体点与油藏原油点均位于临界切线的左边,不可能达到混相。
当压力高于46.75 Mpa时,可以达到一次接触混相。
所以认为筛选注入气和地层原油在地层温度下达到多次接触混相的最小混相压力为33Mpa。
在其它条件不变的情况下,单方面增加注入气C1+N2的组成,拟三角相图的两相区缩小,MMP增大;单方面增加地层温度,MMP也随之增加。
由此可见,注入气组成和地层温度是影响MMP的两个重要因素。
图 3-8 地层温度下注入气与地层原油的拟三角相图(P=33 Mpa)3.2.3 细管实验确定MMP细管实验主要包括模型孔隙体积测定、原油样品饱和、驱替实验和模型油洗等几个步骤。
设计的细管长34m,孔隙度36.6%,气测渗透率25μm2。
实验所用的地层原油与葡北20井地层流体相近,注入流体为前面的筛选注入气,注入速度为0.4 ml/min。
实验发现,筛选的注入气在大约33.3Mpa和91℃条件下开始与地层原油实现多次接触混相,由此确定的MMP约为33.3Mpa,这与细管模拟结果基本相同。
葡北油田地层原始压力37.3 Mpa,目前地层压力35.8Mpa,目前条件下还能继续保持多次接触混相驱替。
3.2.4 结论和认识通过以上研究和分析,取得以下结论和认识:1)建立在一维模拟器基础上的细管模拟方法对于确定MMP具有可靠性;2)拟三角相图可以用来确定和分析混相条件;3)在驱替过程中,从非混相到混相状态时,存在波动现象;4)葡北油田筛选注入气与地层原油达到混相所需要的最小混相压力约33Mpa是合理的;5)注入气组成和地层温度是影响MMP的两个重要因素。
6)通过细管试验拟合,说明筛选注入气能与原油达到混相。
3.3 长岩心实验的拟合葡北油田挥发性油藏长岩心驱替试验的目的在于对比和确定注水、注气、气水交替以及水气交替等驱替方式的驱油效率和驱油效果。
数值模拟拟合的目的是为三维模拟研究提供符合实际的相对渗透率曲线、毛管压力以及达到混相条件对参数进行的修正。
长岩心驱替模拟流体数据取自葡北20井地层原油拟合后的结果,地层数据和模拟条件均来自长岩心驱替实验数据。
气驱、气水交替以及水气交替驱替注入气的组成见表3-4。
表3-4 气驱、气水交替以及水气交替注入气组成3.3.1 长岩心水驱实验的拟合模拟网格一端为注水井,注入速度 3.6×10-4m3/天,另一端为一口生产井,保持38Mpa定压开采。
在注入0.658 PV时水开始突破,突破后驱替近视于活塞式驱动,很快不再产油,最终采收率为64.668%。
模拟计算结果与实验结果对比见图3-4。
3.3.2长岩心气驱实验的拟合模拟网格一端为注气井,注入速度 3.6×10-4m3/天,其注入气组成见表3-4;另一端为一口生产井,保持38Mpa定压开采。
在注入0.771 PV时气开始突破,突破后产油量几乎接近于零,采收率变化不大,突破时采收率约为87.6%。
模拟计算结果与实验结果对比见图3-10。
3.3.3长岩心气驱实验的拟合模拟网格一端为注气井,注入速度 3.6×10-4m3/天,其注入气组成见表3-4;另一端为一口生产井,保持38Mpa定压开采。
在注入0.771 PV时气开始突破,突破后产油量几乎接近于零,采收率变化不大,突破时采收率约为3.3.4长岩心气驱实验的拟合模拟网格一端为注气井,注入速度 3.6×10-4m3/天,其注入气组成见表3-4;另一端为一口生产井,保持38Mpa定压开采。
在注入0.771 PV时气开始突破,突破后产油量几乎接近于零,采收率变化不大,突破时采收率约为87.6%。
模拟计算结果与实验结果对比见图3-10。
3.3.5长岩心直接气水交替驱替实验的拟合模拟网格一端为气水交替注入井,注入速度3.6×10-4m3/天,气水比1:2,其注入气组成见表3-4;另一端为一口生产井,保持38Mpa定压开采。
气在0.7 PV时突破,水在0.777 PV开始突破,突破后采收率增加缓慢,水突破时采收率约为86.6%,气突破时采收率约为81.796%。
模拟计算结果与实验结果对比见图3-11。
3.3.6长岩心直接水气交替驱替实验的拟合模拟网格一端为水气交替注入井,注入速度3.6×10-4m3/天,气水比2:1,其注入气组成见表3-4;另一端为一口生产井,保持38Mpa定压开采。
气在0.624 PV时突破,水在0.629 PV开始突破,突破后采收率增加缓慢,水突破时采收率约为62.9%,气突破时采收率约为60.7%。
整个驱替过程中,地层压力变化很小,注水时压力相对升高,注气时压力相对降低,如此反复进行。
模拟计算结果与实验结果对比见图3-12。
通过对注水、注气、直接气水交替以及水气交替驱替方式下实验与模拟的对比,得出以下结论:●水驱突破后,很快不再出油,至此采收率不再增加;●气体突破后,仍有不少油产出,但采收率变化不大;●从驱油效率来看,水驱效率最差;气驱效率最高,直接气水交替驱油效率高于水气交替驱油效率。